Skip to main content

Mechanisms and Clinical Applications of RNA Pseudouridylation

  • Chapter
  • First Online:

Part of the book series: RNA Technologies ((RNATECHN,volume 12))

Abstract

Pseudouridylation is perhaps the most common epitranscriptomic modification among over 170 known chemical RNA modifications. Pseudouridine (Ψ) is highly conserved in various stable RNAs of all organisms. RNA pseudouridylation can be catalyzed by an RNA-independent mechanism by which stand-alone enzymes, known as pseudouridine synthases, recognize the substrate and catalyze the U-to-Ψ conversion reaction. Alternatively, pseudouridylation can be catalyzed by an RNA-guided mechanism, where a guide RNA (box H/ACA RNA), which is complexed with four core proteins (Cbf5/NAP57, Nhp2, Gar1, and Nop10), site-specifically directs the conversion of target uridine into a Ψ. Here, we discuss the underlying mechanisms of pseudouridylation as well as the methods for the detection of this modification. We also discuss pseudouridylation-linked diseases and potential clinical applications of this RNA modification.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adachi H, De Zoysa MD, Yu Y-T (2019a) Post-transcriptional pseudouridylation in mRNA as well as in some major types of noncoding RNAs. Biochim Biophys Acta Gene Regul Mech 1862:230–239

    Article  CAS  PubMed  Google Scholar 

  • Adachi H, DeZoysa MD, Yu Y-T (2019b) Detection and quantification of Pseudouridine in RNA. Meth Mol Biol 1870:219–235

    Article  CAS  Google Scholar 

  • Ansmant I, Massenet S, Grosjean H et al (2000) Identification of the Saccharomyces cerevisiae RNA:pseudouridine synthase responsible for formation of psi(2819) in 21S mitochondrial ribosomal RNA. Nucleic Acids Res 28:1941–1946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakin A, Ofengand J (1993) Four newly located pseudouridylate residues in Escherichia coli 23S ribosomal RNA are all at the peptidyltransferase center: analysis by the application of a new sequencing technique. Biochemistry 32:9754–9762

    Article  CAS  PubMed  Google Scholar 

  • Balogh E, Chandler JC, Varga M et al (2020) Pseudouridylation defect due to DKC1 and NOP10 mutations causes nephrotic syndrome with cataracts, hearing impairment, and enterocolitis. Proc Natl Acad Sci U S A 117:15137–15147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behm-Ansmant I, Grosjean H, Massenet S et al (2004) Pseudouridylation at position 32 of mitochondrial and cytoplasmic tRNAs requires two distinct enzymes in Saccharomyces cerevisiae. J Biol Chem 279:52998–53006

    Article  CAS  PubMed  Google Scholar 

  • Behm-Ansmant I, Urban A, Ma X et al (2003) The Saccharomyces cerevisiae U2 snRNA pseudouridine-synthase Pus7p is a novel multisite-multisubstrate RNA:psi-synthase also acting on tRNAs. RNA 9:1371–1382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borchardt EK, Martinez NM, Gilbert WV (2020) Regulation and function of RNA Pseudouridylation in human cells. Ann Rev Genet (Online ahead of print)

    Google Scholar 

  • Bykhovskaya Y, Casas K, Mengesha E et al (2004) Missense mutation in pseudouridine synthase 1 (PUS1) causes mitochondrial myopathy and sideroblastic anemia (MLASA). Am J Hum Genet 74:1303–1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlile TM, Martinez NM, Schaening C et al (2019) mRNA structure determines modification by pseudouridine synthase 1. Nat Chem Biol 15:966–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlile TM, Rojas-Duran MF, Gilbert WV (2015) Transcriptome-wide identification of Pseudouridine modifications using pseudo-seq. Curr Protoc Mol Biol 112:4.25.1–4.25.24

    Article  Google Scholar 

  • Carlile TM, Rojas-Duran MF, Zinshteyn B et al (2014) Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 515:143–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darvish H, Azcona LJ, Alehabib E et al (2019) A novel PUS7 mutation causes intellectual disability with autistic and aggressive behaviors. Neurol Genet 5:e356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Brouwer APM, Abou Jamra R, Körtel N et al (2018) Variants in PUS7 cause intellectual disability with speech delay, microcephaly, short stature, and aggressive behavior. Am J Hum Genet 103:1045–1052

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Zoysa MD, Wu G, Katz R et al (2018) Guide-substrate base-pairing requirement for box H/ACA RNA-guided RNA pseudouridylation. RNA 24:1106–1117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deogharia M, Mukhopadhyay S, Joardar A et al (2019) The human ortholog of archaeal Pus10 produces pseudouridine 54 in select tRNAs where its recognition sequence contains a modified residue. RNA 25:336–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan J, Li L, Lu J et al (2009) Structural mechanism of substrate RNA recruitment in H/ACA RNA-guided pseudouridine synthase. Mol Cell 34:427–439

    Article  CAS  PubMed  Google Scholar 

  • Durairaj A, Limbach PA (2008) Improving CMC-derivatization of pseudouridine in RNA for mass spectrometric detection. Anal Chim Acta 612:173–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emmerechts G, Herdewijn P, Rozenski J (2005) Pseudouridine detection improvement by derivatization with methyl vinyl sulfone and capillary HPLC-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 825:233–238

    Article  CAS  PubMed  Google Scholar 

  • Fernández IS, Ng CL, Kelley AC et al (2013) Unusual base pairing during the decoding of a stop codon by the ribosome. Nature 500:107–110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fleming AM, Alenko A, Kitt JP et al (2019) Structural elucidation of bisulfite adducts to Pseudouridine that result in deletion signatures during reverse transcription of RNA. J Am Chem Soc 141:16450–16460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao L, Ma J, Mannoor K et al (2015) Genome-wide small nucleolar RNA expression analysis of lung cancer by next-generation deep sequencing. Int J Cancer 136:E623–E629

    Article  CAS  PubMed  Google Scholar 

  • Garalde DR, Snell EA, Jachimowicz D et al (2018) Highly parallel direct RNA sequencing on an array of nanopores. Nat Methods 15:201–206

    Article  CAS  PubMed  Google Scholar 

  • Gong J, Li Y, Liu C-J et al (2017) A pan-cancer analysis of the expression and clinical relevance of small nucleolar RNAs in human cancer. Cell Rep 21:1968–1981

    Article  CAS  PubMed  Google Scholar 

  • Grozdanov PN, Fernandez-Fuentes N, Fiser A et al (2009) Pathogenic NAP57 mutations decrease ribonucleoprotein assembly in dyskeratosis congenita. Hum Mol Genet 18:4546–4551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han L, Kon Y, Phizicky EM (2015) Functional importance of Ψ38 and Ψ39 in distinct tRNAs, amplified for tRNAGln(UUG) by unexpected temperature sensitivity of the s2U modification in yeast. RNA 21:188–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haq EU, Yu J, Guo J (2020) Frontiers in the COVID-19 vaccines development. Exp Hematol Oncol 9:24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hengesbach M, Meusburger M, Lyko F et al (2008) Use of DNAzymes for site-specific analysis of ribonucleotide modifications. RNA 14:180–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin H, Loria JP, Moore PB (2007) Solution structure of an rRNA substrate bound to the Pseudouridylation pocket of a box H/ACA snoRNA. Mol Cell 26:205–215

    Article  CAS  PubMed  Google Scholar 

  • Karijolich J, Yu Y-T (2011) Converting nonsense codons into sense codons by targeted pseudouridylation. Nature 474:395–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karikó K, Buckstein M, Ni H et al (2005) Suppression of RNA recognition by toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23:165–175

    Article  PubMed  CAS  Google Scholar 

  • Kasapkara ÇS, Tümer L, Zanetti N et al (2017) A myopathy, lactic acidosis, Sideroblastic anemia (MLASA) case due to a novel PUS1 mutation. Turk J Haematol 34:376–377

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly EK, Czekay DP, Kothe U (2019) Base-pairing interactions between substrate RNA and H/ACA guide RNA modulate the kinetics of pseudouridylation, but not the affinity of substrate binding by H/ACA small nucleolar ribonucleoproteins. RNA 25:1393–1404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khoddami V, Yerra A, Mosbruger TL et al (2019) Transcriptome-wide profiling of multiple RNA modifications simultaneously at single-base resolution. Proc Natl Acad Sci U S A 116:6784–6789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khonsari B, Klassen R (2020) Impact of Pus1 Pseudouridine synthase on specific decoding events in Saccharomyces cerevisiae. Biomol Ther 10:729

    CAS  Google Scholar 

  • Kierzek E, Malgowska M, Lisowiec J et al (2014) The contribution of pseudouridine to stabilities and structure of RNAs. Nucleic Acids Res 42:3492–3501

    Article  CAS  PubMed  Google Scholar 

  • Kiss AM, Jády BE, Bertrand E et al (2004) Human box H/ACA pseudouridylation guide RNA machinery. Mol Cell Biol 24:5797–5807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurosaki T, Popp MW, Maquat LE (2019) Quality and quantity control of gene expression by nonsense-mediated mRNA decay. Nat Rev Mol Cell Biol 20:406–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SH, Kim I, Chung BC (2007) Increased urinary level of oxidized nucleosides in patients with mild-to-moderate Alzheimer’s disease. Clin Biochem 40:936–938

    Article  CAS  PubMed  Google Scholar 

  • Li S, Duan J, Li D et al (2011) Reconstitution and structural analysis of the yeast box H/ACA RNA-guided pseudouridine synthase. Gen Dev 25:2409–2421

    Article  CAS  Google Scholar 

  • Li L, Ye K (2006) Crystal structure of an H/ACA box ribonucleoprotein particle. Nature 443:302–307

    Article  CAS  PubMed  Google Scholar 

  • Li X, Zhu P, Ma S et al (2015) Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome. Nat Chem Biol 11:592–597

    Article  CAS  PubMed  Google Scholar 

  • Liang Z-H, Jia Y-B, Li Z-R et al (2019) Urinary biomarkers for diagnosing poststroke depression in patients with type 2 diabetes mellitus. Diabetes Metab Syndr Obes 12:1379–1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao J, Yu L, Mei Y et al (2010) Small nucleolar RNA signatures as biomarkers for non-small-cell lung cancer. Mol Cancer 9:198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu H, Begik O, Lucas MC et al (2019) Accurate detection of m6A RNA modifications in native RNA sequences. Nat Commun 10:4079

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu N, Parisien M, Dai Q et al (2013) Probing N6-methyladenosine RNA modification status at single nucleotide resolution in mRNA and long noncoding RNA. RNA 19:1848–1856

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lovejoy AF, Riordan DP, Brown PO (2014) Transcriptome-wide mapping of pseudouridines: pseudouridine synthases modify specific mRNAs in S. cerevisiae. PLoS One 9:e110799

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Majumder M, Mukhopadhyay S, Kharel P et al (2020) The presence of the ACA box in archaeal H/ACA guide RNAs promotes atypical pseudouridylation. RNA 26:396–418

    Article  PubMed  PubMed Central  Google Scholar 

  • Mangum JE, Hardee JP, Fix DK et al (2016) Pseudouridine synthase 1 deficient mice, a model for mitochondrial myopathy with Sideroblastic anemia, exhibit muscle morphology and physiology alterations. Sci Rep 6:26202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchand V, Pichot F, Neybecker P et al (2020) HydraPsiSeq: a method for systematic and quantitative mapping of pseudouridines in RNA. Nucleic Acids Res (Online ahead of print)

    Google Scholar 

  • Mason PJ, Bessler M (2011) The genetics of dyskeratosis congenita. Cancer Genet 204:635–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKenney KM, Rubio MAT, Alfonzo JD (2017) The evolution of substrate specificity by tRNA modification enzymes. Enzymes 41:51–88

    Google Scholar 

  • McMahon M, Contreras A, Holm M et al (2019) A single H/ACA small nucleolar RNA mediates tumor suppression downstream of oncogenic RAS. elife 8:e48847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mei Y-P, Liao J-P, Shen J et al (2012) Small nucleolar RNA 42 acts as an oncogene in lung tumorigenesis. Oncogene 31:2794–2804

    Article  CAS  PubMed  Google Scholar 

  • Mengel-Jørgensen J, Kirpekar F (2002) Detection of pseudouridine and other modifications in tRNA by cyanoethylation and MALDI mass spectrometry. Nucleic Acids Res 30:e135

    Article  PubMed  PubMed Central  Google Scholar 

  • Miao F-A, Chu K, Chen H-R et al (2019) Increased DKC1 expression in glioma and its significance in tumor cell proliferation, migration and invasion. Investig New Drugs 37:1177–1186

    Article  CAS  Google Scholar 

  • Montanaro L, Brigotti M, Clohessy J et al (2006) Dyskerin expression influences the level of ribosomal RNA pseudo-uridylation and telomerase RNA component in human breast cancer. J Pathol 210:10–18

    Article  CAS  PubMed  Google Scholar 

  • Morais P, Adachi H, Yu Y-T (2020) Suppression of nonsense mutations by new emerging technologies. Int J Mol Sci 21:4394

    Article  CAS  PubMed Central  Google Scholar 

  • Mort M, Ivanov D, Cooper DN et al (2008) A meta-analysis of nonsense mutations causing human genetic disease. Hum Mutat 29:1037–1047

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay S, Deogharia M, Gupta R (2020) Mammalian nuclear TRUB1, mitochondrial TRUB2 and cytoplasmic PUS10 produce conserved pseudouridine 55 in different sets of tRNA. RNA (Online ahead of print)

    Google Scholar 

  • Nakamoto MA, Lovejoy AF, Cygan AM et al (2017) mRNA pseudouridylation affects RNA metabolism in the parasite toxoplasma gondii. RNA 23:1834–1849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okugawa Y, Toiyama Y, Toden S et al (2017) Clinical significance of SNORA42 as an oncogene and a prognostic biomarker in colorectal cancer. Gut 66:107–117

    Article  CAS  PubMed  Google Scholar 

  • Patton JR, Bykhovskaya Y, Mengesha E et al (2005) Mitochondrial myopathy and sideroblastic anemia (MLASA): missense mutation in the pseudouridine synthase 1 (PUS1) gene is associated with the loss of tRNA pseudouridylation. J Biol Chem 280:19823–19828

    Article  CAS  PubMed  Google Scholar 

  • Penzo M, Montanaro L (2018) Turning uridines around: role of rRNA Pseudouridylation in ribosome biogenesis and ribosomal function. Biomol Ther 8:38

    Google Scholar 

  • Pérez-Rambla C, Puchades-Carrasco L, García-Flores M et al (2017) Non-invasive urinary metabolomic profiling discriminates prostate cancer from benign prostatic hyperplasia. Metabolomics 13:52

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pomerantz SC, McCloskey JA (2005) Detection of the common RNA nucleoside pseudouridine in mixtures of oligonucleotides by mass spectrometry. Anal Chem 77:4687–4697

    Article  CAS  PubMed  Google Scholar 

  • Potapov V, Fu X, Dai N et al (2018) Base modifications affecting RNA polymerase and reverse transcriptase fidelity. Nucleic Acids Re 46:5753–5763

    Article  CAS  Google Scholar 

  • Ramasamy S, Sahayasheela VJ, Yu Z et al (2020) Chemical probe-based Nanopore Sequencing to Selectively Assess the RNA modifications. bioRxiv:2020.05.19.105338

    Google Scholar 

  • Rashid R, Liang B, Baker DL et al (2006) Crystal structure of a Cbf5-Nop10-Gar1 complex and implications in RNA-guided pseudouridylation and dyskeratosis congenita. Mol Cell 21:249–260

    Article  CAS  PubMed  Google Scholar 

  • Razavi AC, Bazzano LA, He J et al (2020) Pseudouridine and N-formylmethionine associate with left ventricular mass index: metabolome-wide association analysis of cardiac remodeling. J Mol Cell Cardiol 140:22–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rintala-Dempsey AC, Kothe U (2017) Eukaryotic stand-alone pseudouridine synthases–RNA modifying enzymes and emerging regulators of gene expression? RNA Biol 14:1185–1196

    Article  PubMed  PubMed Central  Google Scholar 

  • Ronchetti D, Mosca L, Cutrona G et al (2013) Small nucleolar RNAs as new biomarkers in chronic lymphocytic leukemia. BMC Med Genet 6:27

    Google Scholar 

  • Ronchetti D, Todoerti K, Tuana G et al (2012) The expression pattern of small nucleolar and small Cajal body-specific RNAs characterizes distinct molecular subtypes of multiple myeloma. Blood Cancer J 2:e96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roovers M, Hale C, Tricot C et al (2006) Formation of the conserved pseudouridine at position 55 in archaeal tRNA. Nucleic Acids Res 34:4293–4301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saletore Y, Meyer K, Korlach J et al (2012) The birth of the Epitranscriptome: deciphering the function of RNA modifications. Genome Biol 13:175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz S, Bernstein DA, Mumbach MR et al (2014) Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell 159:148–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekula P, Dettmer K, Vogl FC et al (2017) From discovery to translation: characterization of C-Mannosyltryptophan and Pseudouridine as markers of kidney function. Sci Rep 7:17400

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shaheen R, Han L, Faqeih E et al (2016) A homozygous truncating mutation in PUS3 expands the role of tRNA modification in normal cognition. Hum Genet 135:707–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sieron P, Hader C, Hatina J et al (2009) DKC1 overexpression associated with prostate cancer progression. Br J Cancer 101:1410–1416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith AM, Jain M, Mulroney L et al (2019) Reading canonical and modified nucleobases in 16S ribosomal RNA using nanopore native RNA sequencing. PLoS One 14:e0216709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stockert JA, Gupta A, Herzog B et al (2019) Predictive value of pseudouridine in prostate cancer. Am J Clin Exp Urol 7:262–272

    PubMed  PubMed Central  Google Scholar 

  • Stockert JA, Weil R, Yadav KK et al (2020) Pseudouridine as a novel biomarker in prostate cancer. Urol Oncol (Online ahead of print)

    Google Scholar 

  • Trahan C, Martel C, Dragon F (2010) Effects of dyskeratosis congenita mutations in dyskerin, NHP2 and NOP10 on assembly of H/ACA pre-RNPs. Hum Mol Genet 19:825–836

    Article  CAS  PubMed  Google Scholar 

  • Veerareddygari GR, Singh SK, Mueller EG (2016) The Pseudouridine synthases proceed through a Glycal intermediate. J Am Chem Soc 138:7852–7855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warren L, Manos PD, Ahfeldt T et al (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7:618–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westhof E (2019) Pseudouridines or how to draw on weak energy differences. Biochem Biophys Res Commun 520:702–704

    Article  CAS  PubMed  Google Scholar 

  • Workman RE, Tang AD, Tang PS et al (2019) Nanopore native RNA sequencing of a human poly(a) transcriptome. Nature Meth 16:1297–1305

    Article  CAS  Google Scholar 

  • Wu H, Feigon J (2007) H/ACA small nucleolar RNA pseudouridylation pockets bind substrate RNA to form three-way junctions that position the target U for modification. Proc Natl Acad Sci US A 104:6655–6660

    Article  CAS  Google Scholar 

  • Wu G, Xiao M, Yang C et al (2011) U2 snRNA is inducibly pseudouridylated at novel sites by Pus7p and snR81 RNP. EMBO J 30:79–89

    Article  PubMed  CAS  Google Scholar 

  • Yoshida K, Toden S, Weng W et al (2017) SNORA21–an oncogenic small nucleolar RNA, with a prognostic biomarker potential in human colorectal cancer. EBioMedicine 22:68–77

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu AT, Ge J, Yu Y-T (2011) Pseudouridines in spliceosomal snRNAs. Protein Cell 2:712–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Y-T, Meier UT (2014) RNA-guided isomerization of uridine to pseudouridine--pseudouridylation. RNA Biol 11:1483–1494

    Article  PubMed  Google Scholar 

  • Zhao X, Yu Y-T (2004) Detection and quantitation of RNA base modifications. RNA 10:996–1002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the members of the Yu lab for valuable discussions. The work performed in the Yu lab is supported by grants from the National Institute of Health (GM138387 and CA241111) and Cystic Fibrosis Foundation (YU20GO). Pedro Morais is a scientific director at ProQR Therapeutics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Tao Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morais, P., Adachi, H., Chen, J.L., Yu, YT. (2021). Mechanisms and Clinical Applications of RNA Pseudouridylation. In: Jurga, S., Barciszewski, J. (eds) Epitranscriptomics. RNA Technologies, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-030-71612-7_19

Download citation

Publish with us

Policies and ethics