Skip to main content

Role of the T-Cell Network in Psychiatric Disorders

  • Chapter
  • First Online:
Immuno-Psychiatry

Abstract

Immunopathogenesis has recently emerged as one of the most promising etiological constructs in many neuropsychiatric disorders. Immune abnormalities comprise a range of aberrations which include but are not limited to inflammation and/or immune activation, complement activation, autoimmunity, and antibody-mediated encephalitis. Several soluble immune mediators as well as immuno-competent and immuno-accessory cells are essentially involved in these processes. Amongst these, T lymphocytes have gained increased attention in the genesis of neuropsychiatric disorders owing to their crucial involvement in various neurobiological sequalae, leading to manifestation of psychiatric elements. Besides this, T lymphocytes possess greater functional plasticity and serve as an important bridge among various immune events. T lymphocytes are potentially involved in the induction of inflammation as well as autoimmunity, thereby driving the pathways of many diseases with immune origin. T lymphocytes are shown to regulate key processes of the brain including behavioral responses, neurodevelopment, neurogenesis, cognition, learning, and memory. Deficits in T-cell homeostasis, network, and effector functions alter these processes and contribute substantially towards psychopathology of major psychiatric disorders. Understanding of T lymphocytes homing into the brain, their cross-talk with resident immune cells, like microglia in the brain, and their role in the induction of neuroinflammatory state have made significant contributions to discerning the underlying immunopathogenesis of major psychiatric disorders. There is a growing recognition that T cell-mediated immune activation and/or inflammation drive neuroprogressive changes in major psychiatric disorders. Furthermore, T lymphocytes are also being shown to bear the signatures of antipsychotic medication in patients with psychiatric disorders. Herein, we provide a comprehensive overview about the neurobiological relevance of T lymphocytes as well as their expanding roles in the risk and progression of neuropsychiatric disorders and their importance in antipsychotic treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Smith RS. The macrophage theory of depression. Med Hypotheses. 1991;35:298–306.

    Article  CAS  PubMed  Google Scholar 

  2. Smith RS, Maes M. The macrophage-T-lymphocyte theory of schizophrenia: additional evidence. Med Hypotheses. 1995;45:135–41.

    Article  CAS  PubMed  Google Scholar 

  3. Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, Derecki NC, Castle D, Mandell JW, Lee KS, Harris TH, Kipnis J. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523:337–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kumar BV, Connors TJ, Farber DL. Human T cell development, localization, and function throughout life. Immunity. 2018;48:202–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Elmer BM, Mcallister AK. Major histocompatibility complex class I proteins in brain development and plasticity. Trends Neurosci. 2012;35:660–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Korin B, Ben-Shaanan TL, Schiller M, Dubovik T, Azulay-Debby H, Boshnak NT, Koren T, Rolls A. High-dimensional, single-cell characterization of the brain’s immune compartment. Nat Neurosci. 2017;20:1300–9.

    Article  CAS  PubMed  Google Scholar 

  7. Svenningsson A, Andersen O, Edsbagge M, Stemme S. Lymphocyte phenotype and subset distribution in normal cerebrospinal fluid. J Neuroimmunol. 1995;63:39–46.

    Article  CAS  PubMed  Google Scholar 

  8. Engelhardt B, Ransohoff RM. The ins and outs of T-lymphocyte trafficking to the Cns: anatomical sites and molecular mechanisms. Trends Immunol. 2005;26:485–95.

    Article  CAS  PubMed  Google Scholar 

  9. Strominger I, Elyahu Y, Berner O, Reckhow J, Mittal K, Nemirovsky A, Monsonego A. The choroid plexus functions as a niche for T-cell stimulation within the central nervous system. Front Immunol. 2018;9:1066.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Herz J, Paterka M, Niesner RA, Brandt AU, Siffrin V, Leuenberger T, Birkenstock J, Mossakowski A, Glumm R, Zipp F, Radbruch H. In vivo imaging of lymphocytes in the CNS reveals different behaviour of naive T cells in health and autoimmunity. J Neuroinflammation. 2011;8:131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Smolders J, Heutinck KM, Fransen NL, Remmerswaal EBM, Hombrink P, TenBerge IJM, VanLier RAW, Huitinga I, Hamann J. Tissue-resident memory T cells populate the human brain. Nat Commun. 2018;9:4593.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Kivisakk P, Mahad DJ, Callahan MK, Trebst C, Tucky B, Wei T, Wu L, Baekkevold ES, Lassmann H, Staugaitis SM, Campbell JJ, Ransohoff RM. Human cerebrospinal fluid central memory CD4+ T cells: evidence for trafficking through choroid plexus and meninges via P-selectin. Proc Natl Acad Sci U S A. 2003;100:8389–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Tanabe S, Yamashita T. B-1a lymphocytes promote oligodendrogenesis during brain development. Nat Neurosci. 2018;21:506–16.

    Article  CAS  PubMed  Google Scholar 

  14. Ziv Y, Ron N, Butovsky O, Landa G, Sudai E, Greenberg N, Cohen H, Kipnis J, Schwartz M. Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat Neurosci. 2006;9:268–75.

    Article  CAS  PubMed  Google Scholar 

  15. Walker TL, Schallenberg S, Rund N, Gronnert L, Rust R, Kretschmer K, Kempermann G. T Lymphocytes contribute to the control of baseline neural precursor cell proliferation but not the exercise-induced up-regulation of adult hippocampal neurogenesis. Front Immunol. 2018;9:2856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zarif H, Nicolas S, Guyot M, Hosseiny S, Lazzari A, Canali MM, Cazareth J, Brau F, Golzne V, Dourneau E, Maillaut M, Luci C, Paquet A, Lebrigand K, Arguel MJ, Daoudlarian D, Heurteaux C, Glaichenhaus N, Chabry J, Guyon A, Petit-Paitel A. CD8(+) T cells are essential for the effects of enriched environment on hippocampus-dependent behavior, hippocampal neurogenesis and synaptic plasticity. Brain Behav Immun. 2018;69:235–54.

    Article  CAS  PubMed  Google Scholar 

  17. Wolf SA, Steiner B, Akpinarli A, Kammertoens T, Nassenstein C, Braun A, Blankenstein T, Kempermann G. CD4-positive T lymphocytes provide a neuroimmunological link in the control of adult hippocampal neurogenesis. J Immunol. 2009;182:3979–84.

    Article  CAS  PubMed  Google Scholar 

  18. Huang GJ, Smith AL, Gray DH, Cosgrove C, Singer BH, Edwards A, Sims S, Parent JM, Johnsen A, Mott R, Mathis D, Klenerman P, Benoist C, Flint J. A genetic and functional relationship between T cells and cellular proliferation in the adult hippocampus. PLoS Biol. 2010;8:e1000561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang T, Lee MH, Johnson T, Allie R, Hu L, Calabresi PA, Nath A. Activated T-cells inhibit neurogenesis by releasing granzyme B: rescue by Kv1.3 blockers. J Neurosci. 2010;30:5020–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jinquan T, Quan S, Feili G, Larsen CG, Thestrup-Pedersen K. Eotaxin activates T cells to chemotaxis and adhesion only if induced to express CCR3 by IL-2 together with IL-4. J Immunol. 1999;162:4285–92.

    CAS  PubMed  Google Scholar 

  21. Erickson MA, Morofuji Y, Owen JB, Banks WA. Rapid transport of CCL11 across the blood-brain barrier: regional variation and importance of blood cells. J Pharmacol Exp Ther. 2014;349:497–507.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Wainwright DA, Xin J, Mesnard NA, Politis CM, Sanders VM, Jones KJ. Effects of facial nerve axotomy on Th2- and Th1-associated chemokine expression in the facial motor nucleus of wild-type and presymptomatic mSOD1 mice. J Neuroimmunol. 2009;216:66–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Villeda SA, Luo J, Mosher KI, Zou B, Britschgi M, Bieri G, Stan TM, Fainberg N, Ding Z, Eggel A, Lucin KM, Czirr E, Park JS, Couillard-Despres S, Aigner L, Li G, Peskind ER, Kaye JA, Quinn JF, Galasko DR, Xie XS, Rando TA, Wyss-Coray T. The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature. 2011;477:90–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sirivichayakul S, Kanchanatawan B, Thika S, Carvalho AF, Maes M. Eotaxin, an endogenous cognitive deteriorating chemokine (ECDC), is a major contributor to cognitive decline in normal people and to executive, memory, and sustained attention deficits, formal thought disorders, and psychopathology in schizophrenia patients. Neurotox Res. 2019;35:122–38.

    Article  CAS  PubMed  Google Scholar 

  25. Kipnis J, Gadani S, Derecki NC. Pro-cognitive properties of T cells. Nat Rev Immunol. 2012;12:663–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Serre-Miranda C, Roque S, Santos NC, Portugal-Nunes C, Costa P, Palha JA, Sousa N, Correia-Neves M. Effector memory CD4(+) T cells are associated with cognitive performance in a senior population. Neurol Neuroimmunol Neuroinflamm. 2015;2:e54.

    Article  PubMed  Google Scholar 

  27. Fernandez-Egea E, Vertes PE, Flint SM, Turner L, Mustafa S, Hatton A, Smith KG, Lyons PA, Bullmore ET. Peripheral immune cell populations associated with cognitive deficits and negative symptoms of treatment-resistant schizophrenia. PLoS One. 2016;11:e0155631.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Kipnis J, Cohen H, Cardon M, Ziv Y, Schwartz M. T cell deficiency leads to cognitive dysfunction: implications for therapeutic vaccination for schizophrenia and other psychiatric conditions. Proc Natl Acad Sci U S A. 2004;101:8180–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Radjavi A, Smirnov I, Derecki N, Kipnis J. Dynamics of the meningeal CD4(+) T-cell repertoire are defined by the cervical lymph nodes and facilitate cognitive task performance in mice. Mol Psychiatry. 2014;19:531–3.

    Article  CAS  PubMed  Google Scholar 

  30. Derecki NC, Cardani AN, Yang CH, Quinnies KM, Crihfield A, Lynch KR, Kipnis J. Regulation of learning and memory by meningeal immunity: a key role for IL-4. J Exp Med. 2010;207:1067–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Filiano AJ, Xu Y, Tustison NJ, Marsh RL, Baker W, Smirnov I, Overall CC, Gadani SP, Turner SD, Weng Z, Peerzade SN, Chen H, Lee KS, Scott MM, Beenhakker MP, Litvak V, Kipnis J. Unexpected role of interferon-gamma in regulating neuronal connectivity and social behaviour. Nature. 2016;535:425–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Song EJ, Jeon SG, Kim KA, Kim JI, Moon M. Restricted CD4+ T cell receptor repertoire impairs cognitive function via alteration of Th2 cytokine levels. Neurogenesis (Austin). 2017;4:e1256856.

    Article  CAS  Google Scholar 

  33. Walsh JT, Watson N, Kipnis J. T cells in the central nervous system: messengers of destruction or purveyors of protection? Immunology. 2014;141:340–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kerschensteiner M, Gallmeier E, Behrens L, Leal VV, Misgeld T, Klinkert WE, Kolbeck R, Hoppe E, Oropeza-Wekerle RL, Bartke I, Stadelmann C, Lassmann H, Wekerle H, Hohlfeld R. Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: a neuroprotective role of inflammation? J Exp Med. 1999;189:865–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Garg SK, Banerjee R, Kipnis J. Neuroprotective immunity: T cell-derived glutamate endows astrocytes with a neuroprotective phenotype. J Immunol. 2008;180:3866–73.

    Article  CAS  PubMed  Google Scholar 

  36. Ito M, Komai K, Mise-Omata S, Iizuka-Koga M, Noguchi Y, Kondo T, Sakai R, Matsuo K, Nakayama T, Yoshie O, Nakatsukasa H, Chikuma S, Shichita T, Yoshimura A. Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery. Nature. 2019;565:246–50.

    Article  CAS  PubMed  Google Scholar 

  37. Nyland H, Naess A, Lunde H. Lymphocyte subpopulations in peripheral blood from schizophrenic patients. Acta Psychiatr Scand. 1980;61:313–8.

    Article  CAS  PubMed  Google Scholar 

  38. Smith RS. A comprehensive macrophage-T-lymphocyte theory of schizophrenia. Med Hypotheses. 1992;39:248–57.

    Article  CAS  PubMed  Google Scholar 

  39. Maes M, Meltzer HY, Bosmans E. Immune-inflammatory markers in schizophrenia: comparison to normal controls and effects of clozapine. Acta Psychiatr Scand. 1994;89:346–51.

    Article  CAS  PubMed  Google Scholar 

  40. Rapaport MH, Lohr JB. Serum-soluble interleukin-2 receptors in neuroleptic-naive schizophrenic subjects and in medicated schizophrenic subjects with and without tardive dyskinesia. Acta Psychiatr Scand. 1994;90:311–5.

    Article  CAS  PubMed  Google Scholar 

  41. Debnath M. Adaptive immunity in schizophrenia: functional implications of T cells in the etiology, course and treatment. J NeuroImmune Pharmacol. 2015;10:610–9.

    Article  PubMed  Google Scholar 

  42. Cazzullo CL, Saresella M, Roda K, Calvo MG, Bertrando P, Doria S, Clerici M, Salvaggio A, Ferrante P. Increased levels of CD8+ and CD4+ 45RA+ lymphocytes in schizophrenic patients. Schizophr Res. 1998;31:49–55.

    Article  CAS  PubMed  Google Scholar 

  43. Steiner J, Jacobs R, Panteli B, Brauner M, Schiltz K, Bahn S, Herberth M, Westphal S, Gos T, Walter M, Bernstein HG, Myint AM, Bogerts B. Acute schizophrenia is accompanied by reduced T cell and increased B cell immunity. Eur Arch Psychiatry Clin Neurosci. 2010;260:509–18.

    Article  PubMed  Google Scholar 

  44. Miller BJ, Gassama B, Sebastian D, Buckley P, Mellor A. Meta-analysis of lymphocytes in schizophrenia: clinical status and antipsychotic effects. Biol Psychiatry. 2013;73:993–9.

    Article  CAS  PubMed  Google Scholar 

  45. Roomruangwong C, Noto C, Kanchanatawan B, Anderson G, Kubera M, Carvalho AF, Maes M. The role of aberrations in the immune-inflammatory reflex system (IRS) and the compensatory immune-regulatory reflex system (CIRS) in different phenotypes of schizophrenia: the IRS-CIRS theory of schizophrenia. Preprints. 2018;2018:2018090289. https://doi.org/10.20944/preprints201809.0289.v1.

    Article  Google Scholar 

  46. Noto MN, Maes M, Nunes SOV, Ota VK, Rossaneis AC, Verri WA Jr, Cordeiro Q, Belangero SI, Gadelha A, Bressan RA, Noto C. Activation of the immune-inflammatory response system and the compensatory immune-regulatory system in antipsychotic naive first episode psychosis. Eur Neuropsychopharmacol. 2019;29:416–31.

    Article  CAS  PubMed  Google Scholar 

  47. Al-Hakeim HK, Almulla AF, Maes M. The neuroimmune and neurotoxic fingerprint of major neurocognitive psychosis or deficit schizophrenia: a supervised machine learning study. Neurotox Res. 2020;37:753–71.

    Google Scholar 

  48. Debnath M, Berk M. Th17 pathway-mediated immunopathogenesis of schizophrenia: mechanisms and implications. Schizophr Bull. 2014;40:1412–21.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Drexhage RC, Hoogenboezem TH, Versnel MA, Berghout A, Nolen WA, Drexhage HA. The activation of monocyte and T cell networks in patients with bipolar disorder. Brain Behav Immun. 2011;25:1206–13.

    Article  CAS  PubMed  Google Scholar 

  50. Ding M, Song X, Zhao J, Gao J, Li X, Yang G, Wang X, Harrington A, Fan X, Lv L. Activation of Th17 cells in drug naive, first episode schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry. 2014;51:78–82.

    Article  CAS  Google Scholar 

  51. Subbanna M, Shivakumar V, Talukdar PM, Narayanaswamy JC, Venugopal D, Berk M, Varambally S, Venkatasubramanian G, Debnath M. Role of IL-6/RORC/IL-22 axis in driving Th17 pathway-mediated immunopathogenesis of schizophrenia. Cytokine. 2018;111:112–8.

    Article  CAS  PubMed  Google Scholar 

  52. Kelly DL, Li X, Kilday C, Feldman S, Clark S, Liu F, Buchanan RW, Tonelli LH. Increased circulating regulatory T cells in medicated people with schizophrenia. Psychiatry Res. 2018;269:517–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Busse S, Busse M, Schiltz K, Bielau H, Gos T, Brisch R, Mawrin C, Schmitt A, Jordan W, Muller UJ, Bernstein HG, Bogerts B, Steiner J. Different distribution patterns of lymphocytes and microglia in the hippocampus of patients with residual versus paranoid schizophrenia: further evidence for disease course-related immune alterations? Brain Behav Immun. 2012;26:1273–9.

    Article  CAS  PubMed  Google Scholar 

  54. Nikkila H, Muller K, Ahokas A, Miettinen K, Andersson LC, Rimon R. Abnormal distributions of T-lymphocyte subsets in the cerebrospinal fluid of patients with acute schizophrenia. Schizophr Res. 1995;14:215–21.

    Article  CAS  PubMed  Google Scholar 

  55. Frydecka D, Beszlej A, Karabon L, Pawlak-Adamska E, Tomkiewicz A, Partyka A, Jonkisz A, Monika SB, Kiejna A. The role of genetic variations of immune system regulatory molecules CD28 and CTLA-4 in schizophrenia. Psychiatry Res. 2013;208:197–8.

    Article  CAS  PubMed  Google Scholar 

  56. Liu J, Li J, Li T, Wang T, Li Y, Zeng Z, Li Z, Chen P, Hu Z, Zheng L, Ji J, Lin H, Feng G, Shi Y. CTLA-4 confers a risk of recurrent schizophrenia, major depressive disorder and bipolar disorder in the Chinese Han population. Brain Behav Immun. 2011;25:429–33.

    Article  CAS  PubMed  Google Scholar 

  57. Aberg KA, Liu Y, Bukszar J, Mcclay JL, Khachane AN, Andreassen OA, Blackwood D, Corvin A, Djurovic S, Gurling H, Ophoff R, Pato CN, Pato MT, Riley B, Webb T, Kendler K, O’Donovan M, Craddock N, Kirov G, Owen M, Rujescu D, St. Clair D, Werge T, Hultman CM, Delisi LE, Sullivan P, Van Den Oord EJ. A comprehensive family-based replication study of schizophrenia genes. JAMA Psychiatry. 2013;70:573–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liu J, Chen J, Ehrlich S, Walton E, White T, Perrone-Bizzozero N, Bustillo J, Turner JA, Calhoun VD. Methylation patterns in whole blood correlate with symptoms in schizophrenia patients. Schizophr Bull. 2014;40:769–76.

    Article  PubMed  Google Scholar 

  59. Craddock RM, Lockstone HE, Rider DA, Wayland MT, Harris LJ, Mckenna PJ, Bahn S. Altered T-cell function in schizophrenia: a cellular model to investigate molecular disease mechanisms. PLoS One. 2007;2:e692.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Maes M, Bosmans E, Suy E, Vandervorst C, De Jonckheere C, Raus J. Immune disturbances during major depression: upregulated expression of interleukin-2 receptors. Neuropsychobiology. 1990;24:115–20.

    Article  PubMed  Google Scholar 

  61. Maes M, Lambrechts J, Bosmans E, Jacobs J, Suy E, Vandervorst C, De Jonckheere C, Minner B, Raus J. Evidence for a systemic immune activation during depression: results of leukocyte enumeration by flow cytometry in conjunction with monoclonal antibody staining. Psychol Med. 1992;22:45–53.

    Article  CAS  PubMed  Google Scholar 

  62. Maes M, Stevens WJ, Declerck LS, Bridts CH, Peeters D, Schotte C, Cosyns P. Significantly increased expression of T-cell activation markers (interleukin-2 and HLA-DR) in depression: further evidence for an inflammatory process during that illness. Prog Neuro-Psychopharmacol Biol Psychiatry. 1993;17:241–55.

    Article  CAS  Google Scholar 

  63. Maes M, VanDerPlanken M, Stevens WJ, Peeters D, Declerck LS, Bridts CH, Schotte C, Cosyns P. Leukocytosis, monocytosis and neutrophilia: hallmarks of severe depression. J Psychiatr Res. 1992;26:125–34.

    Article  CAS  PubMed  Google Scholar 

  64. Maes M, Bosmans E, Calabrese J, Smith R, Meltzer HY. Interleukin-2 and interleukin-6 in schizophrenia and mania: effects of neuroleptics and mood stabilizers. J Psychiatr Res. 1995;29:141–52.

    Article  CAS  PubMed  Google Scholar 

  65. Barbosa IG, Rocha NP, Assis F, Vieira EL, Soares JC, Bauer ME, Teixeira AL. Monocyte and lymphocyte activation in bipolar disorder: a new piece in the puzzle of immune dysfunction in mood disorders. Int J Neuropsychopharmacol. 2014;2014:18.

    Google Scholar 

  66. Breunis MN, Kupka RW, Nolen WA, Suppes T, Denicoff KD, Leverich GS, Post RM, Drexhage HA. High numbers of circulating activated T cells and raised levels of serum IL-2 receptor in bipolar disorder. Biol Psychiatry. 2003;53:157–65.

    Article  CAS  PubMed  Google Scholar 

  67. Do Prado CH, Rizzo LB, Wieck A, Lopes RP, Teixeira AL, Grassi-Oliveira R, Bauer ME. Reduced regulatory T cells are associated with higher levels of Th1/TH17 cytokines and activated MAPK in type 1 bipolar disorder. Psychoneuroendocrinology. 2013;38:667–76.

    Article  PubMed  CAS  Google Scholar 

  68. Pietruczuk K, Lisowska KA, Grabowski K, Landowski J, Witkowski JM. Proliferation and apoptosis of T lymphocytes in patients with bipolar disorder. Sci Rep. 2018;8:3327.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Poletti S, DeWit H, Mazza E, Wijkhuijs AJM, Locatelli C, Aggio V, Colombo C, Benedetti F, Drexhage HA. Th17 cells correlate positively to the structural and functional integrity of the brain in bipolar depression and healthy controls. Brain Behav Immun. 2017;61:317–25.

    Article  CAS  PubMed  Google Scholar 

  70. Grosse L, Hoogenboezem T, Ambree O, Bellingrath S, Jorgens S, De Wit HJ, Wijkhuijs AM, Arolt V, Drexhage HA. Deficiencies of the T and natural killer cell system in major depressive disorder: T regulatory cell defects are associated with inflammatory monocyte activation. Brain Behav Immun. 2016;54:38–44.

    Article  CAS  PubMed  Google Scholar 

  71. Patas K, Willing A, Demiralay C, Engler JB, Lupu A, Ramien C, Schafer T, Gach C, Stumm L, Chan K, Vignali M, Arck PC, Friese MA, Pless O, Wiedemann K, Agorastos A, Gold SM. T cell phenotype and T cell receptor repertoire in patients with major depressive disorder. Front Immunol. 2018;9:291.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Beurel E, Harrington LE, Jope RS. Inflammatory T helper 17 cells promote depression-like behavior in mice. Biol Psychiatry. 2013;73:622–30.

    Article  CAS  PubMed  Google Scholar 

  73. Kim SJ, Lee H, Lee G, Oh SJ, Shin MK, Shim I, Bae H. CD4+CD25+ regulatory T cell depletion modulates anxiety and depression-like behaviors in mice. PLoS One. 2012;7:e42054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Snijders G, Brouwer R, Kemner S, Bootsman F, Drexhage HA, Hillegers MHJ. Genetic and environmental influences on circulating NK and T cells and their relation to bipolar disorder. Int J Bipolar Disord. 2019;7:4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Monks S, Niarchou M, Davies AR, Walters JT, Williams N, Owen MJ, VanDenBree MB, Murphy KC. Further evidence for high rates of schizophrenia in 22q11.2 deletion syndrome. Schizophr Res. 2014;153:231–6.

    Article  PubMed  Google Scholar 

  76. Vergaelen E, Schiweck C, VanSteeland K, Counotte J, Veling W, Swillen A, Drexhage H, Claes S. A pilot study on immuno-psychiatry in the 22q11.2 deletion syndrome: a role for Th17 cells in psychosis? Brain Behav Immun. 2018;70:88–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Maes M, Carvalho AF. The compensatory immune-regulatory reflex system (CIRS) in depression and bipolar disorder. Mol Neurobiol. 2018;55:8885–903.

    Article  CAS  PubMed  Google Scholar 

  78. Strazielle N, Creidy R, Malcus C, Boucraut J, Ghersi-Egea JF. T-Lymphocytes traffic into the brain across the blood-CSFbarrier: evidence using a reconstituted choroid plexus epithelium. PLoS One. 2016;11:e0150945.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Young KG, Maclean S, Dudani R, Krishnan L, Sad S. CD8+ T cells primed in the periphery provide time-bound immune-surveillance to the central nervous system. J Immunol. 2011;187:1192–200.

    Article  CAS  PubMed  Google Scholar 

  80. Prajeeth CK, Huehn J, Stangel M. Regulation of neuroinflammatory properties of glial cells by T cell effector molecules. Neural Regen Res. 2018;13:234–6.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Prajeeth CK, Lohr K, Floess S, Zimmermann J, Ulrich R, Gudi V, Beineke A, Baumgartner W, Muller M, Huehn J, Stangel M. Effector molecules released by Th1 but not Th17 cells drive an M1 response in microglia. Brain Behav Immun. 2014;37:248–59.

    Article  CAS  PubMed  Google Scholar 

  82. Cai HQ, Catts VS, Webster MJ, Galletly C, Liu D, O’Donnell M, Weickert TW, Weickert CS. Increased macrophages and changed brain endothelial cell gene expression in the frontal cortex of people with schizophrenia displaying inflammation. Mol Psychiatry. 2018;25(4):761–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Anderson G, Maes M. Schizophrenia: linking prenatal infection to cytokines, the tryptophan catabolite (TRYCAT) pathway, NMDA receptor hypofunction, neurodevelopment and neuroprogression. Prog Neuro-Psychopharmacol Biol Psychiatry. 2013;42:5–19.

    Article  CAS  Google Scholar 

  84. Davis J, Moylan S, Harvey BH, Maes M, Berk M. Neuroprogression in schizophrenia: pathways underpinning clinical staging and therapeutic corollaries. Aust N Z J Psychiatry. 2014;48:512–29.

    Article  PubMed  Google Scholar 

  85. Meyer JH. Neuroprogression and immune activation in major depressive disorder. Mod Trends Pharmacopsychiatry. 2017;31:27–36.

    Article  PubMed  Google Scholar 

  86. Slyepchenko A, Maes M, Kohler CA, Anderson G, Quevedo J, Alves GS, Berk M, Fernandes BS, Carvalho AF. T helper 17 cells may drive neuroprogression in major depressive disorder: proposal of an integrative model. Neurosci Biobehav Rev. 2016;64:83–100.

    Article  CAS  PubMed  Google Scholar 

  87. VanBerckel BN, Bossong MG, Boellaard R, Kloet R, Schuitemaker A, Caspers E, Luurtsema G, Windhorst AD, Cahn W, Lammertsma AA, Kahn RS. Microglia activation in recent-onset schizophrenia: a quantitative (R)-[11C]PK11195 positron emission tomography study. Biol Psychiatry. 2008;64:820–2.

    Article  Google Scholar 

  88. Debnath M, Venkatasubramanian G, Berk M. Fetal programming of schizophrenia: select mechanisms. Neurosci Biobehav Rev. 2015;49:90–104.

    Article  PubMed  Google Scholar 

  89. Glass R, Norton S, Fox N, Kusnecov AW. Maternal immune activation with staphylococcal enterotoxin A produces unique behavioral changes in C57BL/6 mouse offspring. Brain Behav Immun. 2019;75:12–25.

    Article  CAS  PubMed  Google Scholar 

  90. Mandal M, Donnelly R, Elkabes S, Zhang P, Davini D, David BT, Ponzio NM. Maternal immune stimulation during pregnancy shapes the immunological phenotype of offspring. Brain Behav Immun. 2013;33:33–45.

    Article  CAS  PubMed  Google Scholar 

  91. Mandal M, Marzouk AC, Donnelly R, Ponzio NM. Maternal immune stimulation during pregnancy affects adaptive immunity in offspring to promote development of TH17 cells. Brain Behav Immun. 2011;25:863–71.

    Article  CAS  PubMed  Google Scholar 

  92. Onore CE, Schwartzer JJ, Careaga M, Berman RF, Ashwood P. Maternal immune activation leads to activated inflammatory macrophages in offspring. Brain Behav Immun. 2014;38:220–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Luan R, Cheng H, Li L, Zhao Q, Liu H, Wu Z, Zhao L, Yang J, Hao J, Yin Z. Maternal lipopolysaccharide exposure promotes immunological functional changes in adult offspring CD4+ T cells. Am J Reprod Immunol. 2015;73:522–35.

    Article  CAS  PubMed  Google Scholar 

  94. Mandal M, Marzouk AC, Donnelly R, Ponzio NM. Preferential development of Th17 cells in offspring of immunostimulated pregnant mice. J Reprod Immunol. 2010;87:97–100.

    Article  CAS  PubMed  Google Scholar 

  95. Kerage D, Sloan EK, Mattarollo SR, Mccombe PA. Interaction of neurotransmitters and neurochemicals with lymphocytes. J Neuroimmunol. 2019;332:99–111.

    Article  CAS  PubMed  Google Scholar 

  96. Berk M, Dodd S, Kauer-Sant’anna M, Malhi GS, Bourin M, Kapczinski F, Norman T. Dopamine dysregulation syndrome: implications for a dopamine hypothesis of bipolar disorder. Acta Psychiatr Scand Suppl. 2007;434:41–9.

    Article  Google Scholar 

  97. Malhi GS, Berk M. Does dopamine dysfunction drive depression? Acta Psychiatr Scand Suppl. 2007;2007:116–24.

    Article  Google Scholar 

  98. Saha B, Mondal AC, Majumder J, Basu S, Dasgupta PS. Physiological concentrations of dopamine inhibit the proliferation and cytotoxicity of human CD4+ and CD8+ T cells in vitro: a receptor-mediated mechanism. Neuroimmunomodulation. 2001;9:23–33.

    Article  CAS  PubMed  Google Scholar 

  99. Prado C, Contreras F, Gonzalez H, Diaz P, Elgueta D, Barrientos M, Herrada AA, Lladser A, Bernales S, Pacheco R. Stimulation of dopamine receptor D5 expressed on dendritic cells potentiates Th17-mediated immunity. J Immunol. 2012;188:3062–70.

    Article  CAS  PubMed  Google Scholar 

  100. Berk M, Bodemer W, VanOudenhove T, Butkow N. Dopamine increases platelet intracellular calcium in bipolar affective disorder and controls. Int Clin Psychopharmacol. 1994;9:291–3.

    Article  CAS  PubMed  Google Scholar 

  101. Boneberg EM, VonSeydlitz E, Propster K, Watzl H, Rockstroh B, Illges H. D3 dopamine receptor mRNA is elevated in T cells of schizophrenic patients whereas D4 dopamine receptor mRNA is reduced in CD4+ -T cells. J Neuroimmunol. 2006;173:180–7.

    Article  CAS  PubMed  Google Scholar 

  102. Maes M, Kanchanatawan B, Sirivichayakul S, Carvalho AF. In schizophrenia, deficits in natural IgM isotype antibodies including those directed to malondialdehyde and azelaic acid strongly predict negative symptoms, neurocognitive impairments, and the deficit syndrome. Mol Neurobiol. 2019;56:5122–35.

    Article  CAS  PubMed  Google Scholar 

  103. Masserini C, Vita A, Basile R, Morselli R, Boato P, Peruzzi C, Pugnetti L, Ferrante P, Cazzullo CL. Lymphocyte subsets in schizophrenic disorders. Relationship with clinical, neuromorphological and treatment variables. Schizophr Res. 1990;3:269–75.

    Article  CAS  PubMed  Google Scholar 

  104. Sperner-Unterweger B, Whitworth A, Kemmler G, Hilbe W, Thaler J, Weiss G, Fleischhacker WW. T-cell subsets in schizophrenia: a comparison between drug-naive first episode patients and chronic schizophrenic patients. Schizophr Res. 1999;38:61–70.

    Article  CAS  PubMed  Google Scholar 

  105. Chen ML, Tsai TC, Lin YY, Tsai YM, Wang LK, Lee MC, Tsai FM. Antipsychotic drugs suppress the AKT/NF-kappaB pathway and regulate the differentiation of T-cell subsets. Immunol Lett. 2011;140:81–91.

    Article  CAS  PubMed  Google Scholar 

  106. Gardiner E, Carroll A, Tooney PA, Cairns MJ. Antipsychotic drug-associated gene-miRNA interaction in T-lymphocytes. Int J Neuropsychopharmacol. 2014;17:929–43.

    Article  CAS  PubMed  Google Scholar 

  107. Noto C, Ota VK, Gouvea ES, Rizzo LB, Spindola LM, Honda PH, Cordeiro Q, Belangero SI, Bressan RA, Gadelha A, Maes M, Brietzke E. Effects of risperidone on cytokine profile in drug-naive first-episode psychosis. Int J Neuropsychopharmacol. 2014;2014:18.

    Google Scholar 

  108. Romeo B, Brunet-Lecomte M, Martelli C, Benyamina A. Kinetics of cytokine levels during antipsychotic treatment in schizophrenia: a meta-analysis. Int J Neuropsychopharmacol. 2018;21:828–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Xia Z, Karlsson H, Depierre JW, Nassberger L. Tricyclic antidepressants induce apoptosis in human T lymphocytes. Int J Immunopharmacol. 1997;19:645–54.

    Article  CAS  PubMed  Google Scholar 

  110. Xia Z, Depierre JW, Nassberger L. Tricyclic antidepressants inhibit IL-6, IL-1 beta and Tnf-alpha release in human blood monocytes and IL-2 and interferon-gamma in T cells. Immunopharmacology. 1996;34:27–37.

    Article  CAS  PubMed  Google Scholar 

  111. Jha MK, Minhajuddin A, Gadad BS, Greer TL, Mayes TL, Trivedi MH. Interleukin 17 selectively predicts better outcomes with bupropion-SSRI combination: novel T cell biomarker for antidepressant medication selection. Brain Behav Immun. 2017;66:103–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Himmerich H, Milenovic S, Fulda S, Plumakers B, Sheldrick AJ, Michel TM, Kircher T, Rink L. Regulatory T cells increased while IL-1 beta decreased during antidepressant therapy. J Psychiatr Res. 2010;44:1052–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Debnath, M., Raison, C.L., Maes, M., Berk, M. (2021). Role of the T-Cell Network in Psychiatric Disorders. In: Berk, M., Leboyer, M., Sommer, I.E. (eds) Immuno-Psychiatry. Springer, Cham. https://doi.org/10.1007/978-3-030-71229-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71229-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71228-0

  • Online ISBN: 978-3-030-71229-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics