
Chapter 20
Copernicus Data and CAP Subsidies
Control

Olimpia Copăcenaru, Adrian Stoica, Antonella Catucci, Laura De Vendictis,
Alessia Tricomi, Savvas Rogotis, and Nikolaos Marianos

Abstract This chapter integrates the results of three pilots developed within the
framework of the Horizon 2020 DataBio project. It aims to provide a broad picture
of how products based on Earth Observation techniques can support the European
Union’s Common Agricultural Policy requirements, whose fulfillments are super-
vised byNational andLocal PayingAgencies operating inRomania, Italy andGreece.
The concept involves the use of the same data sources, mainly multitemporal series
of Copernicus Sentinel-2 imagery, but through three different Big Data processing
chains, tailored to each paying agency’s needs in terms of farm compliance assess-
ment. Particularities of each workflow are presented together with examples of the
results and their accuracy, calculated by validation against independent sources.
Business value aspects for each use case are also discussed, emphasizing the way
in which the automation of the CAP requests verification process through satellite
technologies has increased the efficiency and reduced cost and time resources for
the subsidy process. We end the chapter by highlighting the benefits of continuous
satellite tracking as a substitute, but also complementary to the classical field control
methods, and also the enormous potential of Earth Observation-based products for
the agri-food market.

20.1 Introduction, Motivation, and Goals

In the framework of European Union (EU) common agricultural policy (CAP),
farmers can have access to subsidies that are provided through paying agencies and
authorized collection offices operating at national level or regional level [1]. For the
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provision of the subsidies, paying agencies must operate several controls in order to
verify the compliance of the cultivation with EU regulations. At present, the majority
of the compliance controls are limited to a sample of the whole amount of farmers’
declarations due to the increased costs of acquiring high and very high-resolution
satellite imagery [2]. Moreover, they are often focused on a specific timeframe, not
covering the whole lifecycle of the agricultural land plots during the year.

However, EU Regulation No. 746 of 18May 2018 [3, 4] introduced the option for
member states, starting from the 2018 campaign, to use an alternativemethodology to
that of field controls, using information from Copernicus Sentinel satellites, possibly
supplemented by those of EGNOS/Galileo. Thus, paying agencies in several coun-
tries have set strategic targets to implement CAP subsidies control systems based on
cost-efficient collection and processing of earth observation data [5] and efficiently
converting them into added value operational services that can be embedded into the
already existing workflows and integrated with the information already available in
several institutional registers.

Therefore, the aim of the CAP support initiatives within the DataBio project was
to provide products and services tuned in order to fulfill the requirements for the
2015–20 CAP [6], improve the CAP effectiveness, leading to a more accurate, and
complete farm compliance evaluation provided to paying agencies operating in three
EU countries: Greece, Italy, and Romania.

The technological core competency lies mainly in the implementation of special-
ized highly automated big data processing techniques, particularly based on multi-
temporal series of Copernicus Sentinel-2 data, and directly addresses the CAP
demands for agricultural crop-type identification, systematic observation, tracking,
and assessment of eligibility conditions over the agricultural season.

The final products are tailored to the specific needs of the end-users and demon-
strate the implementationof functionalities that canbeused for supporting the subsidy
process in verifying specific requests set by the EU CAP.

20.2 Pilot Set-Up

As the main goal of the approach was to provide services in support to the national
and local paying agencies and the authorized collection offices for a more accurate
and complete farm compliance evaluation, the pilot included trial stages in three
different areas of interest.

• In Romania, TERRASIGNA ran CAP support monitoring service trials for a
10,000 km2 area of interest (AOI) in the southeastern part of the country, thus
aiming to provide crop-type maps for a large area, characterized by geographical
variability and a broad number of crops, distributed over diverse locations and
including small and narrow plots, making use of the Copernicus Sentinel-2 spatial
and temporal resolution. Initially, the selection of the 10,000 km2 AOI was done
by performing a multi-criteria analysis based on three main elements: plots’ size
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(a minimum degree of land fragmentation was desirable in order to properly test
the methodology), crops diversity (the selected area included a large selection of
agricultural crop types), and accessibility (any point or parcel within the area had
to easily be accessed during field campaigns to collect observations needed for
validation). For the 10,000 km2 area of interest, intersecting three Sentinel-2 gran-
ules (35TLK, 35TMK, 35TNK), more than 150,000 plots of different sizes have
been analyzed during each agricultural season. The analysis performed included
parcels of over 0.3 ha, regardless of shape. Of course, the 10-m spatial resolution
made the narrower parcels difficult to properly label. Starting from the 2018 agri-
cultural season, TERRASIGNA has extended its CAP-related services and has
monitored the declarations for the entire agricultural area of Romania, exceeding
9 million ha and corresponding to more than 6 million plots of various sizes and
shapes, distributed across the 41 Sentinel-2 scenes, projected in 2UTMzones, that
intersect the territory of Romania (Fig. 20.1). The main end user was APIA—the
Romanian National Paying Agency.

• In Italy, e-GEOS sets up a methodology that has been tested and applied for a
50,000-ha area of interest in the region of Veneto, Verona Province (Fig. 20.2),
where the land parcel identification system (LPIS) 2016 data was available. The
approach was based on the computation of markers, in relation to predefined
scenarios in terms of crop types and reference periods for agricultural practices.
It aimed to demonstrate and detect LPIS anomalies concerning crop types or crop
families, with respect to the last update of the farmer’s declaration integrated in
the geospatial aid application (GSAA), and to re-classify the parcel itself. The end
user, in this case, was AVEPA Paying Agency (Agenzia Veneta per I Pagamenti in
Agricoltura), operating at regional level in one of the most important agricultural
regions in Italy.

• In Greece, NEUROPUBLIC tested and evaluated a set of EO-based services
designed to support specific needs of the CAP value chain stakeholders, for an
area of interest covering 50,000 ha of annual crops with an important footprint
in the Greek agricultural sector (rice, wheat, cotton, maize, etc.), located in the
greater area of Thessaloniki (Fig. 20.3). The main stakeholders of the pilot activ-
ities were the farmers from the engaged agricultural cooperatives in the pilot
area and GAIA EPICHEIREIN, that had a supporting role in the farmers’ decla-
ration process through its farmers service centers (FSCs). CSEM and FRAUN-
HOFERwere also involved in the pilot, providing their long-standing expertise in
the technological development activities. The pilot aimed at supplying EO-based
products and services designed to support key business processes, including the
farmer decision-making actions during the submission of aid application, and
more specifically leading to an improved “greening” compliance in terms of
crop diversification, which acts as a driver toward more sustainable ecosystems.
Greening conditions dictate that farms with more than 10 ha of arable land should
grow at least two crop types, while farms with more than 30 ha are required
to maintain more than three crop types. The main crop type is not expected to
cover more than 75% of the arable land. The ambition of this pilot case was
to effectively deal with CAP demands for agricultural crop-type identification,
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Fig. 20.1 Romania—total declared area and number of plots registered for CAP support (2019).
Alphanumerics in the cells represent Sentinel-2 tiles. Data source Agency for Payments and
Intervention in Agriculture (APIA), Romania

systematic observation, tracking, and assessment of eligibility conditions over a
period of time.

20.3 Technology Used

20.3.1 Technology Pipeline

While the overall objectivewas similar, providingCAP-related services tailored to the
specific needs of different stakeholders in charge of agricultural subsidies manage-
ment, the three different approaches were based on technologies that have both
similarities and important differences. Therefore, while the data collection and data
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Fig. 20.2 Geographical distribution of the parcels analyzed within the trial stage in Italy
(highlighted in black)

preparation phases follow very similar workflows, the data processing and analysis
are based on separate technology pipelines (Fig. 20.4).

Technology Pipeline for the Trial Stage in Romania

For the trial stage in Romania, TERRASIGNA proposed an in-house developed
fuzzy-based technique for crop detection and monitoring, based on combined free
and open Sentinel-2 and Landsat-8 Earth Observation data image processing, data
mining, and machine learning algorithms, all integrated in a toolbox for crop
identification and monitoring [7].

The processing chain involves a series of well-defined steps:

• image preprocessing (numerical enhancements for Sentinel-2 and Landsat-8
scenes, ingestion of external data, clouds and shadows masking);
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Fig. 20.3 Geographical distribution of the parcels that take part to the Greek pilot activities
(highlighted with yellow color)

Fig. 20.4 Generic technology pipeline for the three CAP support trial stages
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Fig. 20.5 Romania—example ofCAPsupport analysis results.a–cSentinel-2 natural colormosaics
(27.04.2018, 31.07.2018, 27.09.2018);d observed crop typesmap; e classification confidence index;
f crop compliance map

• individual scene classification;
• the use of unsupervised machine learning techniques in order to obtain the crop

probability maps at scene level;
• time series analysis, making the system capable of recognizing several types of

crops, of the order of several tens and allowing the generation of overall crop
probability maps and derived products.

The developed toolbox allows the automatic calculation of the following products
(Figs. 20.5 and 20.6):

(1) Maps with the main types of crops, for a completed annual agricultural cycle;
(2) Intermediate maps with the main types of crops, during an ongoing annual

agricultural cycle (which may serve as early alarms for non-observance of the
declared crop type);

(3) Layers of additional information, showing the classification confidence index
for the crop-type maps computed (values closer to 1 show higher trust levels
for the assessed parcels);

(4) Maps with the mismatches between the type of crop declared by the farmer
and the one observed by the application;

(5) Lists of parcels with problems, in order of the surfaces affected by inconsis-
tencies, according to the data in product 4 above;

(6) RGB backgrounds with mediated aspect, uncontaminated by clouds and
shadows, computed for a period of time, with national coverage. The computed
synthetic images use the principle of weighted mediation, in a fuzzy logic,
which guarantees a superior visual quality; they have a very natural look,



272 O. Copăcenaru et al.

Fig. 20.6 Romania—observed crop-typemap (2019) for the entire territory of the country, showing
the 32 crop types that the algorithm is able to recognize, summingmore than 97%of the total declared
area in Romania

similar to a unique scene, however without the image being associated with a
moment of time;

(7) RGB mosaics uncontaminated by clouds and shadows, computed for a period
of time, with national coverage;

(8) NDVI maps uncontaminated by clouds and cloud shadows, computed for a
period of time, with national coverage;

(9) Early discrimination maps between winter and summer crops.

Technology Pipeline for the Trial Stage in Italy

For the trial stage in Italy, a set of markers have been computed in relation to prede-
fined scenarios in terms of crop families and reference periods during which agri-
cultural practices have been defined. The methodology is working at parcel level,
therefore computing several markers for each parcel depending on the specific crop
family.
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The full list of tuned markers includes plowing, vegetation presence\growing,
harvesting andmowing. However, considering the typical phenological cycle and the
agricultural practices for each crop class, not all the markers have been computed for
all crop classes. For example, the markers considered for wheat (autumn–winter crop
family) are plowing, vegetation presence/growing, harvesting and mowing, while
for permanent grassland, only the presence/growing and mowing markers have been
computed [7].

For the definition of markers, it should be considered that each of them should
be defined according to the geographic location and specific algorithms and related
parameters should be identified, therefore requiring a proper tuning by leveraging
on time series analysis. This operation is supported by the analysis, for each crop
family, of the spectral behavior along time, in order to identify from a mathematical
point of view, markers related to specific activities.

For example, Fig. 20.7 shows the NDVI temporal trend of a corn parcel in the
center of Italy, from which it is possible to identify, together with the support of
false-color images, the relevant stages in the phenological cycle:

• Plowing: between January and April (false-color image A);
• Presence\growth: between April and August (false-color image B);
• Harvesting: between July and September (false-color image C);
• False-color image D shows the parcel after the harvesting.

Fig. 20.7 NDVI temporal trend with identification of relevant stages in the phenological cycle
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Once the markers are tuned according to type of interest, relevant periods, thresh-
olds onNDVI values and geographic location for each crop type\families, they should
be detected using a proper algorithm operating on time series. The results of the
marker computation (positive\negative) can feed the internal workflow of the paying
agencies, by:

• supporting the analysis and computation of parcel compliance versus administra-
tive regulations of farmers’ applications for subsidies;

• supporting the detection of LPIS anomalies (incorrect classification or update
need) and then re-classification, testing the validity of markers of the other macro-
classes.

Technology Pipeline for the Trial Stage in Greece

For the trial stage in Greece, a set of data collection, processing, and visualiza-
tion components has been used to technically support the pilot activities [7]. More
specifically, the following technological components should be acknowledged:

In terms of data collection:

• In-situ telemetric stations provided by NP, so-called gaiatrons, that collect
ancillary weather data;

• Modules for the collection, preprocessing of Earth Observation products, the
extraction of higher-level products, and assignment of vegetation indices at parcel
level.

In terms of data processing:

• GAIABusDataSmartMachineLearningSubcomponent (NP), supportingEOdata
preparation and handling functionalities, multi-temporal object-based monitoring
and modeling and crop-type identification;

• GAIABus DataSmart Real-time streaming Subcomponent (NP), supporting:

– Real-time data streammonitoring for NP’s gaiatrons installed in the pilot sites;
– Real-time validation of data;
– Real-time parsing and cross-checking.

• Neural Network Suite (CSEM), used as a machine learning crop identification
system for the detection of crop discrepancies;

• Georocket, Geotoolbox and SmartVis3D (FRAUNHOFER), having a dual role:
a back-end system for Big Data preparation, handling fast querying and spatial
aggregations, as well as a front-end application for interactive data visualization
and analytics.

In terms of data visualization:

• Neurocode (NP), the main component, allowing the creation of the main pilot UIs
in order to be used by the end-users (FSCs of GAIA EPICHEIREIN);

• Georocket (FRAUNHOFER), an additional DataBio component providing infor-
mation visualization functionalities.
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20.3.2 Data Used in the Pilots

All the three trials (Romania, Italy, and Greece) aimed to demonstrate the advanced
capabilities of Earth Observation data in monitoring agricultural areas [8].

Therefore, the input data consisted in:

• Sentinel-2 and Landsat-8 optical satellite data;
• The declarations of the farmers regarding cultivated crops and areas covered;
• The map of the parcels of interest or the map of the physical blocks of interest;
• List of crop codes used;
• List of crop classes to be followed (LCCF, i.e., very related groups of crops, which

have similar aspect and phenological behavior);
• Ancillary sensor measurements from agro-climatic IoT sensor stations (used for

the trial stage in Greece);
• A collection of a validation dataset, representative for the crop types/crop families

distribution, derived from very high-resolution imagery (used for the trial stages
in Romania and Italy).

20.3.3 Reflections on Technology Use

Reflections on Technology Use for the Trial Stage in Romania

The crop monitoring technology developed by TERRASIGNA is able to recognize
a large number of crops families, of the order of tens. For Romania, it addressed the
first most cultivated 32 crop families (according to the information provided by the
National Paying Agency), which together cover more than 97% of the agricultural
land [7]. The success rate in recognition was not equal between crops families, but an
overall performance of 98.3% (Table 20.1) was obtained for the first most important
8 crops (winter wheat, sunflower, maize, green peas, winter barley, meadows and
pastures, rapeseed, soybean). The countercheck data was obtained using a manual
classification of a statistical sample in a test zone of the size of a Sentinel granule,
supplemented with field-collected data regarding cultivated crop types and areas
covered. The performance proved to be quite uniform reported to the size of the
plots and remained high even for parcels smaller than 1 ha (Table 20.1).

At themoment, taking into account the agricultural specificity ofRomania, defined
by excessive land fragmentation, as a result of the existing legislation, the developed
technology is using only optical data, consisting in both Copernicus Sentinel-2 and
Landsat-8 imagery. According to the Romanian National Paying Agency, out of the
total of 6 million plots for which payments have been granted, 2.7 million plots have
an area smaller than 0.5 ha (44% of the total number), while 1.8 million plots consist
of an area between 0.5 and 1 ha. Therefore, the small narrow plots are not suitable
for SAR analysis for crop-type identification, taking into account the noise level,
despite the good spatial resolution of Sentinel-1 images. Moreover, as stated before,
in terms of overall accuracy (OA), the classification result using only Sentinel-2



276 O. Copăcenaru et al.

Ta
bl
e
20
.1

R
om

an
ia
—

re
su
lts

of
th
e
va
lid

at
io
n
ba
se
d
on

in
de
pe
nd

en
td

at
a
co
ns
is
tin

g
of

ve
ry

hi
gh

-r
es
ol
ut
io
n
im

ag
er
y
an
d
fie

ld
-c
ol
le
ct
ed

da
ta

<
1
ha

1–
1.
5
ha

1.
5–
2.
5
ha

2.
5–
5
ha

5–
10

ha
10
–2
0
ha

>
20

ha
O
ve
ra
ll
pe
rf
or
m
an
ce

W
in
te
r
w
he
at

99
.1
%

N
=

13
0
ha

98
.6
%

N
=

22
6
ha

97
.5
%

N
=

61
9
ha

98
.2
%

N
=

1,
91
9
ha

98
.5
%

N
=

3,
07
3
ha

98
.3
%

N
=

4,
49
4
ha

99
.4
%

N
=

22
,2
08

ha
98
.7
%

O
m
is
si
on
s:
0.
73
%

M
ai
ze

99
%

N
=

22
ha

94
.4
%

N
=

30
ha

90
.7
%

N
=

81
ha

88
.1
%

N
=

21
6
ha

90
.1
%

N
=

39
6
ha

93
.1
%

N
=

67
9
ha

99
.1
%

N
=

4,
87
7
ha

93
.7
%

O
m
is
si
on
s:
4.
93
%

Su
nfl

ow
er

97
.8
%

N
=

25
ha

97
.8
%

N
=

41
ha

99
.6
%

N
=

10
9
ha

96
.7
%

N
=

32
0
ha

99
.3
%

N
=

66
4
ha

99
.1
%

N
=

1,
00
8
ha

99
.5
%

N
=

3,
66
3
ha

98
.8
%

O
m
is
si
on
s:
3.
99
%

So
yb
ea
n

10
0%

N
=

4
ha

92
.1
%

N
=

18
ha

90
.1
%

N
=

41
ha

99
.6
%

N
=

18
6
ha

99
.9
%

N
=

55
8
ha

10
0%

N
=

80
0
ha

10
0%

N
=

2,
37
0
ha

99
.3
%

O
m
is
si
on
s:
2.
12
%

R
ap
es
ee
d

99
.7
%

N
=

77
ha

99
.6
%

N
=

93
ha

98
.9
%

N
=

26
8
ha

99
.6
%

N
=

81
1
ha

98
.6
%

N
=

1,
10
7
ha

99
.4
%

N
=

1,
63
3
ha

99
.8
%

N
=

8,
34
6
ha

99
.5
%

O
m
is
si
on
s:
1.
16
%

Pa
st
ur
es

98
.1
%

N
=

11
1
ha

97
.3
%

N
=

16
5
ha

99
.2
%

N
=

39
3
ha

99
.2
%

N
=

1,
19
9
ha

99
.1
%

N
=

2,
16
1
ha

99
.5
%

N
=

3,
30
6
ha

99
.5
%

N
=

7,
30
2
ha

99
.3
%

O
m
is
si
on
s:
2.
64
%

Pe
as

n.
a.

96
.5
%

N
=

2.
4
ha

10
0%

N
=

4
ha

10
0%

N
=

23
ha

10
0%

N
=

75
ha

86
.9
%

N
=

93
ha

10
0%

N
=

34
8
ha

97
.4
%

O
m
is
si
on
s:
1.
44
%

W
in
te
r
ba
rl
ey

10
0%

N
=

10
ha

10
0%

N
=

3.
5
ha

91
.5
%

N
=

24
ha

95
.3
%

N
=

58
ha

10
0%

N
=

1,
47
7
ha

10
0%

N
=

44
2
ha

10
0%

N
=

1,
68
2
ha

98
.7
%

O
m
is
si
on
s:
2.
79
%

A
ll
cr
op
s

97
.8
%

N
=

33
6
ha

43
4
pl
ot
s

97
.4
%

N
=

54
3
ha

43
6
pl
ot
s

96
.6
%

N
=

14
46

ha
72
2
pl
ot
s

97
.5
%

N
=

44
54

ha
1,
21
6
pl
ot
s

98
%

N
=

80
75

ha
1,
10
9
pl
ot
s

98
.2
%

N
=

12
,2
61

ha
86
5
pl
ot
s

98
.2
%

N
=

50
,1
06

ha
1,
06
0
pl
ot
s

98
.3
%

T
he

ita
lic

va
lu
es

re
pr
es
en
tt
he

pe
rc
en
ta
ge

of
ac
cu
ra
cy

fo
r
th
e
sp
ec
ifi
c
si
ze

cl
as
se
s
an
al
yz
ed

fo
r
ea
ch

cr
op

ca
te
go
ry

T
he

bo
ld

va
lu
es

re
pr
es
en
tt
he

ov
er
al
lp

er
ce
nt
ag
e
of

ac
cu
ra
cy

fo
r
ea
ch

cr
op

ca
te
go
ry

an
d
al
so

th
e
ov
er
al
lp

er
ce
nt
ag
e
of

ac
cu
ra
cy

fo
r
ea
ch

si
ze

cl
as
s



20 Copernicus Data and CAP Subsidies Control 277

Fig. 20.8 Example of predefined scenarios regarding agricultural practices for the crop categories
analysed

imagery reached 0.98. Thus, a major increase in overall accuracy using SAR data
was not foreseen.

Reflections on Technology Use for the Trial Stage in Italy

The cropmonitoring technology developed by e-GEOS for the trial stage in Italy was
based on NDVI profile trends [7], which allowed the computation of a set of markers
related to agricultural practices that should take place (e.g., plowing, vegetation
presence/growth, and harvesting), in relation to predefined scenarios (Fig. 20.8), in
terms of:

• selected macro-crop type;
• reference periods;
• NDVI thresholds.

At the beginning of the trial activities, the LPIS crop types have been aggregated
in macro-classes (23 families) and the predefined scenarios have been tuned for the
seven classes suitable for the automatic detection of anomalies and reclassification,
based on the Sentinel-2 time series.

Analyzing their distribution and considering that the largest part (about 67%)of the
agricultural crop families in the AOI belongs to 2 main groups, permanent grassland
and arable land, only the crop families of these 2 groups have been considered in
order to test the algorithm of anomalies detection and re-classification at macro-class
level.

The markers computed in relation to predefined scenarios have been implemented
in a decision model to verify their correct classification. The model has been run for
each parcel of the macro-classes considered as suitable for the automatic detec-
tion of anomalies. Examples of parcels for which the original macro-class has been
confirmed or detected as anomalous through the automatic analysis based on the
related markers are displayed in Fig. 20.9.

Parcels detected as anomalous have been automatically re-classified testing the
validity of the markers of the other macro-classes, thus updating the LPIS in terms
of macro-classes (Fig. 20.10).

As expected in the arable land area, due to the usual crop rotation practice,
the largest part of parcels changed their agricultural use between 2016 and 2018
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Fig. 20.9 Example of marker analysis based on predefined scenarios

(Fig. 20.11). In most cases, it is simply a change from winter–autumn to summer or
temporary grassland and vice versa (Fig. 20.12).

The results are confirmedby thepie charts (Figs. 20.13 and20.14) that describe, for
different crop families (autumn–winter arable land, summer arable land and irrigated
summer arable land) the percentage of parcels for which the crop family has been
confirmed (in green) and the percentages of anomalous parcels, re-classified as other
crop families.

Irrigated summer arable land parcels (e.g., rice paddies) are mostly confirmed
(few anomalies) probably because these types of crop field, supported by irrigation
systems, are not subject to crop rotations (Fig. 20.15).

In terms of permanent grassland areas, as expected, the percentage of anomalies
is meaningful lower, considering the fact that usually the agricultural use of these
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Fig. 20.10 Examples of non-compliant (left) and re-classified (right) parcels

Fig. 20.11 LPIS arable land parcels classified as verified (green), anomalous (red) and not analysed
(gray)
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Fig. 20.12 LPIS arable land parcel classes in 2016 (left) versus 2018 (right), after re-classification
of anomalous parcels

Fig. 20.13 2016 LPIS summer arable land parcels updated to 2018

Fig. 20.14 2016 LPIS winter–autumn arable land parcels updated to 2018
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Fig. 20.15 2016 LPIS irrigated summer arable land parcels updated to 2018

parcels is stable for several years (a grassland field is defined as permanent if it is
not plowed for 5 years, at least) (Figs. 20.16 and 20.17).

The accuracy of the methodology proposed for the LPIS anomalies detection and
reclassificationhas been assessed through avalidation activity basedondata extracted
from very high-resolution imagery. About 1000 parcels have been considered for

Fig. 20.16 LPIS permanent grassland parcels classified as verified (green), anomalous (red) and
not analysed (gray)
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Fig. 20.17 2016 LPIS permanent grassland parcels updated to 2018

Table 20.2 Results of the
validation based on reference
data extracted from very
high-resolution imagery

Crop family Parcel number Accuracy (%)

Autumn–winter arable land 26 84.6

Summer arable land 55 96.4

Permanent grassland 973 96.5

Temporary grassland 73 38.2

the accuracy assessment (Table 20.2). The resulting validation dataset consisted of
four main crop families: autumn winter arable land, summer arable land, permanent
grassland, and temporary grassland, reflecting the crop families’ distribution over
the entire area. Other crop families, considered statistically insignificant in terms of
number of parcels, have not been taken into account in the accuracy assessment.

The results reveal very high accuracy for permanent grassland and summer arable
land (more than 95%), high for winter arable land (85%). However, the computed
accuracy for the temporary grassland crop family with respect to the farmers’ decla-
rations is just around 40%. The remaining 60%mis-classified parcels are distributed,
according to farmers’ declarations, mainly as permanent grassland (33%) and they
require an additional refinement of marker rules in order to improve the accuracy.

The performances will be further tested in wider areas in order to evaluate the
potential to be used in operative scenarios.

Reflections on Technology Use for the Trial Stage in Greece

In Greece, “greening” compliance was assessed for the 2019 cultivation year and the
respective aid applications [7]. The farmers that could benefit from the methodology
were the ones holding parcels larger than 10 ha, eligible for checks for greening
requirements related to crop diversification. The crop types that have been modeled
by theGAIABusDataSmartMachineLearning Subcomponentwere seven (7) in total
and more specifically: wheat, cotton, maize, tobacco, rapeseed, rice, and sunflower.
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Table 20.3 Normalized crop classification confusion matrix (horizontal axis corresponds to the
true label, whereas the vertical one to the predicted label)

Maize Cotton Rapessed Sunflower Tobacco Rice Wheat

Maize 0.932 0.004 0.022 0.021 0.004 0.003 0.005

Cotton 0.009 0.954 0.006 0.019 0.079 0.002 0.008

Rapeseed 0.000 0.000 0.713 0.000 0.000 0.000 0.000

Sunflower 0.023 0.007 0.019 0.824 0.061 0.000 0.017

Tobacco 0.000 0.001 0.000 0.005 0.712 0.000 0.001

Rice 0.002 0.001 0.000 0.000 0.000 0.994 0.000

Wheat 0.032 0.032 0.239 0.131 0.144 0.000 0.968

If seen as a multiclass classification problem, the performance of the trained crop
models to the 2019 testing data are offered at the confusion matrix, in Table 20.3.

Using the trained models as the backbone of the CAP support methodology, the
assessment of “greening” compliance was conducted over 2019s aid applications. A
traffic light system was employed to inform the farmers that there could have been a
problem within their declarations:

(a) if the confidence level of the classification result was >85% and the declared
crop type of the farmer was confirmed by the classification, traffic light should
be green;

(b) if the confidence level of the classification result was <85% and the declared
crop type of the farmer was confirmed by the classification, traffic light should
be yellow;

(c) if the declared crop type of the farmer was not confirmed by the classification,
traffic light should be red.

According to this approach, the farmer is more protected in order to receive the
payment as robust and reliable feedback is provided to him/her. The farmer is noti-
fied for issues (especially when the main crop seems to cover more than 75% of the
cultivated land—mandatory condition for ensuring crop diversification) that put at
risk his/her eligibility for greening compliance, thus contributing to raising aware-
ness and allowing follow-up activities to be taken. An example regarding greening
eligibility assessment is shown in Table 20.4.

Moreover, in order to support the Greek pilot activities, an integrated analytics
platform has been finalized and deployed (Fig. 20.11). The use of machine learning
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Table 20.4 Greening eligibility assessment using a traffic light system (table and map projection)

Parcel Crop group DataBio Assessment Traffic 
Light

Area 
(ha) Map projection

ID Declared Detected Status Result

001 Wheat Wheat Assessed Compliant 2.08

002 Wheat Wheat Assessed Compliant 1.67

003 Maize Wheat Assessed Not 
compliant

1.1

004 Maize Maize Assessed Insufficient 
evidence

1.46

005 Wheat Wheat Assessed Insufficient 
evidence

1.25

006 Cotton Cotton Assessed Compliant 0.82

007 Cotton Wheat Assessed Not 
compliant

0.73

008 Wheat Wheat Assessed Compliant 1.88

Total 10.99 

services provided a proof of concept for its use in CAP support scenarios. FRAUN-
HOFER was responsible for the development of the UI, integrating pixel heat maps
from the different classifiers and information visualization capabilities. A CSEM
developed system for the management of machine learning models was used to facil-
itate the simple and retraceable management of models. RESTful services, combined
with security features in the form of JSON Web Tokens (JWT) and encryption with
Hypertext Transfer Protocol Secure (HTTPS), were implemented and integrated
into the service. The service has also been containerized to allow simple deploy-
ment. This service enables the communication with FRAUNHOFER’s component
GeoRocket and UI for on-demand crop-type classification, in both pixel and parcel
levels (Fig. 20.18).
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Fig. 20.18 User interface created by FRAUNHOFER for the Greek CAP support trial. The user
interface integrates CSEM’s classification results into pixel heat maps

20.4 Business Value and Impact

20.4.1 Business Impact of the Pilot

All the three CAP support trials developed within the DataBio project were tailored
according to the needs of specific end-users (national and regional paying agencies),
and, therefore, the business impact of the pilots is closely related [9]. The added value
of the three pilots effectively consists in the increase of efficiency that the payment
authorities and other end-users experience in using satellite monitoring and big data
technologies.

Business Impact for the Trial Stage in Romania

The possibilities for exploitation of the project’s result for TERRASIGNA focused
on proving a concept and attracting a long-term collaboration with the National
Agency for Payments and Investments in Agriculture (APIA), holding responsibility
in Romania of the implementation of CAPmechanisms for direct payments. A coop-
eration agreement was signed with the agency, in order to offer and test the results
of the pilot—crop compliance maps in support of APIA’s activity of monitoring the
subsidies payments [9].

The CAP support pilot, through its EO crop monitoring component, offered the
stakeholder the possibility to check, in a more efficient way, the compliance between
the declarations made by the farmers in request of the subsidy payments and the real
crop in the fields. While currently a minimum of 5% from the applications is cross-
checked either by field sampling or by remote sensing, the developed methodology
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allowed checking the compliance of the declarations submitted by the farmers for
all agricultural parcels with individual areas exceeding 0.3 ha.

Moreover, as the service automatically detects and signals the parcels with the
highest probability not to grow the crop declared by the farmer, it makes the regu-
lator’s decision more efficient in selecting the parcels for field control or control
through very high-resolution imagery.

Business Impact for the Trial Stage in Italy

The marker-based approach proposed by e-GEOS for the trial stage in Italy has
demonstrated its applicability not only for CAP monitoring, but also opening up the
street for future innovation in the market. e-GEOS is active in the agro-insurance
and CAP market segments, with a network of actual and potential customers and
users, including the paying agencies operating in different regions of the country.
Therefore, the CAP-related developed products have been strongly related to the
Italian agricultural policy needs [9].

Business Impact for the Trial Stage in Greece

GAIA EPICHEIREIN, through its associated network of farmer service centers
(FSCs), provides collection and advisory services to the Greek Farmers concerning
the submission of the aid application for direct payments, including eligibility pre-
checkmechanisms for error reduction and proof provision. The total number of hold-
ings in Greece for 2016 was 686.818. GAIA subsidy services are mainly oriented to
aging small-sized farmers, which own 80% of the holdings in Greece. Over the last
two annual periods, GAIA EPICHEIREIN provided collection services and cross-
compliance checks to 76% of the holdings. Even if GAIA EPICHEIREIN has a
market share of 76%, the ongoing CAP changes and trends, the differentiations in
the internal market and the new business plans for smart farming (driven by the
evolution in sensor and space technology) indicate that GAIA EPICHEIREIN needs
to evolve its services in order to keep its competitive advantage and sustain its market
share [9].

For the Greek scenario, the offered DataBio solutions allow the farmer (benefi-
ciary) to deal effectively with the greening requirements. More specifically, DataBio
solutions will be a valuable tool within the suite of digital CAP support services
offered by GAIA EPICHEREIN’s and its FSCs that support the crop declaration
process. During the process and usually after the declaration period closes and error-
checking tools are applied, the FSC would be able to check the farmer’s claim for
the greening requirements, examine the results, and inform the farmer for follow-up
activities that better serve his/her interests.

Apart from the exploitation value for the partners involved, the pilot introduced
concrete benefits for the farmers and the agri-food sector as well. The results of the
pilot effectively showed that EO-based crop identification services, tailored formoni-
toring greening compliance, offered a layer of protection against errors in the decla-
ration process which could lead to a significant financial impact for the farmer. Addi-
tionally, and from a higher level, agricultural monitoring approaches could contribute



20 Copernicus Data and CAP Subsidies Control 287

to more efficient funding absorption, thus securing investments and progress in the
agri-food sector.

20.4.2 Business Impact of the Technology on General Level

The added value of multi-temporal copernicus sentinel data and applied new tech-
nologies (automated detection and determination using machine learning) in the
context of CAP support can be explained through two different, but complementary
aspects:

Copernicus Sentinel Data Stream

For the first time in the history of Earth Observation, almost every single region in
Europe benefits from repetitive (5 days in average) observations with solid spatial
and spectral resolution. Generally speaking, this stack of information enables early
usage of EO data in the agricultural season, which in turn allows the extraction of
preliminary conclusions that can be used within control with remote sensing (CwRS)
decision trees (e.g., detection of winter crops, post-winter water ponding).

The 10 m spatial resolution enables the survey of the smaller plots, that in many
European countries (including Romania), represent a significant number of CAP
applications.

The spectral resolution provides all the necessary information (visible, NIR,
SWIR) for observing the crops phenology and for distinguishing additional features
(e.g., water, burned area, built-up).

The “turning data into information” policy is fully exploited, by transforming the
wealth of satellite and in-situ data into valued-added services based on processing
and analyzing the data, monitoring changes and making the datasets comparable,
integrating them with other sources and, finally, validating the results.

Finally, the no-cost policy of the EC and the unprecedented volume of data on
a full, free and open basis foster new business opportunities and job creation and
provide the necessary sustainability to invest in developing copernicus data-based
workflows.

Application of New Technologies

The usage of time series of Sentinel-2 satellite images for crop detection can increase
the results precision, as the 5-days revisit time almost triples the number of surveys
compared to the Landsat feed (16-days revisit time). An automatic nation-wide tech-
nology will warrant constant quality of the results over large areas and time periods.
On the short time scale, this will allow avoiding human subjectivity.

The usage of the new technology is significantly decreasing the time, money,
and human power required currently by the control with remote sensing (CwRS)
campaigns. Instead of one year of administrative actions (from very high-resolution
data selection to the real photo interpretation), the decisionmakerwill have the option
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to solely focus on areas already marked as red lights or on areas known as prone to
risk.

The usage of the early results will also enable the use of technology as a deterrent
tool; e.g., the farmer’s declaration lists awinter crop, and nowinter cropwas observed
at the end of March.

20.5 How-to-Guideline for Practice When and How to Use
the Technology

The three CAP support approaches use earth observation data time series, thus
providing wide and repetitive homogeneous coverage, translated into an unprece-
dented amount of information. The technologies benefitting from these data volumes
represent a solid solution for a continuous monitoring of CAP compliance. The EU
Copernicus Sentinel-2 satellites hold an enhanced revisiting time, delivering regular
coverage over large areas and allowing a uniform observation of the agricultural
plots. The superior spectral resolution allows the identification of the phenological
growth stages and the distinction between various crop types or classes.

However, the pilots also had to overcome some major drawbacks, mainly related
to data fusion, georeferencing errors (deeply affecting the quality of the cropmapping
results for narrow or small plots), cloud and shadowmasking, or semantic confusions
between crop classes.

The highly automated proposed approaches allow the implementation of big data
analytics using various crop indicators, resulting in reliable, cost and time saving
procedures, and allowing amore complete and efficientmanagement of EU subsidies,
strongly enhancing their procedure for combating non-compliant behaviors.

The developed techniques have undergone continuous development and improve-
ments, are replicable at any scale level and can be implemented for any other area
of interest. Any further developments of the CAP monitoring technologies will be
able to provide products tuned in order to fulfill the requirements of the present and
future EU common agricultural policy. This application of big data processing tech-
nologies based on copernicus sentinel data will also significantly improve the way
which farmers are doing online aid applications and, for the paying agencies, will
help to keep the LPIS up-to-date and to move to the new checks by monitoring.

Moreover, the Copernicus free and open data policy, together with the long-term
availability certainty, are important factors that highly help the developed solutions
enter the European market and trigger collaborations between government agencies
(regional or national paying agencies) and private sector companies.

TheDataBio European Lighthouse project offered new business opportunities and
aimed to directly improve a series of CAP support activities for providing supporting
tools and services, in line with the commands of the EU’s new agricultural moni-
toring approach. The effort is expected to continue in the next years for all the three
companies, setting strategic targets such as integration of information available in
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several institutional registers, active use of technologically most relevant and cost-
efficient remote sensing services and proactive cooperation with rural communities
and farmers.

20.6 Summary and Conclusion

Common agricultural policies and activities from national and regional paying agen-
cies can radically benefit from the use of continuous satellite monitoring instead of
random and limited controls.

The DataBio European Lighthouse project, with its three different CAP Support
approaches, in Romania, Italy, and Greece, demonstrates the potentiality for final
users to exploit Copernicus data in the agriculture domain, a key economic sector
for most of the European countries. The proposed methodologies have undergone
continuous development and improvements over the last years, offering a wide range
of opportunities in order to enhance the implementation of the CAP. The continuous
agricultural monitoring services, based on the processing and analysis of Copernicus
satellite imagery time series, are not just CAP compliance tools, but can also offer
a great range of supplementary information for both public authorities and farmers
and can support the set-up ofmore environmentally friendly and efficient agricultural
practices.

Thismarket is one of themore promising in terms of exploiting the full potential of
earth observation deployment and represents a successful example of how policies
and strategies drive advancement in big data processing technologies, encourage
innovationwithin the public sector and trigger long-term private–public partnerships.
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