Skip to main content

Neuroprotection and Neurorestoration of Nigra Striatal Dopamine Neurons by Novel Multitarget Drugs, M30

  • Living reference work entry
  • First Online:
Handbook of Neurotoxicity

Abstract

Iron-dependent oxidative stress, elevated levels of iron and of monoamine oxidase (MAO)-B activity, and depletion of antioxidants in the brain may be major pathogenic factors in Parkinson’s disease and related neurodegenerative diseases. Therefore, several novel multifunctional brain-permeable iron chelators-MAO inhibitors have been developed, aimed for prevention and treatment of Parkinson’s disease (PD). These potential drugs were synthesized as hybrid molecules containing brain-permeable VK28-derived iron chelator moiety, on the one hand, and N-propargylamine-derived MAO inhibitor moiety, on the other hand. The hypothesis underlying the design of such drugs was that it is possible that targeting multiple brain substrates might develop additive or synergistic positive actions. Based on previous studies, where several drugs were screened in-vitro, in the present study, selected drugs were further investigated ex vivo and in vivo. Initially, characterized several combined molecules ex vivo, in order to determine which of the molecules were most potent, both as iron chelators and MAO inhibitors. Based on these findings, the hybrid molecule M30 is brain-permeable, potent irreversible MAO-A/B inhibitor and but not in the liver or small intestine. This effect was shown following a single and chronic drug administration, regardless of whether the drug was administered intraperitoneally or orally. In the rat model, M30 was shown to induce only limited tyramine-induced blood pressure potentiation, increasing the pressor response as compared with tranylcypromine, suggesting that M30 would not lead to a severe side effect common to non-selective MAO-A/B inhibitors, known as the “cheese effect,” characterized by life-threatening hypertension. M30 has both neuroprotective and neurorestorative activities in MPTP and other models of PD. The neuroprotective activity depends on activation of Bcl2 family proteins and downregulation of Bax proteins. Neurorestorative activity has been attributed to upregulation of HIF (hypoxia-inducing factor) which regulated the neurotrophins BDNF, GDNF, NGF, VEGF, and erythropoietin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

5-HIAA:

5-hydroxyindolacetic acid

5-HT:

Serotonin

6-OHDA:

6-hydroxydopamine

AD:

Alzheimer’s disease

APP:

Amyloid precursor protein

Aβ:

β-amyloid

BBB:

Blood-brain barrier

BDNF:

Brain-derived neurotrophic factor

BSA:

Bovine serum albumin

COMT:

Catechol-o-methyltransferase

DA:

Dopamine

DG:

Dentate gyrus

DNA:

Deoxyribonucleic acid

DOPA:

3,4dihydroxyphenylalanine

DOPAC:

3,4 dihydroxyphenylacetic acid

DTT:

Dithiothreitol

EDTA:

Ethylenediaminetetraacetic acid

EGCG:

Epigallocatechin-3-gallate

GDNF:

Glial cell line-derived neurotrophic factor

GSH:

Reduced glutathione

H2O2:

Hydrogen peroxide

HPLC:

High-pressure liquid chromatography

HVA:

Homovanillic acid

i.c.v.:

Intraventricularly

i.p.:

Intraperitoneal

l OS:

Oxidative stress

LPO:

Iron-induced lipid peroxidation assay

MAO:

Monoamine oxidase

Mg:

Milligram

min:

Minute

mM:

Millimolar

MPP+:

1-methyl-4-pyridinium

MPTP:

N-methyl 4 phenyl 1,2,3,6 tetrahydropyridine

mRNA:

messenger RNA

NA:

noradrenaline

NGF:

nerve growth factor

OH•:

Hydroxyl radical

p.o.:

Per os

PBS:

Phosphate buffered saline

PC12:

Pheochromocytoma cells

PD:

Parkinson’s disease

PEA:

Phenylethylamine

PKC:

Protein kinase C

ROS:

Reactive oxygen species

SDS:

Sodium dodecyl sulfate

SGZ:

Sub granular zone

SN:

Substantia nigra

SNPC:

Substantia nigra pars compacta

SVZ:

Subventricular zone

TCP:

Tranylcypromine

TH:

Tyrosine hydroxylase

μg:

Microgram

μl:

Microliter

VEGF:

Vascular endothelium growth factor

References

  • Aguirre, P., Mena, N. P., Carrasco, C. M., Muñoz, Y., Pérez-Henríquez, P., Morales, R. A., Cassels, B. K., Méndez-Gálvez, C., García-Beltrán, O., González-Billault, C., Núñez, M. T., et al. (2015). Iron chelators and antioxidants regenerate neuritic tree and nigrostriatal fibers of MPP+/MPTP-lesioned dopaminergic neurons. PLoS One, 10(12), e0144848.

    Article  PubMed  PubMed Central  Google Scholar 

  • Akao, Y., Maruyama, W., Shimizu, S., Yi, H., Nakagawa, Y., Shamoto-Nagai, M., Youdim, M. B., Tsujimoto, Y., & Naoi, M. (2002). Mitochondrial permeability transition mediates apoptosis induced by N-methyl(R)salsolinol, an endogenous neurotoxin, and is inhibited by Bcl-2 and rasagiline, N-propargyl-1(R)- aminoindan. Journal of Neurochemistry, 82, 913–923.

    Article  CAS  PubMed  Google Scholar 

  • Amit, T., Avramovich-Tirosh, Y., Youdim, M. B., & Mandel, S. (2008). Targeting multiple Alzheimer’s disease etiologies with multimodal neuroprotective and neurorestorative iron chelators. The FASEB Journal, 22, 1296–305.

    Google Scholar 

  • Avramovich-Tirosh, Y., Amit, T., Bar-Am, O., Zheng, H., Fridkin, M., & Youdim, M. B. (2007a). Therapeutic targets and potential of the novel brain-permeable multifunctional iron chelator-monoamine oxidase inhibitor drug, M-30, for the treatment of Alzheimer’ disease. Journal of Neurochemistry, 100, 490–502.

    Article  CAS  PubMed  Google Scholar 

  • Avramovich-Tirosh, Y., Reznichenko, L., Mit, T., Zheng, H., Fridkin, M., Weinreb, O., Mandel, S., & Youdim, M. B. (2007b). Neurorescue activity, APP regulation and amyloid-beta peptide reduction by novel multi-functional brain permeable iron- chelating- antioxidants, M-30 and green tea polyphenol, EGCG. Current Alzheimer Research, 4, 403–411.

    Article  CAS  PubMed  Google Scholar 

  • Bar-Am, O., Yogev-Falach, M., Amit, T., Sagi, Y., & Youdim, M. B. (2004a). Regulation of protein kinase C by the anti-Parkinson drug, MAO-B inhibitor, rasagiline and its derivatives, in vivo. Journal of Neurochemistry, 89(5), 1119–1125.

    Google Scholar 

  • Bar-Am, O., Amit, T., & Youdim, M. B. (2004b). Contrasting neuroprotective and neurotoxic actions of respective metabolites of anti-Parkinson drugs rasagiline and selegiline. Neuroscience Letters, 355(3), 169–172.

    Google Scholar 

  • Bar-Am, O., Weinreb, O., Amit, T., & Youdim, M. B. (2005). Regulation of Bcl-2 family proteins, neurotrophic factors, and APP processing in the neurorescue activity of propargylamine. FASEB J, 19(13), 1899–901.

    Google Scholar 

  • Ben-Shachar, D., & Youdim, M. B. H. (1990). Selectivity of melaninized nigra-striatal dopamine neurons to degeneration in Parkinson’s disease may depend on iron-melanin interaction. Journal of Neural Transmission. Supplementum, 29, 251–258.

    CAS  PubMed  Google Scholar 

  • Ben-Shachar, D., Eshel, G., Finberg, J. P., & Youdim, M. B. (1991). JThe iron chelator desferrioxamine (Desferal) retards 6-hydroxydopamine-induced degeneration of nigrostriatal dopamine neurons. J. Neurochem, 56(4), 1441–4.

    Google Scholar 

  • Ben-Shachar, D., Kahana, N., Kampel, V., Warshawsky, A., & Youdim, M. B. (2004). Neuroprotection by a novel brain permeable iron chelator, VK-28, against 6-hydroxydopamine lession in rats. Neuropharmacology, 46, 254–263.

    Article  CAS  Google Scholar 

  • Berg, D., Merz, B., Reiners, K., Naumann, M., & Becker, G. (2005). Five-year follow-up study of hyperechogenicity of the substantia nigra in Parkinson’s disease. Movement Disorders, 20, 383–385.

    Article  PubMed  Google Scholar 

  • Berg, D., Hochstrasser, H., Schweitzer, K. J., & Riess, O. (2006). Disturbance of iron metabolism in Parkinson’s disease – ultrasonography as a biomarker. Neurotox Res, 9, 1–13.

    Google Scholar 

  • Bharath, S., Hsu, M., Kaur, D., Rajagopalan, S., & Andersen, J. K. (2002). Glutathione, iron and Parkinson’s disease. Biochemical Pharmacology, 64, 1037–1048.

    Article  CAS  PubMed  Google Scholar 

  • Binda, C., Hubalek, F., Li, M., Herzig, Y., Sterling, J., Edmondson, D. E., & Mattevi, A. (2004). Crystal structures of monoamine oxidase B in complex with four inhibitors of the N-propargylaminoindan class. Journal of Medicinal Chemistry, 47, 1767–1774.

    Article  CAS  PubMed  Google Scholar 

  • Blackwell, B., & Marley, E. (1966). Interactions of cheese and of its constituents with monoamine oxidase inhibitors. British Journal of Pharmacology and Chemotherapy, 26, 120–141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braak, H., Ghebremedhin, E., Rub, U., Bratzke, H., & Del Tredici, K. (2004). Stages in the development of Parkinson’s disease-related pathology. Cell and Tissue Research, 318, 121–134.

    Article  PubMed  Google Scholar 

  • Buccafusco, J. J., & Terry, A. V., Jr. (2000). Multiple central nervous system targets for eliciting beneficial effects on memory and cognition. The Journal of Pharmacology and Experimental Therapeutics, 295, 438–446.

    CAS  PubMed  Google Scholar 

  • Burton, G. W., & Ingold, K. U. (1981). Autoxidation of biological molecules. Antioxidant activity of vitamin E and related chainbreaking phenolic antioxidants in vitro. Journal of the American Chemical Society, 103, 472–477.

    Article  Google Scholar 

  • Carrillo, M. C., Minami, C., Kitani, K., Maruyama, W., Ohashi, K., Yamamoto, T., Naoi, M., Kanai, S., & Youdim, M. B. H. (2000). Enhancing effect of rasagiline on superoxide dismutase and catalase activities in the dopaminergic system in the rat. Life Sciences, 67, 577–585.

    Article  CAS  PubMed  Google Scholar 

  • Cohen, G. (2000). Oxidative stress, mitochondrial respiration, and Parkinson’s disease. Annals of the New York Academy of Sciences, 899, 112–120.

    Article  CAS  PubMed  Google Scholar 

  • Copani, A., Condorelli, F., Caruso, A., Vancheri, C., Sala, A., Giuffrida Stella, A. M., Canonico, P. L., Nicoletti, F., & Sortino, M. A. (1999). Mitotic signaling by beta-amyloid causes neuronal death. The FASEB Journal, 13, 2225–2234.

    Article  CAS  PubMed  Google Scholar 

  • Coyle, J. T., & Puttfarcken, P. (1993). Oxidative stress, glutamate, and neurodegenerative disorders. Science, 262, 689–695.

    Article  CAS  PubMed  Google Scholar 

  • Crichton, R. R. (2001). Inorganic biochemistry of iron metabolism: From molecular mechanisms to clinical consequences. Wiley.

    Book  Google Scholar 

  • Faiz, M., Acarin, L., Castellano, B., & Gonzalez, B. (2005). Proliferation dynamics of germinative zone cells in the intact and excitotoxically lesioned postnatal rat brain. BMC Neuroscience, 6, 26.

    Article  PubMed  PubMed Central  Google Scholar 

  • Finberg, J. P., Tenne, M., & Youdim, M. B. H. (1981). Tyramine antagonistic properties of AGN 1135, an irreversible inhibitor of monoamine oxidase type B. British Journal of Pharmacology, 73, 65–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer, P. M. (2003). CDK versus GSK-3 inhibition: A purple haze no longer? Chemistry & Biology, 10, 1144–1146.

    Article  CAS  Google Scholar 

  • Fornai, F., Lenzi, P., Gesi, M., Ferrucci, M., Lazzeri, G., Busceti, C. L., Ruffoli, R., Soldani, P., Ruggieri, S., Alessandri, M. G., & Paparelli, A. (2003). Fine structure and biochemical mechanisms underlying nigrostriatal inclusions and cell death after proteasome inhibition. The Journal of Neuroscience, 23, 8955–8966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freundlieb, N., Francois, C., Tande, D., Oertel, W. H., Hirsch, E. C., & Hoglinger, G. U. (2006). Dopaminergic substantia nigra neurons project topographically organized to the subventricular zone and stimulate precursor cell proliferation in aged primates. The Journal of Neuroscience, 26, 2321–2325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedlich, A. L., Tanzi, R. E., & Rogers, J. T. (2007). The 5′-untranslated region of Parkinson’s disease alphasynuclein messengerRNA contains a predicted iron responsive element. Mol Psychiatry, 12, 222–223.

    Google Scholar 

  • Frielingsdorf, H., Schwarz, K., Brundin, P., & Mohapel, P. (2004). No evidence for new dopaminergic neurons in the adult mammalian substantia nigra. Proceedings of the National Academy of Sciences of the United States of America, 101, 10177–10182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu, D., & Richardson, D. R. (2007). Iron chelation and regulation of the cell cycle: 2 mechanisms of posttranscriptional regulation of the universal cyclin-dependent kinase inhibitor p21CIP1/WAF1 by iron depletion. Blood, 110, 752–761.

    Article  CAS  PubMed  Google Scholar 

  • Gal, S., Zheng, H., Fridkin, M., & Youdim, M. B. (2005). Novel multifunctional neuroprotective iron chelator-monoamine oxidase inhibitor drugs for neurodegenerative diseases. In vivo selective brain monoamine oxidase inhibition and prevention of MPTP-induced striatal dopamine depletion. Journal of Neurochemistry, 95, 79–88.

    Article  CAS  PubMed  Google Scholar 

  • Gal, S., Fridkin, M., Amit, T., Zheng, H., & Youdim, M. B. (2006). M30, a novel multifunctional neuroprotective drug with potent iron chelating and brain selective monoamine oxidase-ab inhibitory activity for Parkinson’s disease. J Neural Transm Suppl, 447–456.

    Google Scholar 

  • Gassen, M., & Youdim, M. B. (1997). The potential role of iron chelators in the treatment of Parkinson’s disease and related neurological disorders. Pharmacology Toxicology, 80, 159–166.

    Article  CAS  PubMed  Google Scholar 

  • Gassen, M., Gross, A., & Youdim, M. B. (1998). Apomorphine enantiomers protect cultured pheochromocytoma (PC12) cells from oxidative stress induced by H2O2 and 6-hydroxydopamine. Movement Disorders, 13, 242–248.

    Article  CAS  PubMed  Google Scholar 

  • Gilgun-Sherki, Y., Melamed, E., & Offen, D. (2001). Oxidative stress induced-neurodegenerative diseases: The need for antioxidants that penetrate the blood brain barrier. Neuropharmacology, 40, 959–975.

    Article  CAS  PubMed  Google Scholar 

  • Giovanni, A., Wirtz-Brugger, F., Keramaris, E., Slack, R., & Park, D. S. (1999). Involvement of cell cycle elements, cyclin-dependent kinases, pRb, and E2F x DP, in B-amyloid-induced neuronal death. The Journal of Biological Chemistry, 274, 19011–19016.

    Article  CAS  PubMed  Google Scholar 

  • Glinka, Y. Y., & Youdim, M. B. (1995). Inhibition of mitochondrial complexes I and IV by 6-hydroxydopamine. European Journal of Pharmacology, 292, 329–332.

    CAS  PubMed  Google Scholar 

  • Glinka, Y., Tipton, K. F., & Youdim, M. B. (1996). Nature of inhibition of mitochondrial respiratory complex I by 6-Hydroxydopamine. J Neurochem, 66, 2004–2010.

    Google Scholar 

  • Green, A. R., Mitchell, B. D., Tordoff, A. F., & Youdim, M. B. H. (1977). Evidence for dopamine deamination by both type A and type B monoamine oxidase in rat brain in vivo and for the degree of inhibition of enzyme necessary for increased functional activity of dopamine and 5-hydroxytryptamine. British Journal of Pharmacology, 60, 343–349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta, S., Hussain, T., & Mukhtar, H. (2003). Molecular pathway for (−)- epigallocatechin-3-gallate-induced cell cycle arrest and apoptosis of human prostate carcinoma cells. Archives of Biochemistry and Biophysics, 410, 177–185.

    Article  CAS  PubMed  Google Scholar 

  • Halliwell, B. (1996). Vitamin C: Antioxidant or pro-oxidant in vivo? Free Radical Research, 25, 439–454.

    Article  CAS  PubMed  Google Scholar 

  • Han, J., Cheng, F. C., Yang, Z., & Dryhurst, G. (1999). Inhibitors of mitochondrial respiration, iron (II), and hydroxyl radical evoke release and extracellular hydrolysis of glutathione in rat striatum and substantia nigra: potential implications to Parkinson’s disease. J Neurochem 73, 1683–1695.

    Google Scholar 

  • Hayley, S., Crocker, S. J., Smith, P. D., Shree, T., Jackson-Lewis, V., Przedborski, S., Mount, M., Slack, R., Anisman, H., & Park, D. S. (2004). Regulation dopaminergic loss by Fas in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. The Journal of Neuroscience, 24, 2045–2053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrup, K., & Yang, Y. (2007). Cell cycle regulation in the postmitotic neuron: Oxymoron or new biology? Nature Reviews. Neuroscience, 8, 368–378.

    Article  CAS  PubMed  Google Scholar 

  • Hoglinger, G. U., Breunig, J. J., Depboylu, C., Rouaux, C., Michel, P. P., Alvarez-Fischer, D., Boutillier, A. L., Degregori, J., Oertel, W. H., Rakic, P., Hirsch, E. C., & Hunot, S. (2007). The pRb/E2F cell-cycle pathway mediates cell death in Parkinson’s disease. Proceedings of the National Academy of Sciences of the United States of America, 104, 3585–3590.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jakowec, M. W., & Petzinger, G. M. (2004). 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine-lesioned model of parkinson’s disease, with emphasis on mice and nonhuman primates. Comparative Medicine, 54, 497–513.

    Google Scholar 

  • Kalinowski, D. S., & Richardson, D. R. (2005). The evolution of iron chelators for the treatment of iron overload disease and cancer. Pharmacological Reviews, 57, 547–583.

    Article  CAS  PubMed  Google Scholar 

  • Kalir, A., Sabbagh, A., & Youdim, M. B. H. (1981). Selective acetylenic ‘suicide’ and reversible inhibitors of monoamine oxidase types A and B. Br. J. Pharmacol, 73, 55–64.

    Google Scholar 

  • Kaur, J. D., Andersen. (2004). Does cellular iron dysregulation play a causative role in Parkinson’s disease? Ageing Res Rev, 3(3):327–43.

    Google Scholar 

  • Kaur, D., Yantiri, F., Rajagopalan, S., Kumar, J., Mo, J. Q., Boonplueang, R., Viswanath, V., Jacobs, R., Yang, L., Beal, M. F., DiMonte, D., Volitaskis, I., Ellerby, L., Cherny, R. A., Bush, A. I., & Andersen, J. K. (2003). Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: A novel therapy for Parkinson’s disease. Neuron, 37, 899–909.

    Article  CAS  PubMed  Google Scholar 

  • Kay, J. N., & Blum, M. (2000). Differential response of ventral midbrain and striatal progenitor cells to lesions of the nigrostriatal dopaminergic projection. Developmental Neuroscience, 22, 56–67.

    Article  CAS  PubMed  Google Scholar 

  • Keilhoff, G., Becker, A., Grecksch, G., Bernstein, H. G., & Wolf, G. (2006). Cell proliferation is influenced by bulbectomy and normalized by imipramine treatment in a region-specific manner. Neuropsychopharmacology 31, 1165–1176.

    Google Scholar 

  • Kupershmidt, L., Weinreb, O., Amit, T., Mandel, S., Bar-Am, O., Youdim, M. B., Kupershmidt, L., et al. (2011). Novel molecular targets of the neuroprotective/neurorescue multimodal iron chelating drug M30 in the mouse brain. Neuroscience, 189, 345–358.

    Article  CAS  PubMed  Google Scholar 

  • Lagace, D. C., Whitman, M. C., Noonan, M. A., Ables, J. L., DeCarolis, N. A., Arguello, A. A., Donovan, M. H., Fischer, S. J., Farnbauch, L. A., Beech, R. D., DiLeone, R. J., Greer, C. A., Mandyam, C. D., & Eisch, A. J. (2007). Dynamic contribution of nestin-expressing stem cells to adult neurogenesis. The Journal of Neuroscience, 27, 12623–12629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamensdorf, I., Youdim, M. B. H., & Finberg, J. P. (1996). Effect of long-term treatment with selective monoamine oxidase A and B inhibitors on dopamine release from rat striatum in vivo. J Neurochem 67, 1532–1539.

    Google Scholar 

  • Langston, J. W. (1996). The etiology of Parkinson’s disease with emphasis on the MPTP story. Neurology, 47, S153–S160.

    Article  CAS  PubMed  Google Scholar 

  • Le, N. T., & Richardson, D. R. (2002). The role of iron in cell cycle progression and the proliferation of neoplastic cells. Biochimica et Biophysica Acta, 1603, 31–46.

    CAS  PubMed  Google Scholar 

  • Levenson, C. W., Cutler, R. G., Ladenheim, B., Cadet, J. L., Hare, J., & Mattson, M. P. (2004). Role of dietary iron restriction in a mouse model of Parkinson’s disease. Experimental Neurology, 190, 506–514.

    Article  CAS  PubMed  Google Scholar 

  • Mandel, S., Weinreb, O., & Youdim, M. B. H. (2003a). Using cDNA microarray to assess Parkinson’s disease models and the effects of neuroprotective drugs. Trends Pharmacol Sci 24, 184–191.

    Google Scholar 

  • Mandel, S., Weinreb, O., & Youdim, M. B. (2003b). Using cDNA microarray to assess Parkinson’s disease models and the effects of neuroprotective drugs. Trends Pharmacol Sci 24, 184–191.

    Google Scholar 

  • Mandel, S. A., Avramovich-Tirosh, Y., Reznichenko, L., Zheng, H., Weinreb, O., Amit, T., & Youdim, M. B. (2005). Multifunctional activities of green tea catechins in neuroprotection. Modulation of cell survival genes, iron-dependent oxidative stress and PKC signaling pathway. Neurosignals, 14, 46–60.

    Article  CAS  PubMed  Google Scholar 

  • Maruyama, W., Akao, Y., Youdim, M. B. H., Boulton, A. A., Davis, B. A., & Naoi, M. (2001). Transfection-enforced Bcl-2 overexpression and an anti-Parkinson drug, rasagiline, prevent nuclear accumulation of glyceraldehyde-3 phosphate dehydrogenase induced by an endogenous dopaminergic neurotoxin, N- methyl(R)salsolinol. Journal of Neurochemistry, 78, 727–735.

    Article  CAS  PubMed  Google Scholar 

  • Maruyama, W., Takahashi, T., Youdim, M. B. H., & Naoi, M. (2002). The anti- Parkinson drug, rasagiline, prevents apoptotic DNA damage induced by peroxynitrite in human dopaminergic neuroblastoma SH-SY5Y cells. Journal of Neural Transmission, 109, 467–481.

    Article  CAS  PubMed  Google Scholar 

  • McDonald, W. M., Richard, I. H., & DeLong, M. R. (2003). Prevalence, etiology, and treatment of depression in Parkinson’s disease. Biological Psychiatry, 54, 363–375.

    Article  PubMed  Google Scholar 

  • McNaught, K. S., & Olanow, C. W. (2006). Protein aggregation in the pathogenesis of familial and sporadic Parkinson’s disease. Neurobiology of Aging, 27, 530–545.

    Article  CAS  PubMed  Google Scholar 

  • Miyajima, H., Takahashi, Y., Kamata, T., Shimizu, H., Sakai, N., & Gitlin, J. D. (1997). Use of desferrioxamine in the treatment of aceruloplasminemia. Annals of Neurology, 41, 404–407.

    Article  CAS  PubMed  Google Scholar 

  • Mochizuki, H., Imai, H., Endo, K., Yokomizo, K., Murata, Y., Hattori, N., & Mizuno, Y. (1994). Iron accumulation in the substantia nigra of 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP)-induced hemiparkinsonian monkeys. Neuroscience Letters, 168, 251–253.

    Article  CAS  PubMed  Google Scholar 

  • Morrish, P. K., Rakshi, J. S., Bailey, D. L., Sawle, G. V., & Brooks, D. J. (1998). Measuring the rate of progression and estimating the preclinical period of Parkinson’s disease with [18F]dopa PET. Journal of Neurology, Neurosurgery, and Psychiatry, 64, 314–319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mouradian, M. M. (2002). Recent advances in the genetics and pathogenesis of Parkinson disease. Neurology, 58, 179–185.

    Article  PubMed  Google Scholar 

  • Nurtjahja-Tjendraputra, E., Fu, D., Phang, J. M., & Richardson, D. R. (2007). Iron chelation regulates cyclin D1 expression via the proteasome: A link to iron deficiency-mediated growth suppression. Blood, 109, 4045–4054.

    Article  CAS  PubMed  Google Scholar 

  • O’Carroll, A. M., Fowler, C. J., Phillips, J. P., Tobbia, I., & Tipton, K. F. (1983). The deamination of dopamine by human brain monoamine oxidase. Specificity for the two enzyme forms in seven brain regions. Naunyn-Schmiedebergs Archives of Pharmacology, 322, 198–202.

    Article  Google Scholar 

  • Oestreicher, E., Sengstock, G. J., Riederer, P., Olanow, C. W., Dunn, A. J., & Arendash, G. W. (1994). Degeneration of nigrostriatal dopaminergic neurons increases iron within the substantia nigra: A histochemical and neurochemical study. Brain Research, 660, 8–18.

    Article  CAS  PubMed  Google Scholar 

  • Offen, D., Beart, P. M., Cheung, N. S., Pascoe, C. J., Hochman, A., Gorodin, S., Melamed, E., Bernard, R., & Bernard, O. (1998). Transgenic mice expressing human Bcl-2 in their neurons are resistant to 6-hydroxydopamine and 1-methyl-4- phenyl-1,2,3,6- tetrahydropyridine neurotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 95, 5789–5794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ostrerova-Golts, N., Petrucelli, L., Hardy, J., Lee, J. M., Farer, M., & Wolozin, B. (2000). The A53T alpha -Synuclein mutation increases iron-dependent aggregation and toxicity. The Journal of Neuroscience, 20, 6048–6054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park, D. S., Farinelli, S. E., & Greene, L. A. (1996). Inhibitors of cyclin-dependent kinases promote survival of post-mitotic neuronally differentiated PC12 cells and sympathetic neurons. The Journal of Biological Chemistry, 271, 8161–8169.

    Article  PubMed  Google Scholar 

  • Parkinson Study Group. (2004). A controlled, randomized, delayed-start study of rasagiline in early Parkinson disease. Archives of Neurology, 61, 561–566.

    Article  Google Scholar 

  • Perier, C., Bove, J., Wu, D. C., Dehay, B., Choi, D. K., Jackson-Lewis, V., Rathke-Hartlieb, S., Bouillet, P., Strasser, A., Schulz, J. B., Przedborski, S., & Vila, M. (2007). Two molecular pathways initiate mitochondria-dependent dopaminergic neurodegeneration in experimental Parkinson’s disease. Proceedings of the National Academy of Sciences of the United States of America, 104, 8161–8166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perl, D. P., Olanow, C. W., & Calne, D. (1998). Alzheimer’s disease and Parkinson’s disease: Distinct entities or extremes of a spectrum of neurodegeneration? Annals of Neurology, 44, S19–S31.

    Article  CAS  PubMed  Google Scholar 

  • Ramsay, R. R., Kowal, A. T., Johnson, M. K., Salach, J. I., & Singer, T. P. (1987). The inhibition site of MPP+, the neurotoxic bioactivation product of 1- methyl-4- phenyl-1,2,3,6-tetrahydropyridine is near the Q-binding site of NADH dehydrogenase. Archives of Biochemistry and Biophysics, 259, 645–649.

    Article  CAS  PubMed  Google Scholar 

  • Rezai-Zadeh, K., Shytle, D., Sun, N., Mori, T., Hou, H., Jeanniton, D., Ehrhart, J., Townsend, K., Zeng, J., Morgan, D., Hardy, J., Town, T., & Tan, J. (2005). Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. The Journal of Neuroscience, 25, 8807–8814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reznichenko, L., Amit, T., Youdim, M. B., & Mandel, S. (2005). Green tea polyphenol (−)-epigallocatechin-3-gallate induces neurorescue of long-term serum- deprived PC12 cells and promotes neurite outgrowth. Journal of Neurochemistry, 93, 1157–1167.

    Article  CAS  PubMed  Google Scholar 

  • Riederer, P., Sofic, E., Rausch, W. D., Schmidt, B., Reynolds, G. P., Jellinger, K., & Youdim, M. B. H. (1989). Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. Journal of Neurochemistry, 52, 515–520.

    Article  CAS  PubMed  Google Scholar 

  • Ritchie, C. W., Bush, A. I., Mackinnon, A., Macfarlane, S., Mastwyk, M., MacGregor, L., Kiers, L., Cherny, R., Li, Q. X., Tammer, A., Carrington, D., Mavros, C., Volitakis, I., Xilinas, M., Ames, D., Davis, S., Beyreuther, K., Tanzi, R. E., & Masters, C. L. (2003). Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Abeta amyloid deposition and toxicity in Alzheimer disease: A pilot phase 2 clinical trial. Archives of Neurology, 60, 1685–1691.

    Article  PubMed  Google Scholar 

  • Rogers, J. T., Randall, J. D., Cahill, C. M., Eder, P. S., Huang, X., Gunshin, H., Leiter, L., McPhee, J., Sarang, S. S., Utsuki, T., Greig, N. H., Lahiri, D. K., Tanzi, R. E., Bush, A. I., Giordano, T., & Gullans, S. R. (2002). An iron-responsive element type II in the 5′-untranslated region of the Alzheimer’s amyloid precursor protein transcript. The Journal of Biological Chemistry, 277, 45518–45528.

    Article  CAS  PubMed  Google Scholar 

  • Rosner, S., Giladi, N., & Orr-Urtreger, A. (2008). Advances in the genetics of Parkinson’s disease. Acta Pharmacologica Sinica, 29, 21–34.

    Article  CAS  PubMed  Google Scholar 

  • Sagi, Y., Weinstock, M., & Youdim, M. B. H. (2003). Attenuation of MPTP- induced dopaminergic neurotoxicity by TV3326, a cholinesterase-monoamine oxidase inhibitor. Journal of Neurochemistry, 2, 290–297.

    Google Scholar 

  • Sagi, Y., Mandel, S., Amit, T., & Youdim, M. B. (2007). Activation of tyrosine kinase receptor signaling pathway by rasagiline facilitates neurorescue and restoration of nigrostriatal dopamine neurons in post-MPTP-induced parkinsonism. Neurobiology of Disease, 25, 35–44.

    Article  CAS  PubMed  Google Scholar 

  • Sangchot, P., Sharma, S., Chetsawang, B., Porter, J., Govitrapong, P., & Ebadi, M. (2002). Deferoxamine attenuates iron-induced oxidative stress and prevents mitochondrial aggregation and alpha-synuclein translocation in SK-N-SH cells in culture. Developmental Neuroscience, 24, 143–153.

    Article  CAS  PubMed  Google Scholar 

  • Siddiq, A., Ayoub, I. A., Chavez, J. C., Aminova, L., Shah, S., LaManna, J. C., Patton, S. M., Connor, J. R., Cherny, R. A., Volitakis, I., Bush, A. I., Langsetmo, I., Seeley, T., Gunzler, V., & Ratan, R. R. (2005). Hypoxia-inducible factor prolyl 4-hydroxylase inhibition. A target for neuroprotection in the central nervous system. The Journal of Biological Chemistry, 280, 41732–41743.

    Article  CAS  PubMed  Google Scholar 

  • Soll, M., Bar Am, O., Mahammed, A., Saltsman, I., Mandel, S., Youdim, M. B., Gross, Z., et al. (2016). Neurorescue by a ROS Decomposition Catalyst. ACS Chemical Neuroscience, 7(10), 1374–1382.

    Article  CAS  PubMed  Google Scholar 

  • Sortino, M. A., Frasca, G., Chisari, M., Platania, P., Chiechio, S., Vancheri, C., Copani, A., & Canonico, P. L. (2004). Novel neuronal targets for the acetylcholinesterase inhibitor donepezil. Neuropharmacology, 47, 1198–1204.

    Article  CAS  PubMed  Google Scholar 

  • Tande, D., Hoglinger, G., Debeir, T., Freundlieb, N., Hirsch, E. C., & Francois, C. (2006). New striatal dopamine neurons in MPTP-treated macaques result from a phenotypic shift and not neurogenesis. Brain, 129, 1194–1200.

    Article  PubMed  Google Scholar 

  • Tipton, K. F., O’Sullivan J., & Youdim, M. B. (2004). Monoamine oxidase (MAO): functions in the central nervous system. In: Encyclopedia of Neuroscience, 3rd Edition (Adelman G. and Smith B. H., eds). Elsevier.

    Google Scholar 

  • Van der Schyf, C. J., Geldenhuys, W. J., & Youdim, M. B. (2006). Multifunctional drugs with different CNS targets for neuropsychiatric disorders. Journal of Neurochemistry, 99, 1033–1048.

    Article  PubMed  Google Scholar 

  • Vila, M., Jackson-Lewis, V., Vukosavic, S., Djaldetti, R., Liberatore, G., Offen, D., Korsmeyer, S. J., & Przedborski, S. (2001). Bax ablation prevents dopaminergic neurodegeneration in the 1-methyl- 4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. Proceedings of the National Academy of Sciences of the United States of America, 98, 2837–2842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Von Bohlen, Halbach, O., Schober, A., & Krieglstein, K. (2004). Genes, proteins, and neurotoxins involved in Parkinson’s disease. Progress in Neurobiology, 73, 151–177.

    Article  Google Scholar 

  • Warshawsky, A., Youdim, M. B., Fridkin, M., Zheng, H. L., & Warshawsky, R. (2004) Preparation of neuroprotective iron chelators and pharmaceutical compositions comprising them. Int. Publication Number WO 2004041151, A2.

    Google Scholar 

  • Weinreb, O., Bar-Am, O., Amit, T., Chillag-Talmor, O., & Youdim, M. B. (2004). Neuroprotection via pro-survival protein kinase C isoforms associated with Bcl-2 family members. The FASEB Journal, 18, 1471–1473.

    Article  CAS  PubMed  Google Scholar 

  • Weinstock, M., Bejar, C., Wang, R. H., Poltyrev, T., Gross, A., Finberg, J., & Youdim, M. B. H. (2000). TV3326, a novel neuroprotective drug with cholinesterase and monoamine oxidase inhibitory activities for the treatment of Alzheimer’s disease. Journal of Neural Transmission. Supplementum, 60, S157–S169.

    Google Scholar 

  • Weinstock, M., Gorodetsky, E., Wang, R. H., Gross, A., Weinreb, O., & Youdim, M. B. H. (2002). Limited potentiation of blood pressure response to oral tyramine by brain-selective monoamine oxidase A-B inhibitor, TV-3326 in conscious rabbits(1). Neuropharmacology, 43, 999–1005.

    Article  CAS  PubMed  Google Scholar 

  • Weinstock, M., Gorodetsky, E., Poltyrev, T., Gross, A., Sagi, Y., & Youdim, M. B. H. (2003a). A novel cholinesterase and brain-selective monoamine oxidase inhibitor for the treatment of dementia comorbid with depression and Parkinson’s disease. Progress in Neuro-Psychopharmacology & Biological Psyciatry, 27, 555–561.

    Article  CAS  Google Scholar 

  • Weinstock, M., Gorodetskya, E., Poltyrev, T., Gross, A., Sagi, Y., & Youdim, M. B. H. (2003b). A novel cholinesterase and brain-selective monoamine oxidase inhibitor for the treatment of dementia comorbid with depression and Parkinson’s disease. Neuropsychopharmacology and Biological Psychiatry, 27, 556–561.

    Google Scholar 

  • West, A. B., Dawson, V. L., & Dawson, T. M. (2005). To die or grow: Parkinson’s disease and cancer. Trends in Neurosciences, 28, 348–352.

    Article  CAS  PubMed  Google Scholar 

  • Wolozin, B., & Golts, N. (2002). Iron and Parkinson’s disease. The Neuroscientist, 8, 22–32.

    Article  CAS  PubMed  Google Scholar 

  • Yang, L., Matthews, R. T., Schulz, J. B., Klockgether, T., Liao, A. W., Martinou, J. C., Penney, J. B., Jr., Hyman, B. T., & Beal, M. F. (1998). 1-Methyl-4-phenyl-1,2,3,6- tetrahydropyride neurotoxicity is attenuated in mice overexpressing Bcl-2. The Journal of Neuroscience, 18, 8145–8152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye, F. Q., Allen, P. S., & Martin, W. R. (1996). Basal ganglia iron content in Parkinson’s disease measured with magnetic resonance. Movement Disorders, 11, 243–249.

    Article  CAS  PubMed  Google Scholar 

  • Yoshimi, K., Ren, Y. R., Seki, T., Yamada, M., Ooizumi, H., Onodera, M., Saito, Y., Murayama, S., Okano, H., Mizuno, Y., & Mochizuki, H. (2005). Possibility for neurogenesis in substantia nigra of parkinsonian brain. Ann Neurol 58, 31–40.

    Google Scholar 

  • Youdim, M. B. (1976). Assay of monoamine oxidase. In G. E. W. Wolstenholeme & J. Knight (Eds.), Monoamine oxidase and its inhibition (pp. 393–403). Excerpta Medica.

    Google Scholar 

  • Youdim, M. B. H. (2003). Rasagiline: An anti-Parkinson drug with neuroprotective activity. Future Drugs, 3, 737–749.

    CAS  Google Scholar 

  • Youdim, M. B., & Bakhle, Y. S. (2006). Monoamine oxidase: Isoforms and inhibitors in Parkinson’s disease and depressive illness. British Journal of Pharmacology, 147(Suppl 1), S287–S296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Youdim, M. B., & Buccafusco, J. J. (2005). Multi-functional drugs for various CNS targets in the treatment of neurodegenerative disorders. Trends in Pharmacological Sciences, 26, 27–35.

    Article  CAS  PubMed  Google Scholar 

  • Youdim, M. B., & Riederer, P. F. (2004). A review of the mechanisms and role of monoamine oxidase inhibitors in Parkinson’s disease. Neurology, 63, S32–S35.

    Article  PubMed  Google Scholar 

  • Youdim, M. B., & Weinstock, M. (2004). Therapeutic applications of selective and non-selective inhibitors of monoamine oxidase A and B that do not cause significant tyramine potentiation. Neurotoxicology, 25, 243–250.

    Article  CAS  PubMed  Google Scholar 

  • Youdim, M. B. H., Wadia, A., Tatton, N. A., & Weinstock, M. (2001). The anti- Parkinson drug rasagiline and its cholinesterase inhibitor derivatives exert neuroprotection unrelated to MAO inhibition in cell culture and in vivo. Ann N Y Acad Sci, 939, 450–458.

    Google Scholar 

  • Youdim, M. B., Kupershmidt, L., Amit, T., Weinreb, O., et al. (2004). Promises of novel multi-target neuroprotective and neurorestorative drugs for Parkinson’s disease. Parkinsonism & Related Disorders, 20(Suppl 1), S132–S136.

    Google Scholar 

  • Youdim, M. B., Fridkin, M., & Zheng, H. (2004a). Novel bifunctional drugs targeting monoamine oxidase inhibition and iron chelation as an approach to neuroprotection in Parkinson’s disease and other neurodegenerative diseases. Journal of Neural Transmission, 111, 1455–1471.

    Google Scholar 

  • Youdim, M. B. H., Stephenson, G., & Ben, S. D. (2004b). Ironing iron out in Parkinson’s disease and other neurodegenerative diseases with iron chelator; A lesson from 6-hydroxopaime and iron chelatos desferal and VK-28. Annals of the New York Academy of Sciences, 1012. 306.25.

    Google Scholar 

  • Youdim, M. B., Bar, A. O., Yogev-Falach, M., Weinreb, O., Maruyama, W., Naoi, M., & Amit, T. (2005). Rasagiline: Neurodegeneration, neuroprotection, and mitochondrial permeability transition. Journal of Neuroscience Research, 79, 172–179.

    Article  CAS  PubMed  Google Scholar 

  • Youdim, M. B., Edmondson, D., & Tipton, K. F. (2006). The therapeutic potential of monoamine oxidase inhibitors. Nature Reviews. Neuroscience, 7, 295–309.

    Article  CAS  PubMed  Google Scholar 

  • Zaman, K., Ryu, H., Hall, D., O’Donovan, K., Lin, K. I., Miller, M. P., Marquis, J. C., Baraban, J. M., Semenza, G. L., & Ratan, R. R. (1999). Protection from oxidative stress-induced apoptosis in cortical neuronal cultures by iron chelators is associated with enhanced DNA binding of hypoxia-inducible factor-1 and ATF-1/CREB and increased expression of glycolytic enzymes, p21(waf1/cip1), and erythropoietin. The Journal of Neuroscience, 19, 9821–9830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zecca, L., Youdim, M. B., Riederer, P., Connor, J. R., & Crichton, R. R. (2004). Iron, brain ageing and neurodegenerative disorders. Nature Reviews Neuroscience, 5, 863–873.

    Google Scholar 

  • Zecca, L., Berg, D., Arzberger, T., Ruprecht, P., Rausch, W. D., Musicco, M., Tampellini, D., Riederer, P., Gerlach, M., & Becker, G. (2005). In vivo detection ofiron and neuromelanin by transcranial sonography: a new approach for early detection of substantia nigra damage. Mov Disord, 20, 1278–1285.

    Google Scholar 

  • Zhao, M., Momma, S., Delfani, K., Carlen, M., Cassidy, R. M., Johansson, C. B., Brismar, H., Shupliakov, O., Frisen, J., & Janson, A. M. (2003). Evidence for neurogenesis in the adult mammalian substantia nigra. Proceedings of the National Academy of Sciences of the United States of America, 100, 7925–7930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng, H., Gal, S., Weiner, L. M., Bar-Am, O., Warshawsky, A., Fridkin, M., & Youdim, M. B. (2005a). Novel multifunctional neuroprotective iron chelator- monoamine oxidase inhibitor drugs for neurodegenerative diseases: In vitro studies on antioxidant activity, prevention of lipid peroxide formation and monoamine oxidase inhibition. Journal of Neurochemistry, 95, 68–78.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, H., Weiner, L. M., Bar-Am, O., Epsztejn, S., Cabantchik, Z. I., Warshawsky, A., Youdim, M. B. H., & Fridkin, M. (2005b). Design, synthesis, and evaluation of novel bifunctional iron-chelators as potential agents for neuroprotection in Alzheimer’s, Parkinson’s, and other neurodegenerative diseases. Bioorganic & Medicinal Chemistry, 13, 773–783.

    Article  CAS  Google Scholar 

  • Zhu, W., Xie, W., Pan, T., Xu, P., Fridkin, M., Zheng, H., Jankovic, J., Youdim, M. B., & Le, W. (2007). Prevention and restoration of lactacystin-induced nigrostriatal dopamine neuron degeneration by novel brain-permeable iron chelators. The FASEB Journal, 21, 3835–3844.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moussa B. H. Youdim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ben Ari, S., Youdim, M.B.H. (2021). Neuroprotection and Neurorestoration of Nigra Striatal Dopamine Neurons by Novel Multitarget Drugs, M30. In: Kostrzewa, R.M. (eds) Handbook of Neurotoxicity. Springer, Cham. https://doi.org/10.1007/978-3-030-71519-9_211-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71519-9_211-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71519-9

  • Online ISBN: 978-3-030-71519-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics