Skip to main content

Lethal Human Coronavirus Infections and the Role of Vaccines in Their Prevention

  • Chapter
  • First Online:
Human Viruses: Diseases, Treatments and Vaccines

Abstract

The Severe Acute Respiratory Syndrome coronavirus (SARS CoV) was first identified in 2002 when it caused an epidemic of fatal human pneumonia cases that from an epicenter in Hong Kong rapidly spread to multiple countries. SARS caused approximately 774 deaths before it was eradicated from the human population by quarantine control measures. Repeated outbreaks of Middle East respiratory syndrome coronavirus (MERS-CoV) have occurred since 2012 with 858 reported human deaths to date. Most recently, in late 2019 a new respiratory virus infection now known as COVID-19 due to infections by the SARS-CoV-2 virus started in China before spreading rapidly to the rest of the world, resulting in approximately 1.5 million deaths to date. All these coronaviruses (CoV) causing fatal human respiratory infections originally had zoonotic origins, with SARS-like and MERS-like coronaviruses circulating in bats. Immunity in humans induced by most CoV infections is rapidly waning; presenting the problem those convalescent patients can become reinfected. Vaccines present the best strategy to protect the human population against CoV infection but face several challenges. One concern is that CoV vaccines, particularly those containing Th2-biased alum adjuvants, may cause problems of disease enhancement such as eosinophilic lung immunopathology upon virus exposure. This problem was seen with SARS vaccines in animal testing. Another concern is that vaccine protection, like natural immunity to CoV infection, may be short-lived. There is also a concern that like influenza, SARS-CoV-2 might mutate its spike protein receptor to circumvent existing human immunity including that induced by vaccines. This could slow or prevent the development of human herd immunity. Ideally CoV vaccines should provide robust long-lived immunity providing broad protection against mutated strains. This chapter describes the current state of development of CoV vaccines including against COVID-19, the issue of CoV-associated lung immunopathology and the form those current and future CoV pandemic vaccines might take.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelrahman Z, Li M, Wang X. Comparative review of SARS-CoV-2, SARS-CoV, MERS-CoV, and influenza a respiratory viruses. Front Immunol. 2020;11:2309.

    Article  CAS  Google Scholar 

  • Adney DR, et al. Efficacy of an adjuvanted Middle East respiratory syndrome coronavirus spike protein vaccine in dromedary camels and alpacas. Viruses. 2019;11(3):212.

    Article  CAS  PubMed Central  Google Scholar 

  • Agrawal AS, et al. Generation of a transgenic mouse model of Middle East respiratory syndrome coronavirus infection and disease. J Virol. 2015;89(7):3659–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agrawal AS, et al. Immunization with inactivated Middle East Respiratory Syndrome coronavirus vaccine leads to lung immunopathology on challenge with live virus. Human Vaccines Immunother. 2016;12(9):2351–6.

    Article  Google Scholar 

  • Al-Amri SS, et al. Immunogenicity of candidate MERS-CoV DNA vaccines based on the spike protein. Sci Rep. 2017;7:44875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alharbi NK, et al. ChAdOx1 and MVA based vaccine candidates against MERS-CoV elicit neutralising antibodies and cellular immune responses in mice. Vaccine. 2017;35(30):3780–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almeida JD, Tyrrell DA. The morphology of three previously uncharacterized human respiratory viruses that grow in organ culture. J Gen Virol. 1967;1(2):175–8.

    Article  CAS  PubMed  Google Scholar 

  • Callow KA, et al. The time course of the immune response to experimental coronavirus infection of man. Epidemiol Infect. 1990;105(2):435–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan JFW et al. Simulation of the clinical and pathological manifestations of Coronavirus Disease 2019 (COVID-19) in golden Syrian hamster model: implications for disease pathogenesis and transmissibility. Clin Infect Dis. 2020.

    Google Scholar 

  • Chi H, et al. DNA vaccine encoding Middle East respiratory syndrome coronavirus S1 protein induces protective immune responses in mice. Vaccine. 2017;35(16):2069–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu YK, et al. The SARS-CoV ferret model in an infection–challenge study. Virology. 2008;374(1):151–63.

    Article  CAS  PubMed  Google Scholar 

  • Chu DK, et al. MERS coronaviruses in dromedary camels, Egypt. Emerging Inf Dis. 2014;20(6):1049.

    Article  Google Scholar 

  • Clay C, et al. Primary severe acute respiratory syndrome coronavirus infection limits replication but not lung inflammation upon homologous rechallenge. J Virol. 2012;86(8):4234–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cockrell AS, et al. A mouse model for MERS coronavirus-induced acute respiratory distress syndrome. Nat Microbiol. 2016;2(2):1–11.

    Article  Google Scholar 

  • Corbett KS, et al. SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature. 2020;586(7830):567–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cowling BJ, et al. Preliminary epidemiological assessment of MERS-CoV outbreak in South Korea, May to June 2015. Eurosurveillance. 2015;20(25):21163.

    Article  PubMed  Google Scholar 

  • Day CW, et al. A new mouse-adapted strain of SARS-CoV as a lethal model for evaluating antiviral agents in vitro and in vivo. Virology. 2009;395(2):210–22.

    Article  CAS  PubMed  Google Scholar 

  • de Wit E, et al. The Middle East respiratory syndrome coronavirus (MERS-CoV) does not replicate in Syrian hamsters. PLoS ONE. 2013a;8(7).

    Google Scholar 

  • De Wit E, et al. Middle East respiratory syndrome coronavirus (MERS-CoV) causes transient lower respiratory tract infection in rhesus macaques. Proc Natl Acad Sci. 2013;110(41):16598–603.

    Article  PubMed  PubMed Central  Google Scholar 

  • Delrue I, et al. Inactivated virus vaccines from chemistry to prophylaxis: merits, risks and challenges. Expert Rev Vaccines. 2012;11(6):695–719.

    Article  CAS  PubMed  Google Scholar 

  • Deming D, et al. Vaccine efficacy in senescent mice challenged with recombinant SARS-CoV bearing epidemic and zoonotic spike variants. PLoS Med. 2006;3(12).

    Google Scholar 

  • Deng Y, et al. Enhanced protection in mice induced by immunization with inactivated whole viruses compare to spike protein of middle east respiratory syndrome coronavirus. Emerg Microbes Infect. 2018;7(1):1–10.

    Article  CAS  Google Scholar 

  • Dicks MD, et al. A novel chimpanzee adenovirus vector with low human seroprevalence: improved systems for vector derivation and comparative immunogenicity. PLoS ONE. 2012;7(7).

    Google Scholar 

  • Drosten C, et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med. 2003;348(20):1967–76.

    Article  CAS  PubMed  Google Scholar 

  • Du L, et al. Receptor-binding domain of SARS-CoV spike protein induces long-term protective immunity in an animal model. Vaccine. 2007;25(15):2832–8.

    Article  CAS  PubMed  Google Scholar 

  • Du L, et al. Identification of a receptor-binding domain in the S protein of the novel human coronavirus Middle East respiratory syndrome coronavirus as an essential target for vaccine development. J Virol. 2013;87(17):9939–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falzarano D, et al. Infection with MERS-CoV causes lethal pneumonia in the common marmoset. PLoS Pathog. 2014;10(8).

    Google Scholar 

  • Fausther-Bovendo H, Kobinger GP. Pre-existing immunity against Ad vectors: humoral, cellular, and innate response, what’s important? Human Vaccines Immunother. 2014;10(10):2875–84.

    Article  Google Scholar 

  • Fett C, et al. Complete protection against severe acute respiratory syndrome coronavirus-mediated lethal respiratory disease in aged mice by immunization with a mouse-adapted virus lacking E protein. J Virol. 2013;87(12):6551–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Q, et al. Development of an inactivated vaccine candidate for SARS-CoV-2. 2020.

    Google Scholar 

  • Graham BS, Mascola JR, Fauci AS. Novel vaccine technologies: essential components of an adequate response to emerging viral diseases. JAMA. 2018;319(14):1431–2.

    Article  PubMed  Google Scholar 

  • Gretebeck LM, Subbarao K. Animal models for SARS and MERS coronaviruses. Curr Opinion Virol. 2015;13:123–9.

    Article  Google Scholar 

  • Guan Y, et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science. 2003;302(5643):276–8.

    Article  CAS  PubMed  Google Scholar 

  • Guo X, et al. Systemic and mucosal immunity in mice elicited by a single immunization with human adenovirus type 5 or 41 vector-based vaccines carrying the spike protein of Middle East respiratory syndrome coronavirus. Immunology. 2015;145(4):476–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Y, et al. Receptor-binding domain of SARS-CoV spike protein induces highly potent neutralizing antibodies: implication for developing subunit vaccine. Biochem Biophys Res Commun. 2004;324(2):773–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He X, et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat Med. 2020;26(5):672–5.

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann M, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;52(5):731–3.

    Google Scholar 

  • Honda-Okubo Y, et al. Severe acute respiratory syndrome-associated coronavirus vaccines formulated with delta inulin adjuvants provide enhanced protection while ameliorating lung eosinophilic immunopathology. J Virol. 2015;89(6):2995–3007.

    Article  CAS  PubMed  Google Scholar 

  • Ji W, et al. Cross-species transmission of the newly identified coronavirus 2019-nCoV. J Med Virol. 2020;92(4):433–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiaming L, et al. The recombinant N-terminal domain of spike proteins is a potential vaccine against Middle East respiratory syndrome coronavirus (MERS-CoV) infection. Vaccine. 2017;35(1):10–8.

    Article  PubMed  CAS  Google Scholar 

  • Jiang X, Rayner S, Luo MH. Does SARS-CoV-2 has a longer incubation period than SARS and MERS? J Med Virol. 2020;92(5):476–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kam YW, et al. Antibodies against trimeric S glycoprotein protect hamsters against SARS-CoV challenge despite their capacity to mediate FcγRII-dependent entry into B cells in vitro. Vaccine. 2007;25(4):729–40.

    Article  CAS  PubMed  Google Scholar 

  • Kapikian AZ. The corona viruses. Dev Biol Stand. 1975;28:42–64.

    CAS  PubMed  Google Scholar 

  • Keech C et al. Phase 1–2 trial of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine. N Engl J Med. 2020.

    Google Scholar 

  • Kim YI, et al. Infection and rapid transmission of SARS-CoV-2 in ferrets. Cell Host Microbe. 2020.

    Google Scholar 

  • Kim E, et al. Immunogenicity of an adenoviral-based Middle East Respiratory Syndrome coronavirus vaccine in BALB/c mice. Vaccine. 2014;32(45):5975–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong SL, et al. Elucidating the molecular physiopathology of acute respiratory distress syndrome in severe acute respiratory syndrome patients. Virus Res. 2009;145(2):260–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kopecky-Bromberg SA, et al. Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J Virol. 2007;81(2):548–57.

    Article  CAS  PubMed  Google Scholar 

  • Lamirande EW, et al. A live attenuated severe acute respiratory syndrome coronavirus is immunogenic and efficacious in golden Syrian hamsters. J Virol. 2008;82(15):7721–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lan J, et al. Recombinant receptor binding domain protein induces partial protective immunity in rhesus macaques against Middle East respiratory syndrome coronavirus challenge. EBioMedicine. 2015;2(10):1438–46.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lan J, et al. Significant spike-specific IgG and neutralizing antibodies in mice induced by a novel chimeric virus-like particle vaccine candidate for Middle East respiratory syndrome coronavirus. Virol Sinica. 2018;33(5):453–5.

    Article  Google Scholar 

  • Li F. Structure, function, and evolution of coronavirus spike proteins. Ann Rev Virol. 2016;3:237–61.

    Article  CAS  Google Scholar 

  • Lin JT, et al. Safety and immunogenicity from a phase I trial of inactivated severe acute respiratory syndrome coronavirus vaccine. Antiviral Ther. 2007;12(7):1107–13.

    Article  CAS  Google Scholar 

  • Lipsitch M, et al. Transmission dynamics and control of severe acute respiratory syndrome. Science. 2003;300(5627):1966–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu YV, et al. Chimeric severe acute respiratory syndrome coronavirus (SARS-CoV) S glycoprotein and influenza matrix 1 efficiently form virus-like particles (VLPs) that protect mice against challenge with SARS-CoV. Vaccine. 2011;29(38):6606–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu S, et al. Comparison of nonhuman primates identified the suitable model for COVID-19. Signal Transduct Targeted Ther. 2020;5(1):1–9.

    Article  Google Scholar 

  • Martina BEE, et al. SARS virus infection of cats and ferrets. Nature. 2003;425(6961):915–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Modjarrad K, et al. Safety and immunogenicity of an anti-Middle East respiratory syndrome coronavirus DNA vaccine: a phase 1, open-label, single-arm, dose-escalation trial. Lancet Infect Dis. 2019;19(9):1013–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mubarak A, Alturaiki W, Hemida MG. Middle east respiratory syndrome coronavirus (MERS-CoV): infection, immunological response, and vaccine development. J Immunol Res. 2019.

    Google Scholar 

  • Mulligan MJ, et al. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature. 2020;586(7830):589–93.

    Article  CAS  PubMed  Google Scholar 

  • Munster VJ, et al. Protective efficacy of a novel simian adenovirus vaccine against lethal MERS-CoV challenge in a transgenic human DPP4 mouse model. npj Vaccines. 2017;2(1):1–4.

    Google Scholar 

  • Muthumani K, et al. A synthetic consensus anti–spike protein DNA vaccine induces protective immunity against Middle East respiratory syndrome coronavirus in nonhuman primates. Sci Transl Med. 2015. 7(301): 301ra132–301ra132.

    Google Scholar 

  • Nishiura H, Linton NM, Akhmetzhanov AR. Serial interval of novel coronavirus (COVID-19) infections. Int J Infect Dis. 2020;93:284–6.

    Google Scholar 

  • Osterrieder N, et al. Age-dependent progression of SARS-CoV-2 infection in syrian hamsters. Viruses. 2020; 12(7).

    Google Scholar 

  • Pallesen J, et al. Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen. PNAS. 2017;114(35):E7348–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pardi N, et al. mRNA vaccines—a new era in vaccinology. 2018;17(4):261.

    Google Scholar 

  • Petrovsky N, Aguilar JC. Vaccine adjuvants: current state and future trends. Immunol Cell Biol. 2004;82(5):488–96.

    Article  CAS  PubMed  Google Scholar 

  • Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol. 2020;38(1):1–9.

    CAS  PubMed  Google Scholar 

  • Raj V, Stalin et al. Adenosine deaminase acts as a natural antagonist for dipeptidyl peptidase 4-mediated entry of the Middle East respiratory syndrome coronavirus. J Virol 2014;88(3):1834–1838.

    Google Scholar 

  • Roberts A, et al. Severe acute respiratory syndrome coronavirus infection of golden Syrian hamsters. J Virol. 2005;79(1):503–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts A, et al. Therapy with a severe acute respiratory syndrome–associated coronavirus–neutralizing human monoclonal antibody reduces disease severity and viral burden in golden Syrian Hamsters. J Infect Dis. 2006;193(5):685–92.

    Article  CAS  PubMed  Google Scholar 

  • Rota PA, et al. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science. 2003;300(5624):1394–9.

    Article  CAS  PubMed  Google Scholar 

  • See RH, et al. Severe acute respiratory syndrome vaccine efficacy in ferrets: whole killed virus and adenovirus-vectored vaccines. J Gen Virol. 2008;89(9):2136–46.

    Article  CAS  PubMed  Google Scholar 

  • Shi S-Q, et al. The expression of membrane protein augments the specific responses induced by SARS-CoV nucleocapsid DNA immunization. Mol Immunol. 2006;43(11):1791–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith TR, et al. Immunogenicity of a DNA vaccine candidate for COVID-19. Nat Commun. 2020;11(1):1–13.

    Article  CAS  Google Scholar 

  • Stenler S, Blomberg P, Smith CE. Safety and efficacy of DNA vaccines: Plasmids vs. minicircles. Human Vaccines Immunother. 2014;10(5):1306–1308.

    Google Scholar 

  • Tai W, et al. Recombinant receptor-binding domains of multiple Middle East respiratory syndrome coronaviruses (MERS-CoVs) induce cross-neutralizing antibodies against divergent human and camel MERS-CoVs and antibody escape mutants. J Virol. 2017;91(1).

    Google Scholar 

  • Tang F, et al. Lack of peripheral memory B cell responses in recovered patients with severe acute respiratory syndrome: a six-year follow-up study. J Immunol. 2011;186(12):7264–8.

    Article  CAS  PubMed  Google Scholar 

  • Ter Meulen J, et al. Human monoclonal antibody as prophylaxis for SARS coronavirus infection in ferrets. The Lancet. 2004;363(9427):2139–41.

    Article  CAS  Google Scholar 

  • Tseng CT, et al. Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus. PLoS ONE. 2012;7(4).

    Google Scholar 

  • Ura T, Okuda K, Shimada MJV. Developments in viral vector-based vaccines. Vaccines. 2014;2(3):624–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • V’kovski P, et al. Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol. 2020:1–16.

    Google Scholar 

  • Volz A, et al. Protective efficacy of recombinant modified vaccinia virus Ankara delivering Middle East respiratory syndrome coronavirus spike glycoprotein. J Virol. 2015;89(16):8651–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang R, et al. Decoding SARS-CoV-2 transmission, evolution and ramification on COVID-19 diagnosis, vaccine, and medicine. J Chem Inf Model. 2020.

    Google Scholar 

  • Wang SF, et al. Antibody-dependent SARS coronavirus infection is mediated by antibodies against spike proteins. Biochem Biophys Res Commun. 2014;451(2):208–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, et al. Evaluation of candidate vaccine approaches for MERS-CoV. Nat Commun. 2015;6(1):1–11.

    Google Scholar 

  • Weingartl H, et al. Immunization with modified vaccinia virus Ankara-based recombinant vaccine against severe acute respiratory syndrome is associated with enhanced hepatitis in ferrets. J Virol. 2004;78(22):12672–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wirblich C, et al. One-Health: a safe, efficient, dual-use vaccine for humans and animals against middle east respiratory syndrome coronavirus and rabies virus. J Virol. 2017;91(2).

    Google Scholar 

  • Woo PC, et al. SARS coronavirus spike polypeptide DNA vaccine priming with recombinant spike polypeptide from Escherichia coli as booster induces high titer of neutralizing antibody against SARS coronavirus. Vaccine. 2005;23(42):4959–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wrapp D, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao Y, et al. An animal model of MERS produced by infection of rhesus macaques with MERS coronavirus. J Infect Dis. 2014;209(2):236–42.

    Article  CAS  PubMed  Google Scholar 

  • Yasui F, et al. Prior immunization with severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV) nucleocapsid protein causes severe pneumonia in mice infected with SARS-CoV. J Immunol. 2008;181(9):6337–48.

    Article  CAS  PubMed  Google Scholar 

  • Yin Y, Wunderink RG. MERS, SARS and other coronaviruses as causes of pneumonia. Respirology. 2018;23(2):130–7.

    Article  PubMed  Google Scholar 

  • Zhang Y et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18–59 years: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect Dis. 2020.

    Google Scholar 

  • Zhang T, Wu Q, Zhang Z. Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak. Curr Biol. 2020;30(7):1346–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Zhao J, Perlman S. T cell responses are required for protection from clinical disease and for virus clearance in severe acute respiratory syndrome coronavirus-infected mice. J Virol. 2010;84(18):9318–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou P, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Z, et al. From SARS and MERS to COVID-19: a brief summary and comparison of severe acute respiratory infections caused by three highly pathogenic human coronaviruses. Respir Res. 2020;21(1):1–14.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolai Petrovsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baldwin, J., Petrovsky, N. (2021). Lethal Human Coronavirus Infections and the Role of Vaccines in Their Prevention. In: Ahmad, S.I. (eds) Human Viruses: Diseases, Treatments and Vaccines . Springer, Cham. https://doi.org/10.1007/978-3-030-71165-8_24

Download citation

Publish with us

Policies and ethics