
C
o
n
si
st

en
t *

Complete

*
W
e
ll
D
o
cu
m
ented*Easyt

o
Re

u
se

* *Evaluated

*
A
S

*

Ar
tifact *

-
Test

C o m
p

E
F

Status Report on Software Testing:
Test-Comp 2021

Dirk Beyer �

LMU Munich, Munich, Germany

Abstract. This report describes Test-Comp 2021, the 3rd edition of the
Competition on Software Testing. The competition is a series of annual
comparative evaluations of fully automatic software test generators for C
programs. The competition has a strong focus on reproducibility of its
results and its main goal is to provide an overview of the current state
of the art in the area of automatic test-generation. The competition was
based on 3 173 test-generation tasks for C programs. Each test-generation
task consisted of a program and a test specification (error coverage,
branch coverage). Test-Comp 2021 had 11 participating test generators
from 6 countries.

Keywords: Software Testing · Test-Case Generation · Competition ·
Program Analysis · Software Validation · Software Bugs · Test Validation
· Test-Comp · Benchmarking · Test Coverage · Bug Finding · Test-Suites
· BenchExec · TestCov

1 Introduction

Among several other objectives, the Competition on Software Testing (Test-
Comp [4, 5, 6], https://test-comp.sosy-lab.org/2021) showcases every year the state
of the art in the area of automatic software testing. This edition of Test-Comp
is the 3rd edition of the competition. It provides an overview of the currently
achieved results by tool implementations that are based on the most recent ideas,
concepts, and algorithms for fully automatic test generation. This competition
report describes the (updated) rules and definitions, presents the competition
results, and discusses some interesting facts about the execution of the competition
experiments. The setup of Test-Comp is similar to SV-COMP [8], in terms
of both technical and procedural organization. The results are collected via
BenchExec’s XML results format [16], and transformed into tables and plots
in several formats (https://test-comp.sosy-lab.org/2021/results/). All results are
available in artifacts at Zenodo (Table 3).

This report extends previous reports on Test-Comp [4, 5, 6].
Reproduction packages are available on Zenodo (see Table 3).
Funded in part by the Deutsche Forschungsgemeinschaft (DFG) – 418257054 (Coop).
� dirk.beyer@sosy-lab.org

c© The Author(s) 2021
E. Guerra and M. Stoelinga (Eds.): FASE 2021, LNCS 12649, pp. 341–357, 2021.
https://doi.org/10.1007/978-3-030-71500-7_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71500-7_17&domain=pdf
https://orcid.org/0000-0003-4832-7662
https://www.sosy-lab.org/people/beyer/
https://test-comp.sosy-lab.org/2021
https://test-comp.sosy-lab.org/2021/results/
http://gepris.dfg.de/gepris/projekt/418257054
https://www.sosy-lab.org/people/beyer/

342 Dirk Beyer

Competition Goals. In summary, the goals of Test-Comp are the following [5]:

• Establish standards for software test generation. This means, most promi-
nently, to develop a standard for marking input values in programs, define
an exchange format for test suites, agree on a specification language for
test-coverage criteria, and define how to validate the resulting test suites.

• Establish a set of benchmarks for software testing in the community. This
means to create and maintain a set of programs together with coverage
criteria, and to make those publicly available for researchers to be used in
performance comparisons when evaluating a new technique.

• Provide an overview of available tools for test-case generation and a snapshot
of the state-of-the-art in software testing to the community. This means to
compare, independently from particular paper projects and specific techniques,
different test generators in terms of effectiveness and performance.

• Increase the visibility and credits that tool developers receive. This means
to provide a forum for presentation of tools and discussion of the latest
technologies, and to give the participants the opportunity to publish about
the development work that they have done.

• Educate PhD students and other participants on how to set up performance
experiments, package tools in a way that supports reproduction, and how to
perform robust and accurate research experiments.

• Provide resources to development teams that do not have sufficient computing
resources and give them the opportunity to obtain results from experiments
on large benchmark sets.

Related Competitions. In the field of formal methods, competitions are re-
spected as an important evaluation method and there are many competitions [2].
We refer to the previous report [5] for a more detailed discussion and give here
only the references to the most related competitions [2, 8, 32, 39].

Quick Summary of Changes. As the competition continuously improves,
we report the changes since the last report. We list a summary of five new
items in Test-Comp 2021 as overview:

• Extended task-definition format, version 2.0: Sect. 2
• SPDX identification of licenses in SV-Benchmarks collection: Sect. 2
• Extension of the SV-Benchmarks collection by several categories: Sect. 3
• Elimination of competition-specific functions __VERIFIER_error and
__VERIFIER_assume from the test-generation tasks (and rules): Sect. 3

• CoVeriTeam: New tool that can be used to remotely execute test-generation
runs on the competition machines: Sect. 4

2 Definitions, Formats, and Rules

Organizational aspects such as the classification (automatic, off-site, reproducible,
jury, training) and the competition schedule is given in the initial competi-
tion definition [4]. In the following, we repeat some important definitions that
are necessary to understand the results.

Status Report on Software Testing: Test-Comp 2021 343

Test
Generator

Program
under Test

Test
Specification

Test Suite
(Test Cases)

Test
Validator

Bug
Report

Coverage
Statistics

Fig. 1: Flow of the Test-Comp execution for one test generator (taken from [5])

Test-Generation Task. A test-generation task is a pair of an input program
(program under test) and a test specification. A test-generation run is a non-
interactive execution of a test generator on a single test-generation task, in
order to generate a test suite according to the test specification. A test suite
is a sequence of test cases, given as a directory of files according to the for-
mat for exchangeable test-suites.1

Execution of a Test Generator. Figure 1 illustrates the process of executing
one test generator on the benchmark suite. One test run for a test generator gets
as input (i) a program from the benchmark suite and (ii) a test specification
(cover bug, or cover branches), and returns as output a test suite (i.e., a set of
test cases). The test generator is contributed by a competition participant as
a software archive in ZIP format. The test runs are executed centrally by the
competition organizer. The test-suite validator takes as input the test suite from
the test generator and validates it by executing the program on all test cases:
for bug finding it checks if the bug is exposed and for coverage it reports the
coverage. We use the tool TestCov [15] 2 as test-suite validator.

Test Specification. The specification for testing a program is given to the
test generator as input file (either properties/coverage-error-call.prp or
properties/coverage-branches.prp for Test-Comp 2021).

The definition init(main()) is used to define the initial states of the pro-
gram under test by a call of function main (with no parameters). The defini-
tion FQL(f) specifies that coverage definition f should be achieved. The FQL
(FShell query language [28]) coverage definition COVER EDGES(@DECISIONEDGE)
means that all branches should be covered (typically used to obtain a
standard test suite for quality assurance) and COVER EDGES(@CALL(foo))
means that a call (at least one) to function foo should be covered (typ-
ically used for bug finding). A complete specification looks as follows:
COVER(init(main()), FQL(COVER EDGES(@DECISIONEDGE))).
1 https://gitlab.com/sosy-lab/software/test-format/
2 https://gitlab.com/sosy-lab/software/test-suite-validator

https://github.com/sosy-lab/sv-benchmarks/blob/testcomp21/c/properties/coverage-error-call.prp
https://github.com/sosy-lab/sv-benchmarks/blob/testcomp21/c/properties/coverage-branches.prp
https://gitlab.com/sosy-lab/software/test-format/
https://gitlab.com/sosy-lab/software/test-suite-validator

344 Dirk Beyer

Table 1: Coverage specifications used in Test-Comp 2021 (similar to 2019, 2020)

Formula Interpretation

COVER EDGES(@CALL(reach_error)) The test suite contains at least one test
that executes function reach_error.

COVER EDGES(@DECISIONEDGE) The test suite contains tests such that
all branches of the program are executed.

1 format_version: ’2.0’
2

3 # old file name: floppy_true−unreach−call_true−valid−memsafety.i.cil.c
4 input_files: ’floppy.i.cil−3.c’
5

6 properties:
7 − property_file: ../properties/unreach−call.prp
8 expected_verdict: true
9 − property_file: ../properties/valid−memsafety.prp

10 expected_verdict: false
11 subproperty: valid−memtrack
12 − property_file: ../properties/coverage−branches.prp
13

14 options:
15 language: C
16 data_model: ILP32

Fig. 2: Example task definition file floppy.i.cil-3.yml for C program
floppy.i.cil-3.c (format version and options are new compared to last year)

Table 1 lists the two FQL formulas that are used in test specifications of
Test-Comp 2021; there was no change from 2020 (except that special function
__VERIFIER_error does not exist anymore).

Task-Definition Format 2.0. The format for the task defi-
nitions in the SV-Benchmarks repository was extended by op-
tions that can carry information from the test-generation task
to the test tool. Test-Comp 2021 used the format in version 2.0
(https://gitlab.com/sosy-lab/benchmarking/task-definition-format/-/tree/2.0).
The options now contain the language (C or Java) and the data
model (ILP32, LP64, see http://www.unix.org/whitepapers/64bit.html, only
for C programs) that the program of the test-generation task assumes
(https://github.com/sosy-lab/sv-benchmarks#task-definitions). An example task
definition is provided in Fig. 2: This YAML file specifies, for the C program
floppy.i.cil-3.c, two verification tasks (reachability of a function call
and memory safety) and one test-generation task (coverage of all branches).
Previously, the options for language and data model where defined in
category-specific configuration files (for example c/ReachSafety-ControlFlow.cfg),
which were deleted before Test-Comp 2021.

https://github.com/sosy-lab/sv-benchmarks/blob/testcomp21/c/ntdrivers/floppy.i.cil-3.yml
https://github.com/sosy-lab/sv-benchmarks/blob/testcomp21/c/ntdrivers/floppy.i.cil-3.c
https://gitlab.com/sosy-lab/benchmarking/task-definition-format/-/tree/2.0
http://www.unix.org/whitepapers/64bit.html
https://github.com/sosy-lab/sv-benchmarks#task-definitions
https://github.com/sosy-lab/sv-benchmarks/blob/testcomp21/c/ntdrivers/floppy.i.cil-3.c
https://github.com/sosy-lab/sv-benchmarks/blob/testcomp20/c/ReachSafety-ControlFlow.cfg

Status Report on Software Testing: Test-Comp 2021 345

License and Qualification. The license of each participating test genera-
tor must allow its free use for reproduction of the competition results. De-
tails on qualification criteria can be found in the competition report of Test-
Comp 2019 [6]. Furthermore, the community tries to apply the SPDX stan-
dard (https://spdx.dev) to the SV-Benchmarks repository. Continuous-integration
checks based on REUSE (https://reuse.software) will ensure that all benchmark
tasks adhere to the standard.

3 Categories and Scoring Schema

Benchmark Programs. The input programs were taken from the largest and
most diverse open-source repository of software-verification and test-generation
tasks 3, which is also used by SV-COMP [8]. As in 2020, we selected all pro-
grams for which the following properties were satisfied (see issue on GitHub 4

and report [6]):

1. compiles with gcc, if a harness for the special methods 5 is provided,
2. should contain at least one call to a nondeterministic function,
3. does not rely on nondeterministic pointers,
4. does not have expected result ‘false’ for property ‘termination’, and
5. has expected result ‘false’ for property ‘unreach-call’ (only for category Error

Coverage).

This selection yielded a total of 3 173 test-generation tasks, namely 607 tasks
for category Error Coverage and 2 566 tasks for category Code Coverage. The
test-generation tasks are partitioned into categories, which are listed in Ta-
bles 6 and 7 and described in detail on the competition web site.6 Figure 3
illustrates the category composition.

The programs in the benchmark collection contained functions
__VERIFIER_error and __VERIFIER_assume that had a specific prede-
fined meaning. Last year, those functions were removed from all programs
in the SV-Benchmarks collection. More about the reasoning is explained
in the SV-COMP 2021 competition report [8].

Category Error-Coverage. The first category is to show the abilities to dis-
cover bugs. The benchmark set consists of programs that contain a bug. Every
run will be started by a batch script, which produces for every tool and every
test-generation task one of the following scores: 1 point, if the validator succeeds
in executing the program under test on a generated test case that explores the
bug (i.e., the specified function was called), and 0 points, otherwise.

3 https://github.com/sosy-lab/sv-benchmarks
4 https://github.com/sosy-lab/sv-benchmarks/pull/774
5 https://test-comp.sosy-lab.org/2021/rules.php
6 https://test-comp.sosy-lab.org/2021/benchmarks.php

https://spdx.dev
https://reuse.software
https://github.com/sosy-lab/sv-benchmarks
https://github.com/sosy-lab/sv-benchmarks/pull/774
https://test-comp.sosy-lab.org/2021/rules.php
https://test-comp.sosy-lab.org/2021/benchmarks.php

346 Dirk Beyer

Arrays

BitVectors

ControlFlow

ECA

Floats

Heap

Loops

Recursive

Sequentialized

XCSP

BusyBox-MemSafety

DeviceDriversLinux64-ReachSafety

Cover-Error

Arrays

BitVectors

ControlFlow

ECA

Floats

Heap

Loops

Recursive

Sequentialized

XCSP

Combinations

BusyBox

DeviceDriversLinux64

SQLite

MainHeap

Cover-Branches

C-Overall

Fig. 3: Category structure for Test-Comp 2021; compared to Test-Comp 2020,
there are three new sub-categories in Cover-Error and two new sub-categories
in Cover-Branches: we added the sub-categories XCSP, BusyBox-MemSafety,
and DeviceDriversLinux64-ReachSafety to category Cover-Error, and the sub-
categories XCSP and Combinations to category Cover-Branches

Category Branch-Coverage. The second category is to cover as many branches
of the program as possible. The coverage criterion was chosen because many
test generators support this standard criterion by default. Other coverage cri-
teria can be reduced to branch coverage by transformation [27]. Every run
will be started by a batch script, which produces for every tool and every

Status Report on Software Testing: Test-Comp 2021 347

test-generation task the coverage of branches of the program (as reported by
TestCov [15]; a value between 0 and 1) that are executed for the generated
test cases. The score is the returned coverage.

Ranking. The ranking was decided based on the sum of points (normalized for
meta categories). In case of a tie, the ranking was decided based on the run time,
which is the total CPU time over all test-generation tasks. Opt-out from categories
was possible and scores for categories were normalized based on the number of
tasks per category (see competition report of SV-COMP 2013 [3], page 597).

4 Reproducibility

In order to support independent reproduction of the Test-Comp results, we
made all major components that are used for the competition available in public
version-control repositories. An overview of the components that contribute to
the reproducible setup of Test-Comp is provided in Fig. 4, and the details are
given in Table 2. We refer to the report of Test-Comp 2019 [6] for a thorough
description of all components of the Test-Comp organization and how we ensure
that all parts are publicly available for maximal reproducibility.

In order to guarantee long-term availability and immutability of the test-
generation tasks, the produced competition results, and the produced test suites,
we also packaged the material and published it at Zenodo (see Table 3). The
archive for the competition results includes the raw results in BenchExec’s
XML exchange format, the log output of the test generators and validator,
and a mapping from file names to SHA-256 hashes. The hashes of the files
are useful for validating the exact contents of a file, and accessing the files
inside the archive that contains the test suites.

To provide transparent access to the exact versions of the test generators that
were used in the competition, all test-generator archives are stored in a public
Git repository. GitLab was used to host the repository for the test-generator
archives due to its generous repository size limit of 10GB.

Competition Workflow. As illustrated in Fig. 4, the ingredients for a test or
verification run are (a) a test or verification task (which program and which
specification to use), (b) a benchmark definition (which categories and which
options to use), (c) a tool-info module (uniform way to access a tool’s version
string and the command line to invoke), and (d) an archive that contains all
executables that are required and cannot be installed as standard Ubuntu package.

(a) Each test or verification task is defined by a task-definition file (as shown,
e.g., in Fig. 2). The tasks are stored in the SV-Benchmarks repository and
maintained by the verification and testing community, including the competition
participants and the competition organizer.

(b) A benchmark definition defines the choices of the participating team, that
is, which categories to execute the test generator on and which parameters to
pass to the test generator. The benchmark definition also specifies the resource
limits of the competition runs (CPU time, memory, CPU cores). The benchmark
definitions are created or maintained by the teams and the organizer.

348 Dirk Beyer

(a) Test-Generation Tasks

(e) Test-Generation Run

(b) Benchmark Definitions (c) Tool-Info Modules (d) Tester Archives

(f) Test Suite

Fig. 4: Benchmarking components of Test-Comp and competition’s execution flow
(same as for Test-Comp 2020)

Table 2: Publicly available components for reproducing Test-Comp 2021

Component Fig. 4 Repository Version

Test-Generation Tasks (a) github.com/sosy-lab/sv-benchmarks testcomp21
Benchmark Definitions (b) gitlab.com/sosy-lab/test-comp/bench-defs testcomp21
Tool-Info Modules (c) github.com/sosy-lab/benchexec 3.6
Test-Generator Archives (d) gitlab.com/sosy-lab/test-comp/archives-2021 testcomp21
Benchmarking (e) github.com/sosy-lab/benchexec 3.6
Test-Suite Format (f) gitlab.com/sosy-lab/software/test-format testcomp21

Table 3: Artifacts published for Test-Comp 2021

Content DOI Reference

Test-Generation Tasks 10.5281/zenodo.4459132 [9]
Competition Results 10.5281/zenodo.4459470 [7]
Test Suites (Witnesses) 10.5281/zenodo.4459466 [10]
BenchExec 10.5281/zenodo.4317433 [43]

(c) A tool-info module is a component that provides a uniform way to
access the test-generation or verification tool: it provides interfaces for access-
ing the version string of a test generator and assembles the command-line
from the information given in the benchmark definition and task definition.
The tool-info modules are written by the participating teams with the help
of the BenchExec maintainer and others.

(d) A test generator is provided as an archive in ZIP format. The archive
contains a directory with a README and LICENSE file as well as all components
that are necessary for the test generator to be executed. This archive is created by
the participating team and merged into the central repository via a merge request.

All above components are reviewed by the competition jury and improved
according to the comments from the reviewers by the teams and the organizer.

https://github.com/sosy-lab/sv-benchmarks/tree/testcomp21/c
https://gitlab.com/sosy-lab/test-comp/bench-defs/-/tree/testcomp21/benchmark-defs
https://github.com/sosy-lab/benchexec/tree/3.6/benchexec/tools
https://gitlab.com/sosy-lab/test-comp/archives-2021/tree/testcomp21/2021
https://github.com/sosy-lab/benchexec/tree/3.6
https://gitlab.com/sosy-lab/software/test-format/-/tree/testcomp21
https://doi.org/10.5281/zenodo.4459132
https://doi.org/10.5281/zenodo.4459470
https://doi.org/10.5281/zenodo.4459466
https://doi.org/10.5281/zenodo.4317433

Status Report on Software Testing: Test-Comp 2021 349

Table 4: Competition candidates with tool references and representing jury members

Tester Ref. Jury member Affiliation

CMA-ES Fuzz [33] Gidon Ernst LMU Munich, Germany
CoVeriTest [12, 31] Marie-Christine Jakobs TU Darmstadt, Germany
FuSeBMC [1, 25] Kaled Alshmrany U. of Manchester, UK
HybridTiger [18, 38] Sebastian Ruland TU Darmstadt, Germany
Klee [19, 20] Martin Nowack Imperial College London, UK
Legion [37] Dongge Liu U. of Melbourne, Australia
LibKluzzer [35] Hoang M. Le U. of Bremen, Germany
PRTest [14, 36] Thomas Lemberger LMU Munich, Germany
Symbiotic [21, 22] Marek Chalupa Masaryk U., Brno, Czechia
TracerX [29, 30] Joxan Jaffar National U. of Singapore, Singapore
VeriFuzz [23] Raveendra Kumar M. Tata Consultancy Services, India

Due to the reproducibility requirements and high level of automation that
is necessary for a competition like Test-Comp, participating in the competi-
tion is also a challenge itself: package the tool, provide meaningful log output,
specify the benchmark definition, implement a tool-info module, and trouble-
shoot in case of problems. Test-Comp is a friendly and helpful community,
and problems are reported in a GitLab issue tracker, where the organizer and
the other teams help fixing the problems.

To provide participants access to the actual competition machines, the com-
petition used CoVeriTeam [13] (https://gitlab.com/sosy-lab/software/coveriteam/)
for the first time. CoVeriTeam is a tool for cooperative verification, which
enables remote execution of test-generation or verification runs directly on the
competition machines (among its many other features). This possibility was
found to be a valuable service for trouble shooting.

5 Results and Discussion

For the third time, the competition experiments represent the state of the
art in fully automatic test generation for whole C programs. The report helps
in understanding the improvements compared to last year, in terms of effec-
tiveness (test coverage, as accumulated in the score) and efficiency (resource
consumption in terms of CPU time). All results mentioned in this article were
inspected and approved by the participants.

Participating Test Generators. Table 4 provides an overview of the par-
ticipating test generators and references to publications, as well as the team
representatives of the jury of Test-Comp 2021. (The competition jury consists of
the chair and one member of each participating team.) Table 5 lists the features
and technologies that are used in the test generators. An online table with infor-
mation about all participating systems is provided on the competition web site.7

7 https://test-comp.sosy-lab.org/2021/systems.php

https://gitlab.com/sosy-lab/software/coveriteam/
https://test-comp.sosy-lab.org/2021/systems.php

350 Dirk Beyer

Table 5: Technologies and features that the competition candidates used

Participant B
ou

n
d
ed

M
od

el
C

h
ec

ki
n
g

C
E
G

A
R

E
vo

lu
ti

on
ar

y
A

lg
or

it
h
m

s

E
xp

li
ci

t-
V

al
u
e

A
n
al

ys
is

F
lo

at
in

g-
P
oi

nt
A

ri
th

m
et

ic
s

G
u
id

an
ce

by
C

ov
er

ag
e

M
ea

su
re

s

P
re

d
ic

at
e

A
b
st

ra
ct

io
n

R
an

d
om

E
xe

cu
ti

on

S
ym

b
ol

ic
E
xe

cu
ti

on

T
ar

ge
te

d
In

p
u
t

G
en

er
at

io
n

A
lg

or
it

h
m

S
el

ec
ti

on

P
or

tf
ol

io

CMA-ES Fuzz � � � �

CoVeriTest � � � � �

FuSeBMC � � � � �

HybridTiger � � � �

Klee � �

Legion � � � � �

LibKluzzer � � �

PRTest �

Symbiotic � � � �

TracerX � � �

VeriFuzz � � � � �

Computing Resources. The computing environment and the resource lim-
its were the same as for Test-Comp 2020 [5]: Each test run was limited to
8 processing units (cores), 15GB of memory, and 15min of CPU time. The
test-suite validation was limited to 2 processing units, 7GB of memory, and
5min of CPU time. The machines for running the experiments are part of a
compute cluster that consists of 168 machines; each test-generation run was
executed on an otherwise completely unloaded, dedicated machine, in order to
achieve precise measurements. Each machine had one Intel Xeon E3-1230 v5
CPU, with 8 processing units each, a frequency of 3.4GHz, 33GB of RAM,
and a GNU/Linux operating system (x86_64-linux, Ubuntu 20.04 with Linux
kernel 5.4). We used BenchExec [16] to measure and control computing resources
(CPU time, memory, CPU energy) and VerifierCloud 8 to distribute, install,
run, and clean-up test-case generation runs, and to collect the results. The values

8 https://vcloud.sosy-lab.org

�

https://vcloud.sosy-lab.org

Status Report on Software Testing: Test-Comp 2021 351

Table 6: Quantitative overview over all results; empty cells mark opt-outs; label ‘new’
indicates first-time participants

Participant

C
ov

er
-E

rr
or

60
7

ta
sk

s

C
ov

er
-B

ra
n
ch

es
25

66
ta

sk
s

O
ve

ra
ll

31
73

ta
sk

s

CMA-ES Fuzz new 0 411 254
CoVeriTest 225 1128 1286
FuSeBMC new 405 1161 1776
HybridTiger 266 860 1228
Klee 339 784 1370
Legion 35 651 495
LibKluzzer 359 1292 1738
PRTest 79 519 526
Symbiotic 314 1169 1543
TracerX 246 1087 1315
VeriFuzz 385 1389 1865

for time and energy are accumulated over all cores of the CPU. To measure the
CPU energy, we use CPU Energy Meter [17] (integrated in BenchExec [16]).
Further technical parameters of the competition machines are available in the
repository which also contains the benchmark definitions. 9

One complete test-generation execution of the competition consisted of
34 903 single test-generation runs. The total CPU time was 220 days and the
consumed energy 56 kWh for one complete competition run for test generation
(without validation). Test-suite validation consisted of 34 903 single test-suite
validation runs. The total consumed CPU time was 6.3 days. Each tool was
executed several times, in order to make sure no installation issues occur dur-
ing the execution. Including preruns, the infrastructure managed a total of
210 632 test-generation runs (consuming 1.8 years of CPU time) and 207 459
test-suite validation runs (consuming 27 days of CPU time). We did not mea-
sure the CPU energy during preruns.

Quantitative Results. Table 6 presents the quantitative overview of all tools
and all categories. The head row mentions the category and the number of test-
generation tasks in that category. The tools are listed in alphabetical order; every
table row lists the scores of one test generator. We indicate the top three candi-
dates by formatting their scores in bold face and in larger font size. An empty table
cell means that the test generator opted-out from the respective main category
9 https://gitlab.com/sosy-lab/test-comp/bench-defs/tree/testcomp21

https://gitlab.com/sosy-lab/test-comp/bench-defs/tree/testcomp21

352 Dirk Beyer

Table 7: Overview of the top-three test generators for each category (measurement
values for CPU time and energy rounded to two significant digits)

Rank Tester Score CPU CPU
Time Energy
(in h) (in kWh)

Cover-Error
1 FuSeBMC 405 22 0.26
2 VeriFuzz 385 2.6 0.031
3 LibKluzzer 359 90 0.99

Cover-Branches
1 VeriFuzz 1389 630 8.1
2 LibKluzzer 1292 520 5.7
3 Symbiotic 1169 440 5.1

Overall
1 VeriFuzz 1865 640 8.1
2 FuSeBMC 1776 410 4.8
3 LibKluzzer 1738 610 6.7

(perhaps participating in subcategories only, restricting the evaluation to a specific
topic). More information (including interactive tables, quantile plots for every
category, and also the raw data in XML format) is available on the competition
web site 10 and in the results artifact (see Table 3). Table 7 reports the top three
test generators for each category. The consumed run time (column ‘CPU Time’)
is given in hours and the consumed energy (column ‘Energy’) is given in kWh.

Score-Based Quantile Functions for Quality Assessment. We use score-
based quantile functions [16] because these visualizations make it easier to
understand the results of the comparative evaluation. The web site 10 and the
results artifact (Table 3) include such a plot for each category; as example,
we show the plot for category Overall (all test-generation tasks) in Fig. 5. All
11 test generators participated in category Overall, for which the quantile plot
shows the overall performance over all categories (scores for meta categories
are normalized [3]). A more detailed discussion of score-based quantile plots for
testing is provided in the previous competition report [6].

Alternative Rankings. Table 8 is similar to Table 7, but contains the alternative
ranking categories Green Testing and New Test Generators. Column ‘Quality’
gives the score in score points (sp), column ‘CPU Time’ the CPU usage in
hours (h), column ‘CPU Energy’ the CPU usage in kilo-watt-hours (kWh), and
column ‘Rank Measure’ reports the values for the rank measure, which is different
for the two alternative ranking categories. (An entry ‘–’ for ‘CPU Energy’ indicates
that we did not measure the energy consumption for technical reasons.)
10 https://test-comp.sosy-lab.org/2021/results

https://test-comp.sosy-lab.org/2021/results

Status Report on Software Testing: Test-Comp 2021 353

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 200 400 600 800 1000 1200 1400 1600 1800

M
in

. n
um

be
r

of
 te

st
 ta

sk
s

Cumulative score

CMA-ES-Fuzz
CoVeriTest
FuSeBMC

HybridTiger
KLEE

Legion
LibKluzzer

PRTest
Symbiotic

TracerX
VeriFuzz

Fig. 5: Quantile functions for category Overall. Each quantile function illustrates
the quantile (x-coordinate) of the scores obtained by test-generation runs below
a certain number of test-generation tasks (y-coordinate). More details were given
previously [6]. The graphs are decorated with symbols to make them better
distinguishable without color.

Table 8: Alternative rankings; quality is given in score points (sp), CPU time
in hours (h), energy in kilo-watt-hours (kWh), the first rank measure in kilo-
joule per score point (kJ/sp), and the second rank measure in score points (sp);
measurement values are rounded to 2 significant digits

Rank Test Generator Quality CPU CPU Rank
Time Energy Measure

(sp) (h) (kWh)

Green Testing (kJ/sp)
1 TracerX 1 315 210 2.5 6.8
2 Klee 1 370 210 2.6 6.8
3 FuSeBMC 1 776 410 4.8 9.7
worst 51

New Test Generators (sp)
1 FuSeBMC 1 776 410 4.8 1 776
2 CMA-ES Fuzz 254 310 – 254

Green Testing — Low Energy Consumption. Since a large part of the cost of
test generation is caused by the energy consumption, it might be important to
also consider the energy efficiency in rankings, as complement to the official
Test-Comp ranking. This alternative ranking category uses the energy consump-
tion per score point as rank measure: CPU Energy

Quality , with the unit kilo-joule per

354 Dirk Beyer

2019 2020 2021
0

5

10

15

9

4

2

6
9

Year

E
va

lu
at

ed
te

st
ge

ne
ra

to
rs

Fig. 6: Number of evaluated test generators for each year (top: number of first-time
participants; bottom: previous year’s participants)

score point (kJ/sp).11 The energy is measured using CPU Energy Meter [17],
which we use as part of BenchExec [16].
New Test Generators. To acknowledge the test generators that participated for the
first time in Test-Comp, the second alternative ranking category lists measures
only for the new test generators, and the rank measure is the quality with the
unit score point (sp). For example, CMA-ES Fuzz is an early prototype and has
already obtained a total score of 411 points in category Cover-Branches, and
FuSeBMC is a new tool based on some mature components and became second
place already in its first participation. This should encourage developers of test
generators to participate with new tools of any maturity level.

6 Conclusion

Test-Comp 2021 was the the 3rd edition of the Competition on Software Testing,
and attracted 11 participating teams (see Fig. 6 for the participation numbers and
Table 4 for the details). The competition offers an overview of the state of the art in
automatic software testing for C programs. The competition does not only execute
the test generators and collect results, but also validates the achieved coverage
of the test suites, based on the latest version of the test-suite validator TestCov.
As before, the jury and the organizer made sure that the competition follows the
high quality standards of the FASE conference, in particular with respect to the
important principles of fairness, community support, and transparency.

Data Availability Statement. The test-generation tasks and results of the
competition are published at Zenodo, as described in Table 3. All compo-
nents and data that are necessary for reproducing the competition are avail-
able in public version repositories, as specified in Table 2. Furthermore, the
results are presented online on the competition web site for easy access:
https://test-comp.sosy-lab.org/2021/results/.

11 Errata: Table 8 of last year’s report for Test-Comp 2020 contains a typo: The unit of the
energy consumption per score point is kJ/sp (instead of J/sp).

https://test-comp.sosy-lab.org/2021/results/

Status Report on Software Testing: Test-Comp 2021 355

References

1. Alshmrany, K., Menezes, R., Gadelha, M., Cordeiro, L.: FuSeBMC: A white-box
fuzzer for finding security vulnerabilities in C programs (competition contribution).
In: Proc. FASE. LNCS 12649, Springer (2021)

2. Bartocci, E., Beyer, D., Black, P.E., Fedyukovich, G., Garavel, H., Hartmanns, A.,
Huisman, M., Kordon, F., Nagele, J., Sighireanu, M., Steffen, B., Suda, M., Sutcliffe,
G., Weber, T., Yamada, A.: TOOLympics 2019: An overview of competitions in
formal methods. In: Proc. TACAS (3). pp. 3–24. LNCS 11429, Springer (2019).
https://doi.org/10.1007/978-3-030-17502-3_1

3. Beyer, D.: Second competition on software verification (Summary of SV-
COMP 2013). In: Proc. TACAS. pp. 594–609. LNCS 7795, Springer (2013).
https://doi.org/10.1007/978-3-642-36742-7_43

4. Beyer, D.: Competition on software testing (Test-Comp). In: Proc. TACAS (3). pp.
167–175. LNCS 11429, Springer (2019). https://doi.org/10.1007/978-3-030-17502-
3_11

5. Beyer, D.: Second competition on software testing: Test-Comp 2020. In: Proc.
FASE. pp. 505–519. LNCS 12076, Springer (2020). https://doi.org/10.1007/978-3-
030-45234-6_25

6. Beyer, D.: First international competition on software testing (Test-Comp 2019).
Int. J. Softw. Tools Technol. Transf. (2021)

7. Beyer, D.: Results of the 3rd Intl. Competition on Software Testing (Test-Comp
2021). Zenodo (2021). https://doi.org/10.5281/zenodo.4459470

8. Beyer, D.: Software verification: 10th comparative evaluation (SV-COMP 2021). In:
Proc. TACAS (2). LNCS 12652, Springer (2021), preprint available.

9. Beyer, D.: SV-Benchmarks: Benchmark set of 3rd Intl. Competition on Software
Testing (Test-Comp 2021). Zenodo (2021). https://doi.org/10.5281/zenodo.4459132

10. Beyer, D.: Test suites from Test-Comp 2021 test-generation tools. Zenodo (2021).
https://doi.org/10.5281/zenodo.4459466

11. Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R., Majumdar, R.: Gener-
ating tests from counterexamples. In: Proc. ICSE. pp. 326–335. IEEE (2004).
https://doi.org/10.1109/ICSE.2004.1317455

12. Beyer, D., Jakobs, M.C.: CoVeriTest: Cooperative verifier-based testing. In: Proc.
FASE. pp. 389–408. LNCS 11424, Springer (2019). https://doi.org/10.1007/978-3-
030-16722-6_23

13. Beyer, D., Kanav, S.: CoVeriTeam: On-demand composition of cooperative
verification systems. unpublished manuscript (2021)

14. Beyer, D., Lemberger, T.: Software verification: Testing vs. model checking. In:
Proc. HVC. pp. 99–114. LNCS 10629, Springer (2017). https://doi.org/10.1007/978-
3-319-70389-3_7

15. Beyer, D., Lemberger, T.: TestCov: Robust test-suite execution and
coverage measurement. In: Proc. ASE. pp. 1074–1077. IEEE (2019).
https://doi.org/10.1109/ASE.2019.00105

16. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: Requirements
and solutions. Int. J. Softw. Tools Technol. Transfer 21(1), 1–29 (2019).
https://doi.org/10.1007/s10009-017-0469-y

17. Beyer, D., Wendler, P.: CPU Energy Meter: A tool for energy-aware algorithms
engineering. In: Proc. TACAS (2). pp. 126–133. LNCS 12079, Springer (2020).
https://doi.org/10.1007/978-3-030-45237-7_8

https://doi.org/10.1007/978-3-030-17502-3_1
https://doi.org/10.1007/978-3-642-36742-7_43
https://doi.org/10.1007/978-3-030-17502-3_11
https://doi.org/10.1007/978-3-030-17502-3_11
https://doi.org/10.1007/978-3-030-45234-6_25
https://doi.org/10.1007/978-3-030-45234-6_25
https://doi.org/10.5281/zenodo.4459470
https://www.sosy-lab.org/research/pub/2021-TACAS.Software_Verification_10th_Comparative_Evaluation_SV-COMP_2021.pdf
https://doi.org/10.5281/zenodo.4459132
https://doi.org/10.5281/zenodo.4459466
https://doi.org/10.1109/ICSE.2004.1317455
https://doi.org/10.1007/978-3-030-16722-6_23
https://doi.org/10.1007/978-3-030-16722-6_23
https://doi.org/10.1007/978-3-319-70389-3_7
https://doi.org/10.1007/978-3-319-70389-3_7
https://doi.org/10.1109/ASE.2019.00105
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/978-3-030-45237-7_8

356 Dirk Beyer

18. Bürdek, J., Lochau, M., Bauregger, S., Holzer, A., von Rhein, A., Apel, S., Beyer, D.:
Facilitating reuse in multi-goal test-suite generation for software product lines. In:
Proc. FASE. pp. 84–99. LNCS 9033, Springer (2015). https://doi.org/10.1007/978-
3-662-46675-9_6

19. Cadar, C., Dunbar, D., Engler, D.R.: Klee: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proc. OSDI. pp. 209–224.
USENIX Association (2008)

20. Cadar, C., Nowack, M.: Klee symbolic execution engine in 2019. Int. J. Softw.
Tools Technol. Transf. (2020). https://doi.org/10.1007/s10009-020-00570-3

21. Chalupa, M., Novák, J., Strejček, J.: Symbiotic 8: Parallel and targeted test
generation (competition contribution). In: Proc. FASE. LNCS 12649, Springer
(2021)

22. Chalupa, M., Strejček, J., Vitovská, M.: Joint forces for memory safety checking.
In: Proc. SPIN. pp. 115–132. Springer (2018). https://doi.org/10.1007/978-3-319-
94111-0_7

23. Chowdhury, A.B., Medicherla, R.K., Venkatesh, R.: VeriFuzz: Program-aware
fuzzing (competition contribution). In: Proc. TACAS (3). pp. 244–249. LNCS 11429,
Springer (2019). https://doi.org/10.1007/978-3-030-17502-3_22

24. Cok, D.R., Déharbe, D., Weber, T.: The 2014 SMT competition. JSAT 9, 207–242
(2016)

25. Gadelha, M.R., Menezes, R., Cordeiro, L.: Esbmc 6.1: Automated test-case genera-
tion using bounded model checking. Int. J. Softw. Tools Technol. Transf. (2020).
https://doi.org/10.1007/s10009-020-00571-2

26. Godefroid, P., Sen, K.: Combining model checking and testing. In: Handbook of
Model Checking, pp. 613–649. Springer (2018). https://doi.org/10.1007/978-3-319-
10575-8_19

27. Harman, M., Hu, L., Hierons, R.M., Wegener, J., Sthamer, H., Baresel, A., Roper,
M.: Testability transformation. IEEE Trans. Software Eng. 30(1), 3–16 (2004).
https://doi.org/10.1109/TSE.2004.1265732

28. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: How did you
specify your test suite. In: Proc. ASE. pp. 407–416. ACM (2010).
https://doi.org/10.1145/1858996.1859084

29. Jaffar, J., Maghareh, R., Godboley, S., Ha, X.L.: TracerX: Dynamic symbolic
execution with interpolation (competition contribution). In: Proc. FASE. pp. 530–
534. LNCS 12076, Springer (2020). https://doi.org/10.1007/978-3-030-45234-6_28

30. Jaffar, J., Murali, V., Navas, J.A., Santosa, A.E.: Tracer: A symbolic execution
tool for verification. In: Proc. CAV. pp. 758–766. LNCS 7358, Springer (2012).
https://doi.org/10.1007/978-3-642-31424-7_61

31. Jakobs, M.C., Richter, C.: CoVeriTest with adaptive time scheduling (competition
contribution). In: Proc. FASE. LNCS 12649, Springer (2021)

32. Kifetew, F.M., Devroey, X., Rueda, U.: Java unit-testing tool com-
petition: Seventh round. In: Proc. SBST. pp. 15–20. IEEE (2019).
https://doi.org/10.1109/SBST.2019.00014

33. Kim, H.: Fuzzing with stochastic optimization (2020), Bachelor’s Thesis, LMU
Munich

34. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–394
(1976). https://doi.org/10.1145/360248.360252

35. Le, H.M.: Llvm-based hybrid fuzzing with LibKluzzer (competition con-
tribution). In: Proc. FASE. pp. 535–539. LNCS 12076, Springer (2020).
https://doi.org/10.1007/978-3-030-45234-6_29

https://doi.org/10.1007/978-3-662-46675-9_6
https://doi.org/10.1007/978-3-662-46675-9_6
https://doi.org/10.1007/s10009-020-00570-3
https://doi.org/10.1007/978-3-319-94111-0_7
https://doi.org/10.1007/978-3-319-94111-0_7
https://doi.org/10.1007/978-3-030-17502-3_22
https://doi.org/10.1007/s10009-020-00571-2
https://doi.org/10.1007/978-3-319-10575-8_19
https://doi.org/10.1007/978-3-319-10575-8_19
https://doi.org/10.1109/TSE.2004.1265732
https://doi.org/10.1145/1858996.1859084
https://doi.org/10.1007/978-3-030-45234-6_28
https://doi.org/10.1007/978-3-642-31424-7_61
https://doi.org/10.1109/SBST.2019.00014
https://doi.org/10.1145/360248.360252
https://doi.org/10.1007/978-3-030-45234-6_29

Status Report on Software Testing: Test-Comp 2021 357

36. Lemberger, T.: Plain random test generation with PRTest. Int. J. Softw. Tools
Technol. Transf. (2020)

37. Liu, D., Ernst, G., Murray, T., Rubinstein, B.: Legion: Best-first concolic testing
(competition contribution). In: Proc. FASE. pp. 545–549. LNCS 12076, Springer
(2020). https://doi.org/10.1007/978-3-030-45234-6_31

38. Ruland, S., Lochau, M., Jakobs, M.C.: HybridTiger: Hybrid model checking
and domination-based partitioning for efficient multi-goal test-suite generation
(competition contribution). In: Proc. FASE. pp. 520–524. LNCS 12076, Springer
(2020). https://doi.org/10.1007/978-3-030-45234-6_26

39. Song, J., Alves-Foss, J.: The DARPA cyber grand challenge: A competi-
tor’s perspective, part 2. IEEE Security and Privacy 14(1), 76–81 (2016).
https://doi.org/10.1109/MSP.2016.14

40. Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: A cross-community infrastructure
for logic solving. In: Proc. IJCAR, pp. 367–373. LNCS 8562, Springer (2014).
https://doi.org/10.1007/978-3-319-08587-6_28

41. Sutcliffe, G.: The CADE ATP system competition: CASC. AI Magazine 37(2),
99–101 (2016)

42. Visser, W., Păsăreanu, C.S., Khurshid, S.: Test-input generation
with Java PathFinder. In: Proc. ISSTA. pp. 97–107. ACM (2004).
https://doi.org/10.1145/1007512.1007526

43. Wendler, P., Beyer, D.: sosy-lab/benchexec: Release 3.6. Zenodo (2021).
https://doi.org/10.5281/zenodo.4317433

Open Access. This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution, and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-030-45234-6_31
https://doi.org/10.1007/978-3-030-45234-6_26
https://doi.org/10.1109/MSP.2016.14
https://doi.org/10.1007/978-3-319-08587-6_28
https://doi.org/10.1145/1007512.1007526
https://doi.org/10.5281/zenodo.4317433
http://creativecommons.org/licenses/by/4.0/

	Status Report on Software Testing: Test-Comp 2021
	1 Introduction
	2 Definitions, Formats, and Rules
	3 Categories and Scoring Schema
	4 Reproducibility
	5 Results and Discussion
	6 Conclusion
	References

