
Chapter 13
Big Data Visualisation

Miguel Ángel Esbrí, Eva Klien, Karel Charvát, Christian Zinke-Wehlmann,
Javier Hitado, and Caj Södergård

Abstract In this chapter, we introduce the topic of big data visualizationwith a focus
on the challenges related to geospatial data. We present several efficient techniques
to address these challenges. We then provide examples from the DataBio project
of visualisation solutions. These examples show that there are many technologies
and software components available for big data visualisation, but they also point to
limitations and the need for further research and development.

13.1 Advanced Big Data Visualisation

Data visualisation is the graphical representation of information and data. By using
visual elements like charts, graphs and maps, data visualisation tools provide an
accessible way to see and understand trends, outliers and patterns in data [1]. More

M. Á. Esbrí (B) · J. Hitado
Atos Spain, Albarracin 25, 28004 Madrid, Spain
e-mail: miguel.esbri@atos.net

J. Hitado
e-mail: javier.hitadosimarro@atos.net

E. Klien
Fraunhofer-Institute for Computer Graphics Research IGD, Fraunhoferstr. 5, Darmstadt, Germany
e-mail: eva.klien@igd.fraunhofer.de

K. Charvát
LESPROJEKT-SLUŽBY Ltd, Martinov 197, 27713 Zaryby, Czech Republic
e-mail: charvat@lesprojekt.cz

C. Zinke-Wehlmann
Institut for Applied Informatics e.V. at the University of Leipzig, Goerdelering 9, Leipzig,
Germany
e-mail: zinke@infai.org

C. Södergård
VTT Technical Research Centre of Finland, Espoo, Finland
e-mail: Caj.Sodergard@vtt.fi

© The Author(s) 2021
C. Södergård et al. (eds.), Big Data in Bioeconomy,
https://doi.org/10.1007/978-3-030-71069-9_13

169

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71069-9_13&domain=pdf
mailto:miguel.esbri@atos.net
mailto:javier.hitadosimarro@atos.net
mailto:eva.klien@igd.fraunhofer.de
mailto:charvat@lesprojekt.cz
mailto:zinke@infai.org
mailto:Caj.Sodergard@vtt.fi
https://doi.org/10.1007/978-3-030-71069-9_13


170 M. A. Esbrí et al.

particularly, the defining feature of big data visualisation is scale, in terms of the vast
amounts of data to be dealt with.

In that sense, the amount of data created by the private and public sectors around
the world is growing every year, skyrocketing with the emergence and popularisation
of the Internet of Things and the many open data initiatives that have made available
a wealth of datasets (typically owned by the public sector) to the public. The Coper-
nicus programme and the data provided by its Sentinel satellite constellation are a
paradigmatic example of this (see Chap. 4).

The underlying problem for decision-makers is that all this data is only useful if
valuable insights can be extracted (sometimes in near real-time) from it, and decisions
can be made based on them. Big data visualisation is not the only way for decision-
makers to analyse data, but big data visualisation techniques offer a fast and effective
way to [2]:

• Review large amounts of data—Data presented in graphical form enables
decision-makers to take in large amounts of data and gain an understanding of
what it means very quickly.

• Spot trends—Time-sequence data often captures trends, but spotting trends hidden
in data is notoriously hard to do—especially when the sources are diverse, and the
quantity of data is large. The use of appropriate big data visualisation techniques
can make it easy to spot these trends and take decisions.

• Identify correlations and unexpected relationships—One of the huge strengths
of big data visualisation is that it enables users to explore datasets—not to find
answers to specific questions, but to discover what unexpected insights the data
can reveal. This can be done by adding or removing datasets, changing scales,
removing outliers and changing visualisation types.

• Present the data to others—Anoften-overlooked feature of big data visualisation is
that it provides a highly effective way to communicate any insights that it surfaces
to others by conveyingmeaning very quickly and in an easily understandable way.

Besides, an important aspect of big data visualisation is choosing the most effec-
tive way to visualise the data to surface any insights it may contain. In some circum-
stances, simple graphic tools such as pie charts or histograms may be enough, but
with large, numerous and diverse datasets more advanced visualisation techniques
may be more appropriate. Various big data visualisation graphics examples include:

• Linear: Lists of items, items sorted by a single feature, text tables, highlight table
• 2D/Planar/geospatial: Cartograms, dot distribution maps, proportional symbol

maps, contour maps.
• 3D/Volumetric: 3D computer models, computer simulations.
• Temporal: Timelines, time series charts, connected scatter plots, arc diagrams,

circumplex charts.
• Multidimensional: Pie charts, histograms, histogram, matrix, tag clouds, bar

charts, tree maps, heat maps, spider charts, area chart, Box-and-whisker Plots,
bubble cloud, bullet graph, circle view, Gantt chart, network, polar area, scatter
plot (2D or 3D), streamgraph, wedge stack graph.



13 Big Data Visualisation 171

Fig. 13.1 Chart selector guide [3]

• Tree/hierarchical: Dendrograms, radial tree charts, hyperbolic tree charts.
• Any mix-and-match combination in a dashboard.

The following chart selection guide (Fig. 13.1) summarises the selection of the
most appropriate chart types depending on what it is intended to be shown:

Thevariations in the visualisationof geoinformation (GI) aremore limitedbecause
it is fundamentally linked to spatial context and geographical maps. The first priority
of GI visualisation tends to be more geographical than to be informational or graph-
ical. Maps allow us to communicate spatial information effectively. Big data visual-
isation opens the possibilities of GI visualisation in terms of spatial extent, spatial
resolution and density of content. New techniques help mastering the vast amount
of information, thus strengthening the spatial context and facilitating the exploration
of new meanings and insights through map and other kinds of representations.

13.2 Techniques for Visualising Very Large Amounts
of Geospatial Data

Different visualisation charts were presented in the previous section, the selection of
which is dependent on the type of information and the goals of the target audience.
However, in many occasions, the resulting visualisation requires the use of different



172 M. A. Esbrí et al.

techniques that allow simplifying, aggregating and reducing in various orders of
magnitude the information that is finally used in the graphic charts and maps.

The following section presents three different and complementary approaches to
deal with the visualisation of large amounts of geospatial data.

13.2.1 Map Generalisation

Cartographic generalisation, or map generalisation, includes all changes in a map
that are made when one derives a smaller-scale map from a larger-scale map or map
data or vice-versa [4]. Generalisation seeks to abstract spatial information at a high
level of detail to information that can be rendered on a map at a lower level of detail.
This is of high importance when dealing with massive amounts of data, as it would
be prohibitively—in terms of computation, data transfer and user experience (i.e.
real-time interactivity)—to try to render the several gigabytes of data “as it is”.

In that sense, suitable and useful maps typically have the right balance between
the map’s purpose and the precise detail of the subject being mapped. Well-
generalised maps are those that emphasise the most important map elements while
still representing the world in the most faithful and recognisable way [5].

There are many cartographic techniques that may fall into the broad category of
generalisation [4, 6]. Among the most commonly used methods, we can find:

• Simplification—allowing to reduce the complexity of the geometries (i.e. lines
and polygons) by eliminating or merging some of their vertices

• Aggregation—allowing to combine or merge some of the geometries (e.g. using
the distance between polygons or by common attribute values) and thus resulting
in a more reduced set of geometries.

• Selection/Elimination—allowing to reduce the number of features in the map
by filtering or retaining them according to certain criteria (e.g. attribute values,
spatial relations such as overlaps and distance between them).

• Typification—This method can be seen as an extreme case of simplification,
where a detailed geometry is replaced by a simpler one to represent the feature in
the map (e.g. a polygon defining the boundaries of a city is replaced by a point).

• Exaggeration—allowing to visually make more prominent some aspects we are
interested in presenting in the map (e.g. represent cities with larger or smaller
point sizes depending on the number of inhabitants).

• Classification—allowing to group into the same category and present in the map
features with similar values.

• Resampling—which allows to reduce the amount of information provided in a
map by changing its spatial resolution (e.g. changing the resolution of a raster
dataset where the original pixel size is resampled from 100 m2 to 1 km2). This
can be seen as a particular case of the aggregation method, involving interpolation
techniques for determining the pixel values of the new resulting raster.



13 Big Data Visualisation 173

13.2.2 Rendered Images Versus the “Real” Data

In general, the process of rendering geospatially enabled information into maps is
quite costly. Usually, the information, either raster- or vector-based, is stored in files
or databases, which must be searched, queried, filtered and then transformed into a
georeferenced map that can be integrated in a desktop or web client. This process
can take longer the more information we have in our repositories, which can be very
inefficient when several concurrent users make requests to the web mapping service
asking for different areas or zoom levels. This can lead to unresponsive services due
to the large workload imposed to the server.

In order to alleviate this issue, web mapping services offer the possibility to send
the maps in the form of a tiled map, which is displayed in the client by joining
dozens of individually requested image or vector data files (tiles) over the Internet.
The advantage of this approach is that instead of loading the whole map instantly,
for each zoom level, the web mapping service divides the imagery into a set of map
tiles, which are logically put in an order which the application can understand. When
the user scrolls the map to a new location, or to a new zoom level or location, the
service decides which tiles are necessary and translates those values into a set of tiles
to retrieve.

Concerning the tiling formats, there are two possibilities, each of them with their
advantages and drawbacks:

Raster tiles are used to divide raster data into small, manageable areas that are
stored as individual files in the filesystem (or BLOBs in a database). The tile-based
approach is fundamental for efficient and improved performance for data loading,
querying, visualisation and transfer of information over the networks. Thus, for
instance, if a user zooms in a map into a small two tile area in a single band image,
the underlying management service (e.g. OGCWMS) needs to fetch only two raster
tile files from the filesystem instead of the entire raster dataset in order to compose
the final image sent to the client.

Raster tiles of 256 × 256 pixel images are a de facto standard; however, 512 ×
512 pixel seems to be the usual size of high-resolution tiles. Other sizes are possible
depending on the purpose (e.g. 64 × 64 pixel images for mobile use), and in fact,
a common approach is to generate a pyramid of different tile sizes that are used
depending on the zoom level requested on the client side (Fig. 13.2).

Vector tiles are similar to raster tiles, but instead of raster images, the data returned
is a vector representation of the features in the tile [7].

At the client side, it is possible to mix raster tiles with vector tiles and make the
best usage of both, e.g. satellite map (raster tiles) with an overlay of streets with
labels available in many languages (vector tiles) (Table 13.1).

As it can be seen, it could be possible to mix raster tiles with vector tiles and make
the best usage of both, e.g. satellite map (raster tiles) with an overlay of different
cartography and thematic layers (vector tiles).

1 https://wiki.osgeo.org/wiki/Vistsos.

https://wiki.osgeo.org/wiki/Vistsos


174 M. A. Esbrí et al.

13.2.3 Use of Graphics Processing Units (GPUs)

Large-scale visualisation is an ideal application for graphics processing unit (GPU)
computing for several reasons [10]:

• Visualisation is a data-intensive application, particularly as the problem size
increases into the petascale. GPUs are well suited for data-intensive tasks.

• Visualisation computations exhibit substantial parallelism, typically both object
parallelism (many objects or parts of objects can be computed/viewed in parallel)
and image parallelism (visualisations produce large images, and image parts can
be computed/viewed in parallel). Parallel computations are necessary for GPUs
to be effective.

• Visualisation tasks should be closely coupled to the graphics system; even though
much of overall visualisation computation may not be graphics centric, the final
stage typically is, and so moving computation closer to the graphics device offers
potential benefits in terms of interactivity and computational steering.

• GPUs can offload computation from CPUs, permitting the entire application to
run faster when GPUs are involved.

More particularly, themany different functions used tomanipulate geospatial data
create additional processing workloads ideally fitted to GPU-accelerated solutions.
Examples of these functions include:

• Filtering by area, attribute, series, geometry, etc.
• Aggregation, potentially in histograms.
• Geo-fencing based on triggers.
• Generating videos of events.
• Creation of heat maps.

Nowadays, there are big data solutions and frameworks leveraging in GPU capa-
bilities for improving the data processing and rendering (both at server and client
side), among others:

• Server side:

Fig. 13.2 Pyramid tile structure1



13 Big Data Visualisation 175

Table 13.1 Comparison raster and vector tiles use (pros/contras) [8, 9]

Raster tiles Vector tiles

Pros • Tiles are generally rendered in advance
on the server and streamed to the
destination

• Detailed tiles can be generated and
served

• More suitable for the display of imagery
and shaded terrain

• Lower requirements for end users
hardware

• Still a bit better support in web
JavaScript libraries and desktop GIS
software

• Tiles are rendered quickly and are only
20–50 per cent the file size of raster tiles

• More tiles can be produced per second
• Less bandwidth is needed due to the
smaller size of tile packages—making
vector tiles a better choice when
streaming to devices

• Map styles (colour, grey, night mode,
etc.) can be changed without needing to
download more information or other tile
sets

• Dynamic labelling allows size and font
types to be changed on the fly

• Better user experience —smooth
zooming

• No need for zoom levels—- users zoom
and pan throughout all scales

• De facto mobile standard

Contras • Each map style must be created in a
separate raster tile set

• Labelling is preset and cannot be
changed

• A bigger size of each tile and data on
servers

• Takes more time to generate—can be
CPU and memory consuming

• Not the greatest for real-time rendering.
Slower loading disrupts the user
experience when moving around the
map

• Rendering occurs on the client side,
where limited resources can hamper
speed

• Compromises clarity by reducing
display detail

• Requires OpenGL/WebGL/DirectX
support, which is an issue for some
mobile devices

• Not suitable for imagery or other raster
maps

• Vectors are generalised (i.e. not raw
data) so they may not be suitable for
editing

– Rasdaman array database (only available in the enterprise version)2

– OmniSci database (formerly MapD)
– AresDB
– Apache Spark
– PostgreSQL and PG-Strom extension3

• Client side:

– Cesium
– MapD-charting
– Kepler.gl.

2 https://rasdaman.com/commercial-free.php.
3 https://heterodb.github.io/pg-strom/.

https://rasdaman.com/commercial-free.php
https://heterodb.github.io/pg-strom/


176 M. A. Esbrí et al.

Another example of visualisation leveraging on graphical cards is exploratory
visualisation. Exploratory visualisation is the process that involves an expert creating
maps and other graphics while dealing with relatively unknown geographic data.
Generally, these maps serve a single purpose and function as an expedient in the
expert’s attempt to solve a particular (geo) problem. While working with the data,
the expert should be able to rely on cartographic expertise to be able to view data
from different perspectives. As such, the resulting maps and graphics are available
in an interactive viewing environment that stimulates visual thinking and promotes
informed decision-making.WebGLayer4 is a JavaScript library focused on fast inter-
active visualisation of big multidimensional spatial data through linked views. The
library is based on WebGL and uses GPU for fast rendering and filtering. Using
commodity hardware, the library can visualise hundreds of thousands of featureswith
several attributes through heatmap or point symbol map. The library can render data
on the map provided by third party libraries (e.g. OpenLayers, Leaflet, GoogleMap
API). Figure 13.3 shows an example for the analysis of yield potential [11].

13.3 Examples from DataBio Project

13.3.1 Linked Data Visualisation

Linked data visualisation is about providing graphical representations of interesting
aspects within the Semantic web. The high variety of linked data and its types is
huge. An example of agriculture linked open data is the FOODIE data model, which

Fig. 13.3 WebGLayer showing yield potential

4 https://webglayer.org.

https://webglayer.org


13 Big Data Visualisation 177

was originally developed as part of the FOODIE project and later extended in the
DataBio project. The FOODIE data model is based on the generic data models of
INSPIRE, especially the data models for agricultural and aquaculture facilities and
Land-Parcel information system. The key motivation was to represent a continuous
area of agricultural land with one type of crop species, cultivated by one user in one
farming mode (conventional vs. transitional vs. organic farming). Additionally, the
FOODIE data model includes concepts for crop and soil data, treatments, interven-
tions, agriculture machinery and others. Finally, the model reuses data types defined
in ISO standards (ISO 19101, ISO/TS 19103, ISO 8601 and ISO 19115) as well stan-
dardisation efforts published under the INSPIRE directive (like structure of unique
identifiers). TheFOODIEdatamodelwas specified inUML (as the INSPIREmodels)
but can be transformed into an OWL ontology in order to enable the publication of
linked data compliant with FOODIE data model [12].

As mentioned in Chap. 8 “Linked Data Usages in DataBio” the triplestore with
linked data has over 1 billion triples—which is organised into named graphs (IRI)
and sub-graphs. For example, the LPIS-Poland dataset (Land-Parcel identification
in Poland) can be identified by the graph <https://w3id.org/foodie/open/pl/LPIS/>
and contains 727,517,039 triples with a subgraph <https://w3id.org/foodie/open/pl/
LPIS/lubelskie#> , referring to the data with the Lublin Voivodeship. Thus, querying
and pre-processing, including link discovery, are very important for an efficient way
to visualise linked data. Depending on the size of linked datasets (amount, distributed
etc.) and the linkages between the data, there are different ways to visualise them. In
DataBio, metaphactory, a linked data exploitation platform, has been used to query,
browse and navigate linked data—for example, the catch records data from Norway
(see Fig. 13.4).

Fig. 13.4 DataBio metaphactory custom view (map with catch records from Norway)

https://w3id.org/foodie/open/pl/LPIS/
https://w3id.org/foodie/open/pl/LPIS/lubelskie%23


178 M. A. Esbrí et al.

Fig. 13.5 Screenshot of the application showing result of use case crops types based on linked data

The second way to visualise is to query the SPARQL endpoint(s) (using
GeoSPARQL5) and get RDF or JSON-LD.6 There is also the possibility to discover
more data (types and links) and put them together. Finally, the results can be trans-
formed into the form of JSON resp. GeoJSON, which are easily processed by most
visualisation clients. Leading technology providers are aware of this need and plan
to develop some features to do so automatically. Figure 13.5 shows an example for
visualising different crop types based on information from linked data.7

13.3.2 Complex Integrated Data Visualisation

Complex integrated data visualisation was an important part of the Czech agriculture
pilots, and the technology was also tested for fishery pilots. The technology used was
HSlayers NG. Hlayers NG (https://ng.hslayers.org/) is a webmapping library written
in JavaScript. It extends OpenLayers 4 functionality and takes basic ideas from the
previous HSlayers library but uses modern JS frameworks instead of ExtSJS 3 at the

5 https://www.opengeospatial.org/standards/geosparql.
6 An extension of JSON for Linked Data is JSON-LD (JavaScript Object Notation for Linked Data),
which is a method of encoding Linked Data using JSON. This allows data to be serialised in a way
that is like traditional JSON. JSON-LD is designed around the concept of a “context” to provide
additional mappings from JSON to an RDF model.
7 Further examples for integrated data visualisation on maps from DataBio can be explored under
the following link: https://app.hslayers.org/project-databio/land/.

https://ng.hslayers.org/
https://www.opengeospatial.org/standards/geosparql
https://app.hslayers.org/project-databio/land/


13 Big Data Visualisation 179

frontend and provides better adaptability. That is why the NG (“Next Generation”)
is added to its name. It is still under development and provided as open-source soft-
ware. HSLayers is built in a modular way which enables the modules to be freely
attached and removed as far as the dependencies for each of them are satisfied. The
dependency checking is done automatically. The core of the framework is devel-
oped using AngularJS, requireJS and Bootstrap. This combination of frameworks
was chosen mainly for providing fast and scalable development and for providing
a modern responsive layout for the application. Figure 13.6 gives an example for a
complex integrated data visualisation.

The most important modules are:

• The map functionality is provided by OpenLayers4 and extended by some
controls.

•

Fig. 13.6 Integration of yield potential data (3D maps) with meteorological data (time series)
[11–13]



180 M. A. Esbrí et al.

Layer manager is used for listing all the map layers, displaying or hiding them
and setting the transparency.

• OGC web services parser is used for GetCapabilities requests to different map
servers and parsing the response.

• Linked Open Data explorer: Eurostat explorer is a demo application (module)
which queries Semantic web data sources via SPARQL endpoints.

• HSlayers visualises geographical data in a 3D environment.
• Support for visualisation of sensors and agrometeorological data for farmers can

help with forecast of weather and better planning of operations.

13.3.3 Web-Based Visualisation of Big Geospatial Vector
Data

Chapter 15 introduces various pilots on smart farming for sustainable agricultural
production in Greece. In these applications, information about growing crops in
millions of parcels spread over the country needs to be visualised. The informa-
tion about the growing plants, trees and grain types is updated periodically, which
makes the data dynamic. Providing a map interface that supports end users to explore
this amount of dense data using a vector-based approach is a big challenge to the
implementation.

In order to address this challenge, an approach to visualise huge sets of geospa-
tial data in modern web browsers along with maintaining a dynamic tile tree was
developed in the DataBio project and successfully applied to the pilot application
[14]. The approach makes it possible to render over one million polygons integrated
in a modern web application by using 2D vector tiles (see Sect. 13.2.2). Figure 13.7
shows an example for an in-depth parcel assessment with vegetation index colour
coding for Greece.

This novel approach to build and maintain the tile tree database provides an
interface to import new data and a more flexible and responsive way to request
vector tiles. There are three essential steps involved [14]:

1. Data storage is re-organised in a way to have efficient access to geospatial vector
tiles. This is achieved by using a geospatial index alongwith the fast and scalable
distributed file system GeoRocket.8 GeoRocket uses MongoDB to persist data
and Elasticsearch to build a spatial index for data query and aggregation tasks.
GeoJSON can be imported directly without conversion.

2. Secondly, it is essential to speed up the vector tile creation process, which is
important for both, the initial creation of the tile tree and serving tiles. For
this, a new tiling algorithm was implemented. The tiling implementation is a
server component itself and provides a REST interface. It can be configured
using different file storage backend technologies for persisting the tiles. The
configuration includes a range of zoom levels in which the tiles are created,

8 GeoRocket—https://georocket.io.

https://georocket.io


13 Big Data Visualisation 181

Fig. 13.7 In-depth parcel assessment with vegetation index colour coding

which is 2 to 15 by default. These are enough for most users’ map interface
experience, but for a more detailed view, it is also possible to build tiles on
higher zoom levels.

3. Finally, data must be transmitted to a web application running in modern
web browsers. The geometries are rendered using a WebGL map application
framework. It is possible to add interaction concepts such as filters and user-
defined styling. The most common and stable frameworks are OpenLayers
and MapboxGL JS. The young vector tile implementation in OpenLayers
has many issues, most critical a memory leak, no data-driven styling and no
WebGL support for vector tiles. Therefore, Mapbox GL JS was used in the pilot
application and evaluation.

13.3.4 Visualisation of Historical Earth Observation

Earth observationmeasurements provided by satellites from the Sentinel and Landsat
programmes are one of the largest sources of big geospatial data, which are not only
challenging in terms of data storage and access management (as presented in Chap. 4
Remote Sensing) but also for filtering, processing and visualising due to the large
size of the files. Figure 13.8 shows an example from the DataBio fisheries pilot,
where a web client is used for 3D visualisation of oceanic historical datasets, such
as ocean salinity, temperature, concentration of chlorophyll.), in the whole Indian
Ocean region where the fishery vessels operate.

The satellite imagery time series is served through the Rasdaman service via the
OGCWMS-T and WMST interfaces and integrated with the HSLayers and Cesium
JS library,which allow to display geospatial data available in various raster and vector



182 M. A. Esbrí et al.

Fig. 13.8 3Dweb visualisation of historical oceanic measurements using HS layers and Rasdaman

formats. The web client component allows to control the visualisation by additional
(non-spatial) dimensions of the data. In this specific case, the web client enables the
user of the application to choose the time and depth level parameters, which are then
used to query the Rasdaman service, returning the rendered map in the form of a
series of raster tiled images.

13.3.5 Dashboard for Machinery Maintenance

Visualisation is important when informing the user about the status of technical
processes, e.g. in machine maintenance. Especially, it is central to show alerts about
critical events, like too high temperature, pressure and so on.Use of colours and visual
effects, like blinking, must be considered with great care. In Fig. 13.9 is an example
fromDataBio, where we designed a visual dashboard for showing information about
the status of the engines of fishing vessels.



13 Big Data Visualisation 183

Fig. 13.9 Visual dashboard from a DataBio pilot on fishery. The dashboard shows information and
alerts about the status of the fishing vessel’s engines

References

1. https://www.tableau.com/learn/articles/data-visualization (Accessed September 2019).
2. Rubens, P. (2017). Big data visualization. Available at: https://www.datamation.com/big-data/

big-data-visualization.html (Accessed September 2019).
3. Abela, A. V. (2013). Advanced presentations by design—creating communication that drives

action (2nd ed.). Wiley.
4. Li, Z. (2007). Digital map generalization at the age of the enlightenment: A review of the first

forty years. The Cartographic Journal, 44(1), 80–93. https://doi.org/10.1179/000870407x17
3913.

5. ‘Cartographic generalization’. (2020). Wikipedia. Available at: .https://en.wikipedia.org/wiki/
Cartographic_generalization (Accessed: 24 September 2020).

6. Raposo, P. (2017). Scale and Generalization. In J. P. Wilson (Ed.), The geographic information
science & technology body of knowledge (4th Quarter 2017 Edn.), https://doi.org/10.22224/gis
tbok/2017.4.3. Available at: https://gistbok.ucgis.org/bok-topics/scale-and-generalization-1

7. ‘Vector Tiles’. (2020). OpenstreetmapWiki. Available at: https://wiki.openstreetmap.org/wiki/
Vector_tiles (Accessed: 24 September 2020).

8. ‘Vector tiles vs raster tiles—the pros and cons’. (2017). From TechBlog of MapData
Services. Available at: https://mapdataservices.wordpress.com/2017/02/22/vector-tiles-vs-ras
ter-tiles-the-pros-and-cons/ (Accessed: 24 September 2020).

9. Janak, D. (2019). ‘What are vector tiles and why you should care’. Available at: https://www.
maptiler.com/blog/2019/02/what-are-vector-tiles-and-why-you-should-care.html

10. Owens, J. D. (2007). Towards multi-GPU support for visualisation. Journal of Physics
Conference Series (Online), 78(1), 012055. https://doi.org/10.1088/1742-6596/78/1/012055.

11. Řezník, Tomáš et al. (2016). MONITORING OF IN-FIELD VARIABILITY FOR SITE
SPECIFIC CROP MANAGEMENT THROUGH OPEN GEOSPATIAL INFORMATION.
ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Infor-
mation Sciences. XLI-B8. 1023–1028. https://doi.org/10.5194/isprsarchives-XLI-B8-1023-
2016.

12. Charvat, K., Junior, K. C., Reznik, T., Lukas, V., Jedlicka, K., Palma, R., & Berzins, R. (2018,
July). Advanced visualisation of big data for agriculture as part of databio development. In

https://www.tableau.com/learn/articles/data-visualization
https://www.datamation.com/big-data/big-data-visualization.html
https://doi.org/10.1179/000870407x173913
https://en.wikipedia.org/wiki/Cartographic_generalization
https://doi.org/10.22224/gistbok/2017.4.3
https://gistbok.ucgis.org/bok-topics/scale-and-generalization-1
https://wiki.openstreetmap.org/wiki/Vector_tiles
https://mapdataservices.wordpress.com/2017/02/22/vector-tiles-vs-raster-tiles-the-pros-and-cons/
https://www.maptiler.com/blog/2019/02/what-are-vector-tiles-and-why-you-should-care.html
https://doi.org/10.1088/1742-6596/78/1/012055
https://doi.org/10.5194/isprsarchives-XLI-B8-1023-2016


184 M. A. Esbrí et al.

IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium (pp. 415–
418). IEEE.

13. Jedlička, K., & Charvát, K. (2018, May). Visualisation of Big Data in Agriculture and Rural
Development. In 2018 IST-Africa Week Conference (IST-Africa) (pp. Page-1). IEEE.

14. Zouhar F., Senner I. (2020) Web-Based visualisation of Big Geospatial Vector Data. In: Kyri-
akidis P., Hadjimitsis D., Skarlatos D., Mansourian A. (eds) Geospatial Technologies for Local
and Regional Development. AGILE 2019. Lecture Notes in Geoinformation and Cartography.
Springer, Cham. https://doi.org/10.1007/978-3-030-14745-7

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1007/978-3-030-14745-7
http://creativecommons.org/licenses/by/4.0/

	13 Big Data Visualisation
	13.1 Advanced Big Data Visualisation
	13.2 Techniques for Visualising Very Large Amounts of Geospatial Data
	13.2.1 Map Generalisation
	13.2.2 Rendered Images Versus the “Real” Data
	13.2.3 Use of Graphics Processing Units (GPUs)

	13.3 Examples from DataBio Project
	13.3.1 Linked Data Visualisation
	13.3.2 Complex Integrated Data Visualisation
	13.3.3 Web-Based Visualisation of Big Geospatial Vector Data
	13.3.4 Visualisation of Historical Earth Observation
	13.3.5 Dashboard for Machinery Maintenance

	References




