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Farm Weather Insurance Assessment

Antonella Catucci, Alessia Tricomi, Laura De Vendictis, Savvas Rogotis,
and Nikolaos Marianos

Abstract The pilot aimed to develop services supporting both the risk and the
damage assessment in the agro-insurance domain. It is based on the use of remotely
sensed data, integrated with meteorological data, and adopts machine learning and
artificial intelligence tools. Netherlands and Greece have been selected as pilot areas
. In the Netherlands, the pilot was focused on potato crops for the identification of
areas with higher risk, based on the historical analysis of heavy rains. In addition, it
covered automated detection of potato parcels with anomalous behaviours (damage
assessment) from satellite data, meteorological parameters and soil characteristics.
In Greece, the pilot worked with 7 annual crops of high economic interest to the
national agricultural sector. The crops have been modelled exploiting the last 3-
year NDVI measurements to identify their deviations from the normal crop health
behaviour for an early identification of affected parcels in case of adverse events.
The models were successfully tested on a flooding event that occurred in 2019 in
the Komotini region. Even though the proposed methodologies should be tested over
larger areas and compared against a larger validation dataset, the results already now
demonstrate how to reduce the operating costs of damage assessors through a more
precise and automatic risk assessment. Additionally, the identification of parame-
ters that most affect the crop yield could transform the insurance industry through
index-based solutions allowing to dramatically cut costs.
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19.1 Introduction, Motivation and Goals

Agricultural insurance protects against loss or damages to crops or livestock. It
has a great potential to provide a value to farmers and their communities, both by
protecting farmers when shocks occur and by encouraging greater investment in
crops. This concept is particularly evident if considering current challenges related
to climate change effects and increase of world population. However, in practice,
insurance effectiveness has often been constrained by the difficulty of designing
optimal products andbydemand constraints. Theobjective of the pilot is the provision
and assessment of services for the agriculture insurancemarket in selected areas based
on the Copernicus satellite data series, also integrated with meteorological data, and
other ground available data by using big data methods and AI tools.

Among the relevant needs of the insurances operating in agriculture, there are: the
more consolidated procedures of damage assessment by means of earth observation
techniques and the most promising evaluation of risk parameters down to parcel
level.

For the risk assessment phase, the integrated usage of historical meteorological
series and satellite derived indices, supported by proper modelling, allow to tune
EO-based parameters in support to the risk estimation phase. The availability of this
information allows a better estimation of potential risky areas and then a more accu-
rate pricing and designing of insurance products. These advantages could positively
impact the increase of insurance penetration. Moreover, the definition of key param-
eters related to the field lost by using machine learning-based approaches has the
potential to support the design of innovative insurance products (such as parametric
insurance) that are very promising for farmer protection.

For damage assessment, the operational adoption of remotely sensed data allows
optimization and tuning of new insurance products based on objective parameters.
This could imply a strong reduction of ground surveys, with positive impact on
insurance costs and reduction of premium to be paid by the farmers.

19.2 Pilot Set-Up

The pilot included trial stages in two different areas of interest: the Netherlands and
Greece.

In the Netherlands, the pilot has been realized considering potato crop that is
particularly relevant for the national market. The pilot included the generation of
different products to enable the detection of parcels with anomalous behaviours and
the identification of the most influencing parameters of high impact on crop yield.
Some examples of products are introduced here:

• Weather-based riskmap that is intended to showoccurrences of extremeweather
events, heavy rains in particular, in order to identify areas with possible high
damage frequency.
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• Intra-field analysis that is aimed to detect the growth homogeneity and
evidencing irregular areas within the parcel, providing an indicator of field
anomalies.

Different partners have been involved in the pilot activities. Copernicus satellite
data (both optical and SAR) and services have been provided by e-GEOS, the provi-
sion of machine learning technology by EXUS, meteorological data and services
from MEEO. The involvement of end-users and the provision of local agronomic
knowledge have been assured by NBAdvice.

InGreece, the pilot worked with annual crops (e.g. tomato, maize, cotton) of high
economic interest to the Greek agricultural sector, in several regions of Northern
Greece and in particular in Evros, Komotini and Thessaly. The pilot evaluated inci-
dents like floods and heatwaves that fall under the definition of the climate-related
systemic perils. The pilot effectively demonstrated how big data enabled technolo-
gies and services dedicated for the agriculture insurance market can eliminate the
need for on-the-spot checks for damage assessment and promote rapid payouts. The
role of field-level data has been revealed as their collection, and monitoring is impor-
tant in order to determine if critical/disastrous conditions are present (heat waves,
excessive rains and high winds). Field-level data can be seen as the “starting point”
of the damage assessment methodology, followed within the Greek pilot case. More-
over, regional statistics deriving from this data can serve as a baseline for the agri-
climate underwriting processes followed by the insurance companies who design
new agricultural insurance products.

NP led the activities for the execution of the full lifecycle of this pilot case with
technical support from FRAUNHOFER and CSEM.Moreover, a major Greek insur-
ance company, INTERAMERICAN, was actively engaged in the pilot activities,
bringing critical insights and its long-standing expertise into fine-tuning and shaping
the technological tools to be offered to the agriculture insurance market.

The goal of this particular pilot case was to enable a better management of the
damage assessment process (reduction of the required time) and to support other
processes of the insurance companies.

19.3 Technology Used

19.3.1 Technology Pipeline

For the trial stage in the Netherlands, the pipeline has been composed of three
main logical steps (Fig. 19.1):

Data Preparation: a set of data has been collected and properly pre-processed in
order to get them ready for the processing phase. In particular, the following datasets
have been considered: Sentinel-2 optical data, Sentinel-1 SAR data (soil moisture),
Proba-V data, weather data includingmain parameters influencing crop growth (land
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Fig. 19.1 Overview of the three main components of the pipeline for the trial in the Netherlands

surface temperature, 24-h precipitation accumulations, humidity, evapotranspiration)
and crop data (crop type, parcel boundaries and location, soil type).

Processing Engine: the processing step includes different approaches implemented
by means of proprietary algorithms that allows the extraction of relevant information
that can be used by insurance companies and risk managers. In particular, the three
main components are:

• classification and correlation extraction based on machine learning methods
• inter-field anomaly detection and intra-field algorithms
• risk analysis tools.

The processing engine is composed of different blocks that are part of the DataBio
shared architecture.

Visualization: the visualization phase has been realised by components that are part
of the DataBio architecture.

For the trial stage inGreece, a set of data collection, processing and visualization
components has been used so as to technically support the pilot activities. More
specifically the following technological components should be acknowledged:

In terms of Data Collection, a set of heterogeneous data is required in different
spatial and temporal resolutions to provide services to the insurance companies.
Moreover, historical data is critical for shaping insurance products and conducting
effective assessments. Data abundancy holds the key for creating sound insurance
products/tools. To collect all this data several data collection modules are used:

• In-situ telemetric stations provided byNP, so-called gaiatrons, that collect weather
data,
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• Modules for the collection, pre-processing of earth observation products, the
extraction of higher-level products and assignment of vegetation indices at parcel
level.

In terms of Data Processing:

• GAIABus DataSmart Machine Learning Subcomponent (NP): The specific
component supports: EO data preparation and handling functionalities. It also
supports multi-temporal object-based monitoring and modelling for damage
assessment.

• GAIABus DataSmart Real-Time Streaming Subcomponent (NP): This compo-
nent supports:

– Real-time data streammonitoring for NP’s gaiatrons installed in the pilot sites,
– Real-time validation of data,
– Real-time parsing and cross-checking.

• Neural Network Suite (CSEM): this component was used as a machine learning
crop identification system for the detection of crop discrepancies that might derive
from reported weather-related catastrophic events.

• Georocket, Geotoolbox and SmartVis3D (FRAUNHOFER): This component has
a dual role: It is a back-end system for big data preparation, handling fast querying
and spatial aggregations (data courtesy of NP), as well as a front-end application
for interactive data visualization and analytics.

In terms of DataVisualization, themain component in this category isNeurocode
(NP). Neurocode allowed the creation of the main pilot UIs in order to be used by
the end-users (insurance companies). An additional DataBio component providing
information visualization functionalities is Georocket (FRAUNHOFER).

19.3.2 Reflection on Technology Use

In the Netherlands, an historical risk map was generated based on SPOT-
VGT/Proba-V 1 km fAPAR data from 2000 to 2017 (Fig. 19.2). The index was
defined as the sum of fAPAR over the growing season. The risk map allows to detect
zones with a higher damage frequency in the past. This technology seems to be effec-
tive to generate and to give an overview of the risk in a selected area. Nevertheless,
more accurate datasets can be used to analyse more in depth the situation.

In addition, weather-based risk maps were produced to complement the histor-
ical risk map. The weather risk maps are intended to show the occurrence of extreme
weather events in the past and are aimed to investigate if a reliable correlation between
damages occurred to the crops and extremeweather events (heavy rains, in particular)
occurs. The main goal was to define damage patterns and to zoom in on areas with
a high damage frequency. At the end, eight different risk maps were calculated, one
per threshold provided by end-users. Moreover, starting from the list of dates related
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Fig. 19.2 Map classifying the Netherlands territory in terms of number of years with damages

to damage claims and provided by the insurance companies for the years 2015–2018,
the extraction of precipitation values (with the respective location coordinates) has
been performed, in order to find further locations (in addition to those provided by
the insurance company) where heavy rain events have occurred (see Fig. 19.3).

As concerning the detection of parcels with anomalous behaviours and identifi-
cation of influencing parameters, the following approach was considered.

The dataset was split according to the different types of potato, and each groupwas
clustered using satellite data, meteorological measurements and soil characteristics
with a monthly aggregation.

Fig. 19.3 Map of
precipitation extracted from
KNMI dataset on date
30/08/2015. Yellow points:
locations provided by the
insurance company—blue
points: further locations with
24-h precipitation values
above the 50 mm threshold
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Fig. 19.4 Cumulative distribution function ofmean normalized difference vegetation index (NDVI)
grouped by cluster and type of potato

The clustering-based service has proved to be a very useful technique to identify
parcels with anomalous behaviour and allows to consider in a single analysis all the
variables that can affect the growth and the yield of a crop (Fig. 19.4). Unfortunately,
it was not possible to validate the results due to lack of data from insurances but
the approach seems to be very promising. Moreover, the performed activity reveals
that temperature is a factor with high impact on NDVI of potatoes. See Fig. 19.5
where the first plot shows the average NDVI trends of parcels belonging to different
clusters. The second one is related to the average temperature recorded over the area
defined by the “blue” cluster, characterized by higher temperatures and lower NDVI
values in the peak period, and over the area defined by the “red” cluster, characterized
by lower temperatures and higher values of NDVI in the peak period.

Lastly, the intra-field analysis was performed over areas with a high presence
of potatoes. The scope of the analysis has been to analyse each parcel to detect the
growth homogeneity and evidencing irregular areas, providing an indicator of field
anomalies. In order to resume the approach, a brief description of the intra-field
analysis follows.

After creating an inner buffer in order to avoid border effects, the extraction of
temporal profile at parcel level was performed. Some filters were applied in order
to exclude parcels that were not cultivated or areas with high percentage of cloud
coverage. Then, the observation that corresponded to the maximum growth stage of
the crop was identified. At the end, each parcel was classified at pixel level according
to statistical thresholds. See Fig. 19.6.
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Fig. 19.5 NDVI and temperature trends over parcels belonging to different clusters

Intra-field service is extremely effective in detecting soil anomalies that do not
allow crops to grow homogeneously within parcels. This service provides an indi-
cator of soil goodness: texture and depth, for instance, have consequences on water
consumption and on regular growth.

InGreece, crop type and area tailored cropmodels have been created for thewhole
Greek arable area making use of EO-derived NDVI measurements that have proven
to be suitable for assessing plant health. In total, for each one of the 55 Sentinel-2 tiles
that cover the whole Greek arable land, 7 major arable crops for the local agri-food
sector were modelled and namely wheat, maize, maize silage, potato, tomato, cotton
and rice (55 × 7 = 385 models in total). The models were developed exploiting
multi-year NDVI measurements from the available last three (3) cultivating periods
and instead of using sample statistics (few objects of interest but many observations
referring to them), population statistic methods (large number of objects of interest
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Fig. 19.6 Areas with anomalous growth within a parcel (in red and orange)

but with few observations referring to them) were employed instead in order to iden-
tify NDVI anomalies. As sound insurance models are typically created using large
multi-year historical records (~30 years), this approach is ideal for deriving robust
estimates for setting anomaly thresholds (exploiting the space–time cube to have
enough degrees of freedom). The goal is to detect deviations in NDVI measurements
in respect to what is considered normal crop health behaviour for a specific time
instance. Thereby, each crop model consists of 36 NDVI probability distributions
that refer to all decades of the year. By adjusting these high and low thresholds (part
of the strategy of the insurance company), it is evident that measurements found at
the distribution extremes can be spotted and flagged as anomalies. Typically, insur-
ance companies are looking for negative anomalies (below 15%) that provide strong
indications of a disastrous incident (Fig. 19.7).

The figures (Table 19.1) graphically depict three different crop models created
using the aforementioned procedure.

The effectiveness of the proposed monitoring methodology was tested against a
flooding event (11/7/2019) in Komotini that affected cotton farmers in the region and
led to significant crop losses (Fig. 19.8).

Initially, Gaiatron measurements confirmed that flooding conditions were present
at the area as a result of increased volumes of rainfalls. This proves that the region
might have been affected by the systemic risk and should be more thoroughly
examined (Fig. 19.9).

This triggered an EO-based crop monitoring approach that captures the impact
of the peril to crop’s health. After only 2 weeks, the approach identified statis-
tically significant differences compared to the respective crop model that indi-
cates damages at field level. This validates the initial hypothesis that floods were
responsible for severely affecting the region’s crop health and consequently proves
that the established methodology can be a powerful tool for early identification of
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Fig. 19.7 Crop NDVI probability distribution referring to a single decade of the year (wheat-Larisa
region-2nd decade of February). Anomalies can be found at the distribution extremes

Table 19.1 Crop models of cotton, maize and wheat

Cotton model in the Komotini region (T35TLF
tile) by decade (horizontal axis). Light green
threshold indicates lower 15% extremes while
dark green threshold indicates upper 85%
extremes of the probability distribution. Red line
is presenting a single parcel status for the whole
2018 with its NDVI measurements staying within
“normal” ranges for the critical cultivating periods

Maize model in Evros region (T35TMF tile) by
decade (horizontal axis). Light green threshold
indicates lower 15% extremes while dark green
threshold indicates upper 85% extremes of the
probability distribution. Red line is presenting a
single parcel status for the whole 2018 with only
one (1) NDVI measurement falling under the
“normal” ranges for the critical cultivating periods
(twenty-first decade)

(continued)
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Table 19.1 (continued)

Wheat model in Larisa region (T34SFJ tile) by
decade (horizontal axis). Light green threshold
indicates lower 15% extremes while dark green
threshold indicates upper 85% extremes of the
probability distribution. Red line is presenting a
single parcel status for the whole 2018 with its
NDVI measurements staying within “normal”
ranges for the critical cultivating periods

Fig. 19.8 Aftermath of the floods in Komotini region (11/7/2019)

Fig. 19.9 Rainfall volume (mm) in the Komotini region

potentially affected/damaged parcels, crop types and areas. The findings have been
presented both to the insurance company and the farmers in order to show how
these technologies can bridge the gap among the farming and the insurance world
(Fig. 19.10).

By mapping the outcome of the followed damage assessment procedures on top
of a map, it is evident that high-level assumptions can be made. This involves the risk
at which the insurance company is exposed to and prioritizing the work that needs to
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Fig. 19.10 Parcel monitoring at Komotini region (cotton) showing negative anomaly (deviation)
for two consecutive decades just after the disastrous incident

be conducted by field damage evaluators (until now prioritization is not data-driven)
that are advised to beginwith parcels exhibiting higher damage estimates and steadily
move to those with lower ones (Fig. 19.11).

Fig. 19.11 High-level overview of the affected area, color coded with the output of the followed
damage assessment procedures
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19.4 Business Value and Impact

19.4.1 Business Impact of the Pilot

Business Impact of the Pilot—Netherlands

Results are promising in terms of general procedures and methods. These need to be
tested over larger areas and compared with validation data provided by the final users
(insurance). The data availability is a crucial challenge for thismarket considering the
very restricted dissemination level of the information and the high competitive level.
In fact, the insurance companies are not interested in supporting the development of
products that can be available also for their competitors. To overcome these potential
limitations, a set-up phase of the service in an operative environment is necessary in
close cooperation with the insurance company involved. This collaboration has the
potential to transform the tested methods into operative services filling the existing
gap between prototype development and final product.

In order to analyse the benefit of the tested technology for the insurance industry
(risk estimation also by means of machine learning), it is important to define the
three levers of value in insurance market:

1. Sell More
2. Manage Risk Better
3. Cost Less to Operate.

The activity performed in the pilot impacts essentially the point “Cost Less to
Operate”. One clear way to reduce operating costs in insurance is to add informa-
tion and increase automation to complex decision-making processes, such as under-
writing. To keep processing costs in check, many insurance carriers have a goal to
increase the data available in support to a more precise and automatic risk evaluation
in support of the underwriting. In fact, the use of decision management technologies
like risk maps, machine learning and artificial intelligence can reduce the time spent
to analyse each contract and focus team members on higher value activities. More-
over, the identification of parameters that most affect the crop yield performed in the
pilot can support an innovative insurance typology called “parametric insurance”.
This particular insurance typology is revolutionizing the insurance industry allowing
to dramatically cut operative costs removing the in-field direct controls.

The first step in building a parametric product is determining the correlation
between the crop losses and a particular index representative of the climate event
associated with the loss. The activity performed in the pilot by using a machine
learning approach is to identify the most important parameter affecting the crop
yield that can be the basis for a parametric or index-based insurance.

Quantifying the potential impact of the proposed solution for the insurance
industry is a complex issue considering the work necessary to transform the method-
ology in an operative service. Just to provide some business projection, it can
be considered that direct European agricultural insurance premiums in 2016 were
2.15 me (estimated by Munich RE) (Fig. 19.12).
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Fig. 19.12 Premium value distribution in Europe estimated by Munich RE

It can be considered that around 70% of this amount is spent by insurances to
reimburse damages and the remaining 30% is used to pay internal costs and re-
insurances. Considering this dimension and considering the row and very preliminary
estimation obtained by the pilot, it is possible to assume that the cost that can be saved
by using EO-based services in support of risk assessment is around 2% of the total
cost used by the insurance to pay internal costs. Table 19.2 summarizes the potential
available market for these services in Europe.

Business Impact of the Pilot—Greece

There is a constantly increasing need for agricultural insurance services, due to the
adverse effects of climate change and the lackof sufficient compensation frameworks.
From their side, insurance companieswith offerings for the agricultural sector need to
have precise and reliable systems that will facilitate the damage evaluation processes
and will ensure swift and fair compensation to those who actually deserve it, thus

Table 19.2 Market projection in Europe

Market projections
Market segment: insurance

Size by revenue Market share

Available market in
Europe

2150 me 30% * 2% =
12.9 me

100% Potential cost reduction
by using downstream
services supporting the
insurance industry is
assumed the 2% of the
total insurances income
(30% of the insurance
premium)
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allowing follow-up/reactive measures to be undertaken and supporting food security
in general.

In the two trial periods of DataBio, tailored agri-insurance tools and services have
been developed with and for the agri-insurance companies that perform EO-based
damage assessment at parcel level and target towards evolving to next-generation
index-based insurance solutions. The pilot results clearly show that data-driven
services can facilitate the work of the insurance companies, offering tools that were
previously unavailable andwere responsible for severe bottlenecks in their day-to-day
activities including:

• long wait for official damage evaluation reports,
• dependence on the human factor,
• difficulties in prioritizing work after receiving several compensation claims.

19.4.2 Business Impact of the Technology on General Level

The remote sensing literature offers numerous examples proposing earth observation
techniques to support insurance, for example in the assessment of damage from fire
and hail [1, 2]. To date, however, few operational applications of remote sensing for
insurance exist and are operative. Many scientific papers claiming potential applica-
tions of remote sensing [3–5], typically stress the technical possibilities, but without
considering and proving its contribution in terms of “value” for the insurer. The
discrepancy between the perceived potential and the actual uptake by the industry is
probably the result of two main reasons:

• technological solutions not adequate and too expensive, in relation to the valued
added

• over-optimistic assumptions by the remote sensing community, regarding the
industry’s readiness to adopt the information by remote sensing.

Despite this situation, EO can still play a central role in supporting the insurance
market in agriculture trying to design services that can really bring value to the
users. This is the case of supporting in field verification and parametric insurance
products (innovative insurance products). Thepresent pilot investigates these services
demonstrating the potential andopeningup the route for newcollaborationwith users.

19.5 How-to-Guideline for Practice When and How to Use
the Technology

As said, the methodology needs to have a pre-operational set-up phase in close
collaboration with the insurance company. In fact, the developed method can be



262 A. Catucci et al.

applied to different areas and crops but only if an adequate training set of data
related to occurred losses are available.

In Greece, the proposed solution is based onmature technologies and high-quality
data, in order to ensure high accuracy and quality for the designed tools and services.
EO-based methodologies were used in order to extract useful information from EO
products for:

• damage assessment targeting towards a faster and more objective claims moni-
toring approach just after the disaster,

• the adverse selection problem. Through the use of high-quality data, it will be
possible to identify the underlying risks associatedwith a given agricultural parcel,
thus supporting the everyday work of an underwriter,

• large-scale insurance product/risk monitoring, that will allow the insurer to
assess/monitor the risk at which the insurance company is exposed to from a
higher level.

More and more insurance companies are interested in entering the agricultural
market, which exhibits high value, due to its vulnerability to extreme weather
phenomena. However, before they integrate such technology- and data-driven tools,
they need to be persuaded that these tools will help them reduce operational costs
by minimizing the human intervention and ensuring high quality of services. The
involvement of one of the largest insurance companies in Greece in this pilot case
(INTERAMERICAN) helps in bringing the proposed solution closer to the market,
and with their precious feedback, it will be more easily available for commercial
exploitation.

19.6 Summary and Conclusion

The objective for the pilot was to find useful services for the insurance to gain more
insight about the risk and the impact of heavy rain events for crops. In theNetherlands,
for instance, potato-crops are very sensitive to heavy rain, which may cause flooding
of the field (due to lack of runoff) and saturation of the soil. This may cause the
loss of the potato yield in just a few days. Areas of greater risk can be charged
with higher costs for the farmer. The investigated correlation among precipitation
and losses can support the identification of index for parametric insurance products.
Moreover, instead of just raising the premium, the intention of the pilot was to be
able to create awareness and incentives for farmers to prevent losses. Therefore, the
services serve multiple purposes. Weather is an important factor in crop insurance,
because it represents a critical aspect influencing yield. The analysis of the long-term
precipitation, categorized in threshold values, for intense rain events, gave insight
in the areas with higher risk. In the pilot, the relation between one single event and
the potential yield loss has been analysed. For this purpose, an annotated set of data,
where actual losses were determined, was necessary. Because of the privacy issues
related to sharing the damage data, the location of damaged fields in the Netherlands
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could not be pinpointed precisely enough for correlation to the EO data. Without the
details about historical events, this relationship could not be determined. In Greece,
where a massive flood event occurred, impacts have been identified by analysing
NDVI anomalies for the most common crop types. During the pilot activities, we
realized that a service, based on the alert that a heavy rain event took place, would be
useful for gaining insight about the impact on other locations. Additionally, in order
to find the most limiting aspect in the crop development, we created a dataset based
on the Sentinel-2 raster size to combine NDVI with SAR, precipitation (cumulative),
temperature and soil type. The developed methodology, however, is valuable for
further analysis, not limited to insurance topics and can be extended to other crops
in support to risk assessment and also for design of new insurance products such as
parametric insurance.
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