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Abstract In silico prediction of plant performance is gaining increasing breeders’
attention. Several statistical, mathematical and machine learning methodologies for
analysis of phenotypic, omics and environmental data typically use individual or
a few data layers. Genomic selection is one of the applications, where heteroge-
neous data, such as those from omics technologies, are handled, accommodating
several genetic models of inheritance. There are many new high throughput Next
Generation Sequencing (NGS) platforms on the market producing whole-genome
data at a low cost. Hence, large-scale genomic data can be produced and analyzed
enabling intercrosses and fast-paced recurrent selection. The offspring properties
can be predicted instead of manually evaluated in the field . Breeders have a short
time window to make decisions by the time they receive data, which is one of the
major challenges in commercial breeding. To implement genomic selection routinely
as part of breeding programs, data management systems and analytics capacity have
therefore to be in order. The traditional relational database management systems
(RDBMS), which are designed to store, manage and analyze large-scale data, offer
appealing characteristics, particularly when they are upgraded with capabilities for
working with binary large objects. In addition, NoSQL systems were considered
effective tools for managing high-dimensional genomic data. MongoDB system, a
document-based NoSQL database, was effectively used to develop web-based tools
for visualizing and exploring genotypic information. The Hierarchical Data Format
(HDFS5), a member of the high-performance distributed file systems family, demon-
strated superior performance with high-dimensional and highly structured data such
as genomic sequencing data.
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6.1 Introduction

The array of techniques for probing complex biological systems such as (crop) plants
is continuously expanding, providing unprecedented data on multiple phenotypic
layers as well as multiple omics layers (genome, proteome, metabolome, epigenome
or methylome, and more). Furthermore, new and cheap local sensor techniques as
well as advances in remote sensing and geo-information systems provide extensive
descriptions of the environmental conditions under which plants grow. This allows in
silico prediction of plant performance (e.g. traits like yield, abiotic and biotic resis-
tance) depending on genotype, environment and crop management. Several statis-
tical, mathematical and machine learning methodologies for analysis of phenotypic,
omics and environmental data typically use individual or a few of these data layers.
Genomic selection is one of the applications, where heterogeneous data, such as
those from genomics, metabolomics and phenomics technologies, are handled also
accounting for several genetic models of inheritance [1].

Genomic selection is a new paradigm in plant breeding allowing to bypass the
costly and time-consuming phenotyping step by selecting superior lines based on
DNA information according to the workflow in Fig. 6.1 [2, 3].
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Genotype and phenotype the training population

Fig. 6.1 Implementation of the routines of the genomic models
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6.2 Genomic and Other Omics Data in DataBio

Genomics and other omics data were produced in sorghum (Sorghum bicolor (L.)
Moench) and tomato (Solanum lycopersicum L.) crops (Fig. 6.2) evaluated in
DataBio Genomics pilots; four categories of data were produced including (Tables 6.1
and 6.2): (1) in situ sensors and farm data, (2) genomic data from plant breeding
efforts in greenhouses and in open field produced using Next Generation Sequencers
(NGS), (3) biochemical data produced by chromatographs (LC/MS/MS, GS/MS,
HPLC), wet chemistry and NIRS (near infrared spectroscopy) (Tables 6.1 and 6.2),
and (4) genomics modelling output represented by integrative analytics information.
In situ sensors/environmental outdoor generated wind speed and direction, evapora-
tion, rain, light intensity, UVA and UVB data. In situ sensors/environmental indoor
generated air temperature, air relative humidity, crop leaf temperature (remotely and
in contact), soil/substrate water content, crop type, and several other data. Farm Data
generated in situ measurements comprising soil nutritional status, farm logs (work
calendar, technical practices at farm level, irrigation information), and farm profile
(Static farm information, such as size).

E .

Fig. 6.2 Tomato accessions in glasshouses (top) and sorghum pilot fields (bottom) used genomic
models platform
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Table 6.1 Genomic, biochemical and metabolomic data tools, description and acquisition

Data

Mission, Instrument

Data description and acquisition

Genomic data

» To characterize the genetic
diversity of sorghum and
tomato varieties and lines
used for breeding (Fig. 2)
To identify novel variants in
the sorghum and tomato
genomes, associated plant
characteristics of interest
To use the genomic
information to guide breeding
strategies (as a selection tool
for higher performance) and
develop a model to predict the
final breeding result in order
to rapidly achieve with the
minimum financial burden
varieties of higher
performance
» Data were produced using the
MiSeq and NextSeq 500
sequencing platforms
(Illumina Inc., San. Diego,
CA, USA)

» Data were produced from
plant biological samples (leaf
and fruit)

* Collection was conducted in
two different plant stages
(plantlets and mature plants)

* Genomic data were produced
using standard and
customized protocols at
CREA and CERTH facilities

» Data produced from Illumina
platforms were stored in
compressed text files (fastq)

* Genomic data, although in
plain text format, are big
volume data and pose
challenges in their storage,
handling and processing

¢ Analysis was performed using
CREA and CERTH’s HPC
computational facilities

Biochemistry, agronomy,
metabolomics

To characterize the biochemical
profile of fruits from tomato
varieties used for breeding. Data
were produced from different
chromatographs, mass
spectrometers, wet lab, NIRS

Data was mainly proprietary
binary sets converted to XML or
other open formats. Data were
acquired from biological
samples of tomato fruits

10T, sensor, and
environmental data

To characterize growing
environments and crop
management

Environmental indoor/outdoor,
farm data/log/profile

Table 6.2 Phenomics, metabolomics, genomics and environmental datasets

Field

Value

Name of the dataset/API provider

datasets

Phenomics, metabolomics, genomics and environmental

Short description

This dataset includes phenomics (sensor data),
metabolomics, genomics, environmental (IoT) data, as well
as genomic predictions and selection data

Data type

Raw text, CSV data

Dataset/API owner/responsible

contacts

ephrem.habyarimana@crea.gov.it, argiriou@certh.gr

Data Volume

30 TB (5 TB/year/institution)

Geographical coverage

Regions of Emilia Romagna (Italy) and Thessalia (Greece)
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Genomics data used in the DataBio project resulted from genomic DNA (Deoxyri-
bonucleic acid) of the plant species of interest resequenced using [llumina sequencing
platform consisting of high-throughput Next Generation sequencers. The genomic
data included SNPs (Single Nucleotide Polymorphisms), InDels (Insertions / Dele-
tions), SVs (Structure Variations), and CNVs (Copy Number Variation). A Single
Nucleotide Polymorphisms is a variation caused by changing of a single nucleotide
(A, T, C or G) in the genome. The SNPs, including switch and reverse of single
nucleotide bases, are responsible for genome diversity between species and between
individuals of the sample species. InDel refers to insertion mutation, deletion muta-
tion or both, including what happened in the early stage of evolution. CNVs, a form
of structural variations, are alterations of the DNA of a genome that results in the cell
having an abnormal number of copies of one or more sections of the DNA. CNVs
correspond to relatively large regions of the genome that have been deleted (fewer
than the normal number) or duplicated (more than the normal number) on certain
chromosome. Structural Variation includes deletion, insertion, duplication, inversion
and transposition of long fragment (at least 50 bp) in genome.

In the process of whole-genome resequencing, genomic DNA (gDNA) libraries
are prepared (Fig. 6.3) and sequenced; Images generated by sequencers are converted
by base calling into nucleotide sequences, which are called raw data or raw reads
and are stored in FASTQ format.

FASTQ files are text files that store both read sequences and their corresponding
quality scores. Each read is described in four lines as follows [4, 5]:

@FCB068CABXX:6:1101:1403:2159#TAGGTTAT/1

GTAGAAGACTTATAGATTAAAATTCTCCAACATATAGATGTCCTTACA
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Fig. 6.3 Genomic DNA library construction workflow
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CCGTTTTCCTTTGCTCAGCAGGCTCCGTGTTTGCTTGTCCTT
+

c‘bee_c’ccde_df\c_aeff ffcfffdfedadca”™b_eed‘fe\fed\babdba™
Yeebeccfdeae_eec"dbXbda‘]bcbebe

where line 1 is the DNA sequence identifier and description, lines 1 and 3 are sequence
names generated by the sequencer; line 2 is the DNA sequence letters; line 4 is
sequencing quality scores, in which every letter corresponds to a base in line 2; the
base’s sequencing quality is the ASCII value that the letter in line 4 refers to minus
64 (Specification). For example, the ASCII value of c is 99, so the corresponding
sequencing quality value is 35. In this work, the quality value of sequencing bases
ranged from 2 to 35; the higher the sequencing quality, the lower the sequencing
error rate. For instance, the sequencing qualities of 13 and 30 correspond to error
rates of 5% and 0.1%, respectively.

The generated raw reads were processed through bioinformatics analysis to filter
the raw data and generate clean (reads) data. The filtered reads are subsequently
aligned to the reference sequence, the alignment processed and the variation (SNPs,
InDels, SVs, and CNVs) detected according to the standard Workflow (Fig. 6.4),
which constitute the genomics data used in genomic prediction and selection models.

6.3 Genomic Data Management Systems

Generation of DNA data requires laboratories equipped with molecular biology
infrastructure for basic techniques (e.g. DNA extraction, library construction), along
with advanced technologies such as Next Generation Sequencing (NGS) and compu-
tational facilities. To date, there are many new high throughput NGS platforms avail-
able on the market producing sequence data at a very low cost per sequenced base,
affordable even for small-scale laboratories [6]. Hence, large-scale genomic data can
be produced and analyzed by many scientists, providing the breeder accurate infor-
mation at the genomic level, for selection of candidates before crosses, in a short time.
Among the advantages these technologies offer is accelerating breeding by genomic
selection, thus, bypassing time-consuming cultivation and field testing. Additional
advantages are the implementation of genomic selection to inform intercrosses and
recurrent selection, and predicting instead of field evaluating the offspring.

In the real world, breeders often have a short window of time to decide and
take actions on their breeding schemes by the time they receive phenotypic and
genotypic data, and this is among the major challenges for many commercial agri-
culture applications. In order to implement genomic selection routinely as part
of breeding programs, data management systems and analytics capacity have to
be in order. In short, infrastructures and software that will enable scientists to
design and analyse multi-phenotype and multi-omics experiments for maximal data-
to-information conversion, are required. This is the major challenge in order to
efficiently exploit the huge volume and complexity of the information produced.
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Fig. 6.4 Workflow of standard bioinformatics analysis

The genomic data management system must be able to efficiently store and
retrieve huge volumes of genomic information with high complexity and provide
rapid data extraction for computation. The system must be scalable and flexible
for large breeding programs while being able to run effectively in situations with
limited access to large computational clusters. For this purpose, traditional relational
database management systems (RDBMS) offer many appealing characteristics. The
RDBMS systems are designed and built to store, manage and analyze large-scale
data. However, performance can be problematic, when dealing with large matrix
data like those commonly encountered in genomic research. To address this perfor-
mance issue, many RDBMS were upgraded with the capabilities for working with
binary large objects (BLOBs). In addition, NoSQL systems have been considered
more recently as effective tools for managing high dimensional genomic data [7].
NoSQL systems for distributed file storage and searching represent scalable solutions
comparable to RDBMS, when dealing with semi-structured data types. MongoDB
system, for instance, is a document-based NoSQL database, which has been used to
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develop web-based tools for visualizing and exploring genotypic information. The
Hierarchical Data Format (HDF5) is a member of the high-performance distributed
file systems family. It is designed for flexible, efficient I/O and for high-volume
and complex data. It has demonstrated superior performance with high-dimensional
and highly structured data such as genomic sequencing data making it an appealing
option for a hybrid system approach.
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