Skip to main content

Targeting Necroptosis as Therapeutic Potential in Central Nervous System Diseases

  • Living reference work entry
  • First Online:
Handbook of Neurotoxicity
  • 60 Accesses

Abstract

Necroptosis is a regulated cell death (RCD) induced by receptor interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like protein (MLKL). Studies have shown that necroptosis plays an important role in many diseases, including central nervous system diseases and peripheral system diseases. The main molecular mechanisms which govern necroptosis, upstream and downstream signaling pathways, and related molecular inhibitors were discussed in this chapter. Furthermore, ample evidence shows that necroptosis is involved in the process of neurological diseases. With in-depth research on the molecular mechanism of necroptosis, this chapter will provide new insights to develop neuroprotectants against it and specific therapeutic strategies for clinical treatment of neurological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ACD:

Accidental cell death

AD:

Alzheimer’s disease

AIF:

Apoptosis inducing factor

ALS:

Amyotrophic lateral sclerosis

BBB:

Blood-brain barrier

DD:

Death domain

DRs:

Death receptors

HIE:

Hypoxic-ischemic encephalopathy

ICH:

Intracerebral hemorrhage

MCAO:

Middle cerebral artery occlusion

MLKL:

Mixed lineage kinase domain-like protein

PCD:

Programmed cell death

RCD:

Regulated cell death

RIPK3:

Receptor interacting protein kinase 3

SAH:

Subarachnoid hemorrhage

TRADD:

TNF-receptor-associated death domain

TRAF:

TNF-receptor-associated factor

TRAIL:

TNF-related apoptosis inducing ligand

References

  • Andera, L. (2009). Signaling activated by the death receptors of the TNFR family. Biomedical Papers of the Medical Faculty of the University Palacky, Olomouc, Czech Republic, 153(3), 173–180.

    Article  CAS  Google Scholar 

  • Bedoui, S., Herold, M. J., & Strasser, A. (2020). connectivity of programmed cell death pathways and its physiological implications. Nature reviews. Molecular cell biology, 21(11), 678–695.

    Google Scholar 

  • Chen, X., Li, W., Ren, J., et al. (2014). Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death. Cell Research, 24(1), 105–121.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y., Zhang, L., Yu, H., et al. (2018). Necrostatin-1 improves long-term functional recovery through protecting oligodendrocyte precursor cells after transient focal cerebral ischemia in mice. Neuroscience, 371, 229–241.

    Article  CAS  PubMed  Google Scholar 

  • Chen, J., Jin, H., Xu, H., et al. (2019). The neuroprotective effects of necrostatin-1 on subarachnoid hemorrhage in rats are possibly mediated by preventing blood-brain barrier disruption and RIP3-mediated necroptosis. Cell Transplantation, 28(11), 1358–1372.

    Article  PubMed  PubMed Central  Google Scholar 

  • Collaborators GBDLRoS, Feigin, V. L., Nguyen, G., et al. (2018). Global, regional, and country-specific lifetime risks of stroke, 1990 and 2016. The New England Journal of Medicine, 379(25), 2429–2437.

    Article  Google Scholar 

  • Csomos, R. A., Brady, G. F., & Duckett, C. S. (2009). Enhanced cytoprotective effects of the inhibitor of apoptosis protein cellular IAP1 through stabilization with TRAF2. The Journal of Biological Chemistry, 284(31), 20531–20539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Almagro, M. C., Goncharov, T., Newton, K., & Vucic, D. (2015). Cellular IAP proteins and LUBAC differentially regulate necrosome-associated RIP1 ubiquitination. Cell Death & Disease, 6, e1800.

    Article  CAS  Google Scholar 

  • Degterev, A., Huang, Z., Boyce, M., et al. (2005). Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nature Chemical Biology, 1(2), 112–119.

    Article  CAS  PubMed  Google Scholar 

  • Deng, X. X., Li, S. S., & Sun, F. Y. (2019). Necrostatin-1 prevents necroptosis in brains after ischemic stroke via inhibition of RIPK1-mediated RIPK3/MLKL signaling. Aging and Disease, 10(4), 807–817.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong, X. H., Liu, H., Zhang, M. Z., et al. (2019). Postconditioning with inhaled hydrogen attenuates skin ischemia/reperfusion injury through the RIP-MLKL-PGAM5/Drp1 necrotic pathway. American Journal of Translational Research, 11(1), 499–508.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feoktistova, M., Geserick, P., Kellert, B., et al. (2011). cIAPs block Ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Molecular Cell, 43(3), 449–463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Festjens, N., Vanden Berghe, T., Cornelis, S., & Vandenabeele, P. (2007). RIP1, a kinase on the crossroads of a cell’s decision to live or die. Cell Death and Differentiation, 14(3), 400–410.

    Article  CAS  PubMed  Google Scholar 

  • Fullsack, S., Rosenthal, A., Wajant, H., & Siegmund, D. (2019). Redundant and receptor-specific activities of TRADD, RIPK1 and FADD in death receptor signaling. Cell Death & Disease, 10(2), 122.

    Article  Google Scholar 

  • Galluzzi, L., Vitale, I., Aaronson, S. A., et al. (2018). Molecular mechanisms of cell death: Recommendations of the nomenclature committee on cell death 2018. Cell Death and Differentiation, 25(3), 486–541.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiao, J., Wang, Y., Ren, P., Sun, S., & Wu, M. (2019). Necrosulfonamide ameliorates neurological impairment in spinal cord injury by improving antioxidative capacity. Frontiers in Pharmacology, 10, 1538.

    Article  CAS  PubMed  Google Scholar 

  • Jouan-Lanhouet, S., Arshad, M. I., Piquet-Pellorce, C., et al. (2012). TRAIL induces necroptosis involving RIPK1/RIPK3-dependent PARP-1 activation. Cell Death and Differentiation, 19(12), 2003–2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang, S. H., Li, Y., Fukaya, M., et al. (2013). Degeneration and impaired regeneration of gray matter oligodendrocytes in amyotrophic lateral sclerosis. Nature Neuroscience, 16(5), 571–579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lafont, E., Draber, P., Rieser, E., et al. (2018). TBK1 and IKKε prevent TNF-induced cell death by RIPK1 phosphorylation. Nature Cell Biology, 20(12), 1389–1399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang, S., Lv, Z. T., Zhang, J. M., et al. (2018). Necrostatin-1 attenuates trauma-induced mouse osteoarthritis and IL-1beta induced apoptosis via HMGB1/TLR4/SDF-1 in primary mouse chondrocytes. Frontiers in Pharmacology, 9, 1378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, W., Sun, J., Yoon, J. S., et al. (2016). Mitochondrial protein PGAM5 regulates mitophagic protection against cell necroptosis. PLoS One, 11(1), e0147792.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Motawi, T. M. K., Abdel-Nasser, Z. M., & Shahin, N. N. (2020). Ameliorative effect of necrosulfonamide in a rat model of Alzheimer’s disease: Targeting mixed lineage kinase domain-like protein-mediated necroptosis. ACS Chemical Neuroscience, 11(20), 3386–3397.

    Article  CAS  PubMed  Google Scholar 

  • Newton, K., Dugger, D. L., Maltzman, A., et al. (2016). RIPK3 deficiency or catalytically inactive RIPK1 provides greater benefit than MLKL deficiency in mouse models of inflammation and tissue injury. Cell Death and Differentiation, 23(9), 1565–1576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Northington, F. J., Chavez-Valdez, R., Graham, E. M., Razdan, S., Gauda, E. B., & Martin, L. J. (2011). Necrostatin decreases oxidative damage, inflammation, and injury after neonatal HI. Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism, 31(1), 178–189.

    Article  CAS  Google Scholar 

  • Obitsu, S., Sakata, K., Teshima, R., & Kondo, K. (2013). Eleostearic acid induces RIP1-mediated atypical apoptosis in a kinase-independent manner via ERK phosphorylation, ROS generation and mitochondrial dysfunction. Cell Death & Disease, 4, e674.

    Article  CAS  Google Scholar 

  • Park, H. H., Park, S. Y., Mah, S., et al. (2018). HS-1371, a novel kinase inhibitor of RIP3-mediated necroptosis. Experimental & Molecular Medicine, 50(9), 1–15.

    Article  CAS  Google Scholar 

  • Petrie, E. J., Sandow, J. J., Jacobsen, A. V., et al. (2018). Conformational switching of the pseudokinase domain promotes human MLKL tetramerization and cell death by necroptosis. Nature Communications, 9(1), 2422.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rathkey, J. K., Zhao, J., Liu, Z., et al. (2018). Chemical disruption of the pyroptotic pore-forming protein gasdermin D inhibits inflammatory cell death and sepsis. Science immunology, 3(26), eaat2738.

    Google Scholar 

  • Shen, B., Mei, M., Pu, Y., et al. (2019). Necrostatin-1 attenuates renal ischemia and reperfusion injury via meditation of HIF-1alpha/mir-26a/TRPC6/PARP1 signaling. Molecular Therapy Nucleic Acids, 17, 701–713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanger, B. Z., Leder, P., Lee, T. H., Kim, E., & Seed, B. (1995). RIP: A novel protein containing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death. Cell, 81(4), 513–523.

    Article  CAS  PubMed  Google Scholar 

  • Su, X., Wang, H., Kang, D., et al. (2015). Necrostatin-1 ameliorates intracerebral hemorrhage-induced brain injury in mice through inhibiting RIP1/RIP3 pathway. Neurochemical Research, 40(4), 643–650.

    Article  CAS  PubMed  Google Scholar 

  • Sun, L., Wang, H., Wang, Z., et al. (2012). Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell, 148(1–2), 213–227.

    Article  CAS  PubMed  Google Scholar 

  • Tiwari, S., Atluri, V., Kaushik, A., Yndart, A., & Nair, M. (2019). Alzheimer’s disease: Pathogenesis, diagnostics, and therapeutics. International Journal of Nanomedicine, 14, 5541–5554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Z., Jiang, H., Chen, S., Du, F., & Wang, X. (2012). The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell, 148(1–2), 228–243.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H., Sun, L., Su, L., et al. (2014). Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Molecular Cell, 54(1), 133–146.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., An, R., Umanah, G. K., et al. (2016). A nuclease that mediates cell death induced by DNA damage and poly(ADP-ribose) polymerase-1. Science (New York, N.Y.), 354(6308), aad6872.

    Google Scholar 

  • West, T., Atzeva, M., & Holtzman, D. M. (2006). Caspase-3 deficiency during development increases vulnerability to hypoxic-ischemic injury through caspase-3-independent pathways. Neurobiology of Disease, 22(3), 523–537.

    Article  CAS  PubMed  Google Scholar 

  • Wu, X. N., Yang, Z. H., Wang, X. K., et al. (2014). Distinct roles of RIP1-RIP3 hetero- and RIP3-RIP3 homo-interaction in mediating necroptosis. Cell Death and Differentiation, 21(11), 1709–1720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie, L., & Huang, Y. (2019). Antagonism of RIP1 using necrostatin-1 (Nec-1) ameliorated damage and inflammation of HBV X protein (HBx) in human normal hepatocytes. Artificial Cells, Nanomedicine, and Biotechnology, 47(1), 1194–1199.

    Article  CAS  PubMed  Google Scholar 

  • Xu, X., Chua, C. C., Kong, J., et al. (2007). Necrostatin-1 protects against glutamate-induced glutathione depletion and caspase-independent cell death in HT-22 cells. Journal of Neurochemistry, 103(5), 2004–2014.

    Article  CAS  PubMed  Google Scholar 

  • Xu, X., Chua, C. C., Zhang, M., et al. (2010). The role of PARP activation in glutamate-induced necroptosis in HT-22 cells. Brain Research, 1343, 206–212.

    Article  CAS  PubMed  Google Scholar 

  • Xu, Y., Wang, J., Song, X., et al. (2016). RIP3 induces ischemic neuronal DNA degradation and programmed necrosis in rat via AIF. Scientific Reports, 6, 29362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, D., Jin, T., Zhu, H., et al. (2018). TBK1 suppresses RIPK1-driven apoptosis and inflammation during development and in aging. Cell, 174(6), 1477–1491.e1419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, S. H., Lee, D. K., Shin, J., et al. (2017). Nec-1 alleviates cognitive impairment with reduction of Aβ and tau abnormalities in APP/PS1 mice. EMBO Molecular Medicine, 9(1), 61–77.

    Article  CAS  PubMed  Google Scholar 

  • Yang, S. H., Shin, J., Shin, N. N., et al. (2019). A small molecule Nec-1 directly induces amyloid clearance in the brains of aged APP/PS1 mice. Scientific Reports, 9(1), 4183.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • You, Z., Savitz, S. I., Yang, J., et al. (2008). Necrostatin-1 reduces histopathology and improves functional outcome after controlled cortical impact in mice. Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism, 28(9), 1564–1573.

    Article  CAS  Google Scholar 

  • Zhang, Y., Chen, X., Gueydan, C., & Han, J. (2018). Plasma membrane changes during programmed cell deaths. Cell Research, 28(1), 9–21.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, W., & Yuan, J. (2014). Necroptosis in health and diseases. Seminars in Cell & Developmental Biology, 35, 14–23.

    Article  CAS  Google Scholar 

  • Zhu, S., Zhang, Y., Bai, G., & Li, H. (2011). Necrostatin-1 ameliorates symptoms in R6/2 transgenic mouse model of Huntington's disease. Cell Death & Disease, 2(1), e115.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingshun Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Li, H., Xia, M., Chen, J., Kostrzewa, R., Xu, X. (2021). Targeting Necroptosis as Therapeutic Potential in Central Nervous System Diseases. In: Kostrzewa, R.M. (eds) Handbook of Neurotoxicity. Springer, Cham. https://doi.org/10.1007/978-3-030-71519-9_166-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71519-9_166-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71519-9

  • Online ISBN: 978-3-030-71519-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics