Skip to main content

Perspectives on Nitrogen-Fixing Bacillus Species

  • Chapter
  • First Online:
Soil Nitrogen Ecology

Part of the book series: Soil Biology ((SOILBIOL,volume 62))

Abstract

Not all prokaryotes capable of biological nitrogen fixation require nodules to fix nitrogen (N2). A wide range of Bacillus genus members have been reported for their N2-fixing ability, as they can fix and provide N2 to a wide range of host plants. Besides N2 fixation, these bacteria possess several plant growth–promoting abilities such as growth hormone production, phosphate solubilization, and siderophore production for iron acquisition. They also have the capability to protect plants against phytopathogens through production of cell wall–degrading enzymes and antibiotic metabolites, and also through elicitation of plant defense systems. This chapter reviews and discusses the role of Bacillus spp. in N2 fixation and perspectives on their agricultural development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achouak W, Normand P, Heulin T (1999) Comparative phylogeny of rrs and nifH genes in the Bacillaceae. Int J Syst Bacteriol 49:961–967

    Article  CAS  PubMed  Google Scholar 

  • Asaka O, Shoda M (1996) Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl Environ Microbiol 62:4081–4085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atkinson MR, Fisher SH (1991) Identification of genes and gene products whose expression is activated during nitrogen-limited growth in Bacillus subtilis. J Bacteriol 173:23–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Auman AJ, Speake CC, Lidstrom ME (2001) nifH sequences and nitrogen fixation in type I and type II methanotrophs. Appl Environ Microbiol 67:4009–4016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnawal D, Maji D, Bharti N, Chanotiya CS, Kalra A (2013) ACC deaminase–containing Bacillus subtilis reduces stress ethylene–induced damage and improves mycorrhizal colonization and rhizobial nodulation in Trigonella foenum-graecum under drought stress. J Plant Growth Regul 32:809–822

    Article  CAS  Google Scholar 

  • Barnawal D, Pandey SS, Bharti N, Pandey A, Ray T, Singh S, Chanotiya CS, Kalra A (2017) ACC deaminase--containing plant growth--promoting rhizobacteria protect Papaver somniferum from downy mildew. J Appl Microbiol 122:1286–1298

    Article  CAS  PubMed  Google Scholar 

  • Basha S, Ulaganathan K (2002) Antagonism of Bacillus species (strain BC121) towards Curvularia lunata. Curr Sci 82:1457–1463

    CAS  Google Scholar 

  • Berge O, Guinebretiere MH, Achouak W, Normand P, Heulin T (2002) Paenibacillus graminis sp. nov. and Paenibacillus odorifer sp. nov., isolated from plant roots, soil and food. Int J Syst Evol Microbiol 52:607–616

    Article  CAS  PubMed  Google Scholar 

  • Choudhary DK, Johri BN (2009) Interactions of Bacillus spp. and plants—with special reference to induced systemic resistance (ISR). Microbiolog Res 164:493–513

    Article  CAS  Google Scholar 

  • Claus D, Berkeley RCW (1986) Bergey’s manual of systematic bacteriology. Williams and Wilkins, Baltimore, pp 1105–1139

    Google Scholar 

  • Ding Y, Wang J, Liu Y, Chen S (2005) Isolation and identification of nitrogen-fixing bacilli from plant rhizospheres in Beijing region. J Appl Microbiol 99:1271–1281

    Article  CAS  PubMed  Google Scholar 

  • Elkoca E, Kantar F, Sahin F (2007) Influence of nitrogen fixing and phosphorus solubilizing bacteria on the nodulation, plant growth, and yield of chickpea. J Plant Nutr 31:157–171

    Article  CAS  Google Scholar 

  • Elo S, Suominen I, Kampfer P, Juhanoja J, Salkinoja-Salonen M, Haahtela K (2001) Paenibacillus borealis sp. nov., a nitrogen-fixing species isolated from spruce forest humus in Finland. Int J Syst Evol Microbiol 51:535–545

    Article  CAS  PubMed  Google Scholar 

  • Eskin N, Vessey K, Tian L (2014) Research progress and perspectives of nitrogen fixing bacterium, Gluconacetobacter diazotrophicus, in monocot plants. Int J Agron. https://doi.org/10.1155/2014/208383

  • Fan P, Chen D, He Y, Zhou Q, Tian Y, Gao L (2016) Alleviating salt stress in tomato seedlings using Arthrobacter and Bacillus megaterium isolated from the rhizosphere of wild plants grown on saline–alkaline lands. Inter J Phytoremed 18:1113–1121

    Article  CAS  Google Scholar 

  • Ferson AE, Wray LV, Fisher SH (1996) Expression of the Bacillus subtilis gabP gene is regulated independently in response to nitrogen and amino acid availability. Mol Microbiol 22:693–701

    Article  CAS  PubMed  Google Scholar 

  • Fisher SH (1999) Regulation of nitrogen metabolism in Bacillus subtilis: vive la difference! Mole Microbiol 32:223–232

    Article  CAS  Google Scholar 

  • Fisher SH, Rohrer K, Ferson AE (1996) Role of CodY in regulation of the Bacillus subtilis hut operon. J Bacteriol 178:3779–3784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galloway JN, Aber JD, Erisman JW, Seitzinger SP, Howarth RW, Cowling EB, Cosby BJ (2003) The nitrogen cascade. AIBS Bull 53:341–356

    Google Scholar 

  • Gardener BBMS (2004) Ecology of Bacillus and Paenibacillus spp. in agricultural systems. Phytopathol 94:1252–1258

    Article  Google Scholar 

  • Govindasamy V, Senthilkumar M, Magheshwaran V, Kumar U, Bose P, Sharma V, Annapurna K (2010) Bacillus and Paenibacillus spp.: potential PGPR for sustainable agriculture. In: Maheshwari DK (ed) Plant growth and health promoting bacteria. Springer, Berlin, pp 333–364

    Chapter  Google Scholar 

  • Gowtham HG, Singh B, Murali M, Shilpa N, Prasad M, Aiyaz M, Amruthesh KN, Niranjana SR (2020) Induction of drought tolerance in tomato upon the application of ACC deaminase producing plant growth promoting rhizobacterium Bacillus subtilis Rhizo SF 48. Microbiol Res 234:126422

    Article  CAS  Google Scholar 

  • Heulin T, Berge O, Mavingui P, Gouzou L, Hebbar KP, Balandreau J (1994) Bacillus polymyxa and Rahnella aquatilis, the dominant N 2 -fixing bacteria associated with wheat rhizosphere in French soils. Eur J Soil Biol 30:35–42

    Google Scholar 

  • Jain S, Kumari S, Vaishnav A, Choudhary DK, Sharma KP (2016) Isolation and characterization of plant growth promoting bacteria from soybean rhizosphere and their effect on soybean plant growth promotion. Int J Adv Sci Tech Res 5:398–410

    Google Scholar 

  • Jain S, Vaishnav A, Kumari S, Varma A, Tuteja N, Choudhary DK (2017) Chitinolytic Bacillus-mediated induction of jasmonic acid and defense-related proteins in soybean (Glycine max L. Merrill) plant against Rhizoctonia solani and Fusarium oxysporum. J Plant Growth Regul 36:200–214

    Article  CAS  Google Scholar 

  • Jiang L, Kaiyun WA, Yuguo WU, Kaiyuan WA, Xinjun FA (2019) Application of bio-organic fertilizer containing high-efficient nitrogen-fixing Bacillus amyloliquefaciens on strawberry. Agri Biotechnol 8:2164–4993

    Google Scholar 

  • Karagoz FP, Dursun A (2019) Effects of nitrogen fixing and phosphate solubilizing bacteria on growth and bulbs production of tulip cultivars. Ege Üniversitesi Ziraat Fakültesi Dergisi 56:241–248

    CAS  Google Scholar 

  • Kim JS, Lee J, Lee CH, Woo SY, Kang H, Seo SG, Kim SH (2015) Activation of pathogenesis-related genes by the Rhizobacterium, Bacillus sp. JS, which induces systemic resistance in tobacco plants. Plant Pathol J 31:195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar P, Dubey RC, Maheshwari DK (2012) Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiol Res 167:493–499

    Article  CAS  PubMed  Google Scholar 

  • Liu ZL, Sinclair JB (1992) Population dynamics of Bacillus megaterium strain B153–2-2 in the rhizosphere of soybean. Phytopathology 82:1297–1301

    Article  Google Scholar 

  • Liu D, Yang Q, Ge K, Hu X, Qi G, Du B, Liu K, Ding Y (2017) Promotion of iron nutrition and growth on peanut by Paenibacillus illinoisensis and Bacillus sp. strains in calcareous soil. Br J Microbiol. https://doi.org/10.1016/j.bjm.2017.02.006

  • López-Otín C, Overall CM (2002) Protease degradomics: a new challenge for proteomics. Nat Rev Mol Cell Biol 3:509–519

    Article  PubMed  CAS  Google Scholar 

  • Mehta MP, Butterfield DA, Baross JA (2003) Phylogenetic diversity of nitrogenase (nifH) genes in deep-sea and hydrothermal vent environments of the Juan de Fuca Ridge. Appl Environ Microbiol 69:960–970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monteiro L, Mariano R, de Lima R, Souto-Maior AM (2005) Antagonism of Bacillus spp. against Xanthomonas campestris pv. campestris. Braz Arch Biol Technol 48:23–29

    Article  CAS  Google Scholar 

  • Mylona P, Pawlowski K, Bisseling T (1995) Symbiotic nitrogen fixation. Plant Cell 7:869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakano MM, Hoffman T, Zhu Y, Jahn D (1998) Nitrogen and oxygen regulation of Bacillus subtilis nasDEF encoding NADH-dependent nitrite reductase by TnrA and ResDE. J Bacteriol 180:5344–5350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nie P, Li X, Wang S, Guo J, Zhao H, Niu D (2017) Induced systemic resistance against Botrytis cinerea by Bacillus cereus AR156 through a JA/ET– and NPR1-dependent signaling pathway and activates PAMP-triggered immunity in Arabidopsis. Front Plant Sci 8:238

    Article  PubMed  PubMed Central  Google Scholar 

  • Peoples MB, Herridge DF, Ladha JK (1995) Biological nitrogen fixation: an efficient source of nitrogen for sustainable agricultural production? In: Ladha JK, Peoples MB (eds) Management of biological nitrogen fixation for the development of more productive and sustainable agricultural systems. Springer, Dordrecht, pp 3–28

    Chapter  Google Scholar 

  • Pinchuk IV, Bressollier P, Sorokulova IB, Verneuil B, Urdaci MC (2002) Amicoumacin antibiotic production and genetic diversity of Bacillus subtilis strains isolated from different habitats. Res Microbiol 153:269–276

    Article  CAS  PubMed  Google Scholar 

  • Porcel R, Zamarreño ÁM, García-Mina JM, Aroca R (2014) Involvement of plant endogenous ABA in Bacillus megaterium PGPR activity in tomato plants. BMC Plant Biol 14:36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prakash J, Arora NK (2019) Phosphate-solubilizing Bacillus sp. enhances growth, phosphorus uptake and oil yield of Mentha arvensis L. 3 Biotech 9:126

    Article  PubMed  PubMed Central  Google Scholar 

  • Priest F (1993) Systematics and ecology of Bacillus: Bacillus subtilis and other Gram-positive bacteria, biochemistry, physiology, and molecular genetics. American Society for Microbiology, Washington, pp 3–16

    Google Scholar 

  • Robertson GP, Vitousek PM (2009) Nitrogen in agriculture: balancing the cost of an essential resource. Annu Rev Environ Resour 34:97–125

    Article  Google Scholar 

  • Rosch C, Mergel A, Bothe H (2002) Biodiversity of denitrifying and dinitrogen-fixing bacteria in an acid forest soil. Appl Environ Microbiol 68:3818–3829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Herrera J, León-Ramírez C, Vera-Nuñez A, Sánchez-Arreguín A, Ruiz-Medrano R, Salgado-Lugo H, Sánchez-Segura L, Peña-Cabriales JJ (2015) A novel intracellular nitrogen-fixing symbiosis made by Ustilago maydis and Bacillus spp. New Phytol 207:769–777

    Article  CAS  PubMed  Google Scholar 

  • Ryu CM, Kima J, Choi O, Kima SH, Park CS (2006) Improvement of biological control capacity of Paenibacillus polymyxa E681 by seed pelleting on sesame. Biol Control 39:282–289

    Article  Google Scholar 

  • Saeid A, Prochownik E, Dobrowolska-Iwanek J (2018) Phosphorus solubilization by Bacillus species. Molecules 23:2897

    Article  PubMed Central  CAS  Google Scholar 

  • Salerno CM, Sagardoy MA (2003) Antagonistic activity by Bacillus subtilis against Xanthomonas campestris pv. glycines under controlled conditions. Span J Agric Res 1:55–58

    Article  Google Scholar 

  • Satyaprakash M, Nikitha T, Reddi EU, Sadhana B, Vani SS (2017) Phosphorous and phosphate solubilising bacteria and their role in plant nutrition. Int J Curr Microbiol App Sci 6:2133–2144

    Article  CAS  Google Scholar 

  • Seldin L, van Elsas JD, Penido EGC (1984) Bacillus azotofixans sp. nov., a nitrogen-fixing species from Brazilian soils and grass roots. Int J Syst Bacteriol 34:451–456

    Article  CAS  Google Scholar 

  • Senthilkumar M, Govindasamy V, Annapurna K (2007) Role of antibiosis in suppression of charcoal rot disease by soybean endophyte Paenibacillus sp. HKA-15. Curr Microbiol 55:25–29

    Article  CAS  PubMed  Google Scholar 

  • Seo DJ, Nguyen DM, Song YS, Jung WJ (2012) Induction of defense response against Rhizoctonia solani in cucumber plants by endophytic bacterium Bacillus thuringiensis GS1. J Microbiol Biotechnol 22:407–415

    Article  CAS  PubMed  Google Scholar 

  • Sibponkrung S, Kondo T, Tanaka K, Tittabutr P, Boonkerd N, Yoshida KI, Teaumroong N (2020) Co-inoculation of Bacillus velezensis strain S141 and Bradyrhizobium strains promotes nodule growth and nitrogen fixation. Microorganisms 8:678

    Article  CAS  PubMed Central  Google Scholar 

  • Singh RK, Singh P, Li HB, Song QQ, Guo DJ, Solanki MK, Verma KK, Malviya MK, Song XP, Lakshmanan P, Yang LT (2020) Diversity of nitrogen-fixing rhizobacteria associated with sugarcane: a comprehensive study of plant–microbe interactions for growth enhancement in Saccharum spp. BMC Plant Biol 20:1–21

    Article  CAS  Google Scholar 

  • Timmusk S, Wagner EGH (1999) The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant Microbe Interact 12:951–959

    Article  CAS  PubMed  Google Scholar 

  • Toro M, Azcon R, Barea JM (1997) Improvement of arbuscular mycorrhizal development by inoculation with phosphate-solubilizing rhizobacteria to improve rock phosphate bioavailability (32P) and nutrient cycling. Appl Environ Microbiol 63:4408–4412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vessey JK, Pawlowski K, Bergman B (2005) Root-based N2-fixing symbioses: legumes, actinorhizal plants, Parasponia sp. and cycads. Plant Soil 274:51–78

    Article  CAS  Google Scholar 

  • Von der Weid I, Duarte GF, van Elsas JD (2002) Paenibacillus brasilensis sp. nov., a novel nitrogen-fixing species isolated from the maize rhizosphere in Brazil. Int J Syst Evol Microbiol 52:2147–2153

    PubMed  Google Scholar 

  • Wahyudi AT, Astuti RP, Widyawati A, Mery A, Nawangsih AA (2011) Characterization of Bacillus sp. strains isolated from rhizosphere of soybean plants for their use as potential plant growth for promoting rhizobacteria. J Microbiol Antimicrob 3:34–40

    Google Scholar 

  • Wang S, Liu F, Chen C, Xu X (2007) Life cycle emissions of greenhouse gas for ammonia scrubbing technology. Korean J Chem Eng 24:495–498

    Article  Google Scholar 

  • Wang W, Wu Z, He Y, Huang Y, Li X, Ye BC (2018) Plant growth promotion and alleviation of salinity stress in Capsicum annuum L. by Bacillus isolated from saline soil in Xinjiang. Ecotox Environ Safe 164:520–529

    Article  CAS  Google Scholar 

  • Weselowski B, Nathoo N, Eastman AW, MacDonald J, Yuan ZC (2016) Isolation, identification and characterization of Paenibacillus polymyxa CR1 with potentials for biopesticide, biofertilization, biomass degradation and biofuel production. BMC Microbiol 16:244

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Williamson JM (2011) The role of information and prices in the nitrogen fertilizer management decision: new evidence from the Agricultural Resource Management Survey. J Agr Resour Econ 1:552–572

    Google Scholar 

  • Witz DF, Detroy RW, Wilson PW (1967) Nitrogen fixation by growing cells and cell-free extracts of the Bacillaceae. Arch Microbiol 55:369–381

    CAS  Google Scholar 

  • Wray LV, Ferson AE, Fisher SH (1997) Expression of the Bacillus subtilis ureABC operon is controlled by multiple regulatory factors including CodY, GlnR, TnrA, and Spo0H. J Bacteriol 179:5494–5501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wray LV Jr, Zalieckas JM, Fisher SH (1998) Mutational analysis of the TnrA-binding sites in the Bacillus subtilis nrgAB and gabP promoter regions. J Bacteriol 180:2943–2949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie GH, Su BL, Cui ZJ (1998) Isolation and identification of N2-fixing strains of Bacillus in rice rhizosphere of the Yangtze River Valley. Acta Microbiol Sin 38:480–483

    CAS  Google Scholar 

  • Xie S, Liu J, Gu S, Chen X, Jiang H, Ding T (2020) Antifungal activity of volatile compounds produced by endophytic Bacillus subtilis DZSY21 against Curvularia lunata. Ann Microbiol. https://doi.org/10.1186/s13213-020-01553-0

  • Zerrouk IZ, Rahmoune B, Auer S, Rösler S, Lin T, Baluska F, Dobrev PI, Motyka V, Ludwig-Müller J (2020) Growth and aluminum tolerance of maize roots mediated by auxin- and cytokinin-producing Bacillus toyonensis requires polar auxin transport. Environ Exp Bot 18:104064

    Article  CAS  Google Scholar 

  • Zhou C, Guo J, Zhu L, Xiao X, Xie Y, Zhu J, Ma Z, Wang J (2016) Paenibacillus polymyxa BFKC01 enhances plant iron absorption via improved root systems and activated iron acquisition mechanisms. Plant Physiol Biochem 105:162–173

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devendra Kumar Choudhary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jain, S., Varma, A., Choudhary, D.K. (2021). Perspectives on Nitrogen-Fixing Bacillus Species. In: Cruz, C., Vishwakarma, K., Choudhary, D.K., Varma, A. (eds) Soil Nitrogen Ecology. Soil Biology, vol 62. Springer, Cham. https://doi.org/10.1007/978-3-030-71206-8_18

Download citation

Publish with us

Policies and ethics