
Chapter 11
Real-Time Data Processing

Fabiana Fournier and Inna Skarbovsky

Abstract To remain competitive, organizations are increasingly taking advantage of
the high volumes of data produced in real time for actionable insights and operational
decision-making. In this chapter, we present basic concepts in real-time analytics,
their importance in today’s organizations, and their applicability to the bioeconomy
domains investigated in the DataBio project. We begin by introducing key termi-
nology for event processing, and motivation for the growing use of event processing
systems, followed by a market analysis synopsis. Thereafter, we provide a high-level
overview of event processing system architectures, with its main characteristics and
components, followed by a survey of some of the most prominent commercial and
open source tools. We then describe how we applied this technology in two of the
DataBio project domains: agriculture and fishery. The devised generic pipeline for
IoT data real-time processing and decision-making was successfully applied to three
pilots in the project from the agriculture and fishery domains. This event processing
pipeline can be generalized to any use case inwhich data is collected from IoT sensors
and analyzed in real-time to provide real-time alerts for operational decision-making.

11.1 Introduction and Motivation

To stay relevant and competitive, modern enterprises must continuously monitor
events of interest, assess changing conditions, and make fast decisions. The contin-
uous flow of event streams, such as customer orders, bank deposits, invoices, social
media updates, market data, Global Positioning System (GPS)-based location infor-
mation, signals from Supervisory Control and Data Acquisition (SCADA) systems,
and temperature from sensors and IoT devices, are analysed to help enterprises
respond in real-time to changing market and environmental conditions. Further-
more, with the emergence of the Internet of Things (IoT), organisations are taking
advantage of the high volumes of data produced by sensors for real-time situational
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awareness and real-time insights. IoT generates a huge amount of high-speed real-
time data in different formats from a vast number of sources that must be analysed
quickly for timely responses. IoT sensors enable decision-makers to continuously
monitor and track various parameters that help them in their day-to-day operations.

Traditionally, organisations used to store data in databases and then process and
analyse it after storage using batch processing. As mentioned above, the unexpected
growth in the number of events due to advanced operations, massive sensor adoption,
mobile devices, and high-speed networks has resulted into an exponential increase in
data volume. Moreover, organisations need to be increasingly capable of extracting
insights from real-time business events, because data loses value with the passage
of time. Many of today’s common applications such as fraud detection, algorithmic
trading, networkmonitoring, predictivemaintenance, and sales andmarketing require
the processing of data in real time. Event Stream Processing (ESP) has evolved to
cope with the analysis of real-time streaming data.

To understand the essence of ESP, let’s decompose the name to its three basic
terms: event + stream + processing. An event is an occurrence within a particular
system or domain; it is something that has actually happened or is contemplated as
having happened in that domain. The word event is also used to refer to a program-
ming entity that represents such an occurrence in a computing system [1]. A stream
is a constant and continuous flow of events that navigate into and around compa-
nies from thousands of connected devices, IoT, and any other sensors. An event
stream is a sequence of events arranged in some order, typically by time. Enterprises
generally have three different kinds of event streams: business transactions, such
as customer orders, bank deposits, and invoices; information reports, such as social
media updates, market data, and weather reports; and IoT data, such as GPS-based
location information, signals from SCADA systems, and temperature measurements
from sensors [2]. Processing is the final act of analysing all this data in real-time.

ESP is the processing of continuous event data streams in real time. It helps
identify the patterns and anomalies within these data streams that are important
to an enterprise, such as event correlation, causality, and timing. ESP also enables
organisations to respond quickly to critical events, thus saving time, money, and
resources. It is also known as real-time streaming analytics, streaming analytics, and
(complex) event processing [3].

Specifically, stream analytics provided by ESP platforms [4]:

• Support situation awareness through dashboards and alerts by analysing multiple
kinds of events in real-time.

• Benefit decision-makers of different verticals to make data-driven decision and
take proactive action before the occurrence of an event.

• Enable smarter anomaly detection and faster responses to threats and opportuni-
ties.

• Help shield business people from data overload by eliminating irrelevant infor-
mation and presenting only alerts and distilled versions of the most important
information.
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Event Processing (EP) is a paradigm where streams of events are analysed to
extract useful insights of real-world events [5]. EP systems associate precise seman-
tics with the information items being processed: these are notifications of events
that happened in the external world and were observed by sources, also called event
producers [6]. The EP engine is responsible for filtering and combining such notifi-
cations to understand what is happening in terms of higher-level events (aka complex
events, composite events, or situations) to be notified to sinks, called event consumers.
EP systems detect complex patterns of incoming items involving sequencing and
ordering relationships. An example of such a situation is the flagging of a suspicious
account that is detected whenever there are at least three events of large cash deposits
within 10 days to the same account. Event processing is in essence a paradigm of
reactive computing: a system observes the world and reacts to events as they occur.
It is an evolutionary step from the paradigm of responsive computing, in which a
system responds only to explicit service requests.

A vast number of recent applications of EP can be found in health informatics,
astronomy, telecommunications, electric grids and energy, geography, and transporta-
tion [5]. In the DataBio project, event processing applications have been developed
and deployed for the domains of agriculture and fisheries, as described in the pilots
section. [See Parts V and VII of this book].

11.2 Market

The massive surge in data generation and the increasing demand for real-time
analysis of streaming data are expected to boost the growth of the ESP market.
According to the Event Stream Processing Market—Global Forecast to 2023 report
from December 2018 [3], the global ESP market size is projected to reach USD
1.838 billion by 2023, growing at a compound annual growth rate (CAGR) of 21.6%
during the forecast period. The market analysis by application in Europe shows that
the predictive maintenance segment is expected to grow from USD 29.2 million in
2018 to USD 81.0million by 2023, at the highest CAGR of 22.7% during the forecast
period. The market analysis by verticals in Europe shows that the ESP market by
vertical is expected to grow from USD 689.9 million in 2018 to USD 1838.0 million
by 2023, at a CAGR of 21.6% during the forecast period. Furthermore, the market
size of the banking, financial services, and insurance (BFSI) vertical is expected to
have the largest market size and projected to grow from USD 37.6 million in 2018 to
USD 95.8 million by 2023, at a CAGR of 20.6% during the forecast period. This can
be attributed to the growing adoption of IoT-based connected devices. All the verti-
cals are undergoing digital transformation, which has created the need for analysing
real-time data to achieve a competitive advantage in the market.

Gartner [4] characterises ESP systems as transformational, meaning they have
the potential to change the way organisations interact with information to such a
degree that they have a demonstrable impact on organisations’ business models.
Three factors are driving the expansion of ESP:
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• The growth of IoT and digital interactions is making event streams ubiquitous.
• Business is demanding continuous intelligence for better situation awareness and

faster, more personalised decisions.
• Vendors are launching new products, many of them open source or partly open

source, giving the impression of lower acquisition costs.

From the analysts’ reports covered, it’s clear that ESP solutions have the poten-
tial to enable new ways of doing business; companies who have not yet adopted
such systems should consider doing so in the near future. Furthermore, the bioe-
conomy domains investigated in DataBio (i.e., agriculture, forestry, and fishery),
and not mentioned in the reports so far, have a unique opportunity to be innovative
by embracing this technology.

11.3 Technical Characteristics

Event processing systems are a departure from traditional computing architectures
that employ synchronous, request-response interactions between client and servers.
In reactive applications, decisions are driven by events. Conventional architectures
are not fast or efficient enough for some applications, because they use a “save-and-
process” paradigm in which incoming data is stored in databases in memory or on
disk, and then queries are applied. When fast responses are critical, or the volume of
incoming information is extremely high, application architects instead use a “process-
first” EP paradigm; here, logic is applied continuously and immediately to the “data
in motion” as it arrives. EP is more efficient because it computes incrementally, in
contrast to conventional architectures that reprocess large datasets, often repeating
the same retrievals and calculations as each new query is submitted.

As mentioned above, the goal of an EP engine is to notify its users immediately
upon the detection of a pattern of interest. Data flows are seen as streams of events,
some of which may be irrelevant for the user’s purposes. Therefore, the main focus
is on the efficient filtering out of irrelevant data and processing of the relevant.
Obviously, for such systems to be acceptable, they must satisfy certain efficiency,
fault tolerance, and accuracy constraints, such as low latency and robustness.

As previously stated, EP is a technique in which incoming data about what is
happening (event data) is processed more or less as it arrives to generate higher-
level, very useful summary information, known as complex events. Event processing
platforms have built-in capabilities for filtering incoming data, storing windows of
event data, computing aggregates, and detecting patterns. In essence, EP software
is any computer program that can generate, read, discard, and perform calculations
on events. A complex event is an abstraction of one or more raw input events. One
complex event may be the result of calculations performed on a few or on millions
of events from one or more event sources. A situation may be triggered by the
observation of a single raw event but is more typically obtained by detecting a pattern
over the flow of events. Many of these patterns are temporal in nature [7], but they
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can also be spatial, spatio-temporal, or modal [1]. Event processing deals with these
functions: get events from sources (event producers), route these events, filter them,
normalise or otherwise transform them, aggregate them, detect patterns overmultiple
events, and transfer them as alerts to a human or as a trigger to an autonomous
adaptation system (event consumers). An application or a complete definition set
made up of these functions is also known as an Event Processing Network (EPN)
[1].

Generally speaking, complex event processing (CEP) software offers two major
components: a high-level language for programmers to easily describe how to process
the incoming events and an infrastructure engine for the processing of the data streams
in real-time. Events of different formats are gathered from different event producers.
The event producers can be of different types, including financial feeds, news feeds,
weather sensors, application logs, video streams collected from surveillance cameras,
etc. The EP engine is the brain that carries out multiple types of processing on
event streams, based on predefined rules. The processing includes simple filtering,
counting, averaging, aggregating, of simple event processing operations, as well
as more complex processing, such as pattern matching and event prediction (fore-
casting). Event consumers are parties that are interested in mining valuable informa-
tion from the event streams, e.g., software agents, users of web/mobile applications,
etc. [5].

The design of event processing applications includes the design of both the func-
tional properties and the non-functional properties. While functional requirements
define what an event processing system should do, non-functional requirements
place constraints on how the system will do so. The design of requirements is
implementation-specific and is carried out in either hand-coded fashion or using
modern dedicated event processing tools by IT developers familiar with the event
processing engine and the particular way to bypass the engine’s limitations.

The event logic necessary to specify the event-driven application is typically
provided by domain experts who know the domain and can express the event rules.
However, the task of defining the event definitions can be tedious and difficult even
for experts. To alleviate this task, in some engines the event definitions can be learned
in an automated way using machine learning techniques (e.g., [8] and [9]).

Non-functional requirements include scalability, usability, availability, security,
and performance objectives.Not all of these requirements apply equally to all applica-
tions, sowhendesigning an event processing application, one needs to considerwhich
of them are important for the case in hand. A survey in the area of non-functional
requirements can be found in [10].

There is no standard for event processing languages and programming models.
As a result, each event processing tool uses its own terminology and semantics.
For example, the IBM PROactive Technology Online (PROTON) open source tool1

applied in the DataBio project follows the semantics presented in Etzion’s and
Niblet’s book [1].

1 https://github.com/ishkin/Proton/.

https://github.com/ishkin/Proton/
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11.4 Event Processing Tools

CEP has already built up significant momentum, manifested in a steady research
community and a variety of commercial and open source products [6]. Today, a large
variety of commercial and open source event processing tools are available to archi-
tects and developers who are building event processing applications. These are some-
times called event processing platforms, streaming analytics platforms, (complex)
event processing systems, event stream processing systems, or distributed stream
computing platforms (DSCPs). DSCPs such as Amazon Web Services Kinesis2 and
open source offerings including Apache Samza,3 Spark,4 and Storm5 were intro-
duced in recent years. In particular, Apache open source projects (Storm, Spark, and
Samza) have gained a fair amount of attention and interest [11, 12].

Event processing systems are general purpose development and runtime tools
that are used by developers to build custom, event-processing applications. The
tools allow this to be done without having to re-implement the core algorithms
for handling event streams, as they provide the necessary building blocks to build
the event-driven applications. In comparison, DSCPs are general-purpose platforms
without full native EP analytic functions and associated accessories. However, they
are highly scalable and extensible, and usually offer an open programming model
so developers can add the logic to address many kinds of stream processing applica-
tions, including some EP solutions. Today, there are already some implementations
that take advantage of the pattern recognition capability of EP systems along with
the scalability capabilities that DSCPs offer and provide a holistic architecture. For
example, the PROTON open source event processing tool applied in the DataBio
project has a Storm version (ProtonOnStorm), which allows PROTON’s engine to
run in a distributed manner on multiple machines using the Storm infrastructure.

A recent Gartner report from 2019 [4] states that more than 40 ESP products are
available on the market.

Sample vendors include EsperTech, EVAM, IBM, Microsoft, Oracle, SAP, SAS,
Software AG, the Apache Software Foundation, and TIBCO Software.

11.5 Experiences in DataBio

As mentioned previously, event-driven applications were developed for the agricul-
ture and fisheries sectors in the DataBio project. More specifically, two agricultural
implementations were developed. One focuses on monitoring temperature and air
pressure measurements from sensors in the field (using SensLog) and sending warn-
ings concerning a possible upcoming freeze. This application is designed to alert

2 https://aws.amazon.com/kinesis/.
3 https://samza.incubator.apache.org/.
4 https://spark.apache.org/streaming/.
5 https://storm.apache.org/.

https://aws.amazon.com/kinesis/
https://samza.incubator.apache.org/
https://spark.apache.org/streaming/
https://storm.apache.org/
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farmers before the occurrence of freezing temperatures that can destroy crops. The
second application monitors different crop parameters to predict disease and pest
infestation in various types of crops and sends alerts and warnings if these are found.
Cropparameters are gatheredbyGAIATrons andpushed toPROTONfor further anal-
ysis of this data, where temporal analysis of trends is carried out to allow proactive
measures.

In fisheries, PROTON monitors engine parameters to send alerts in real-time
regarding potential engine problems before damage will be caused to the engine
and therefore to the tuna fishing vessel. An event-driven application informs crew
members to act in advance to avoid critical machinery faults prior to their occurrence.
PROTON has been deployed on board the vessel and is integrated with the VTT
OpenVA tool to visualise the alarms and warnings in real-time as they are detected
by the event processing engine.

For detailed information on these implementations, refer to the relevant pilots
sections in Part V and VII of this book.

These applications follow the event-driven paradigm and fit into the “Generic
pipeline for IoT data real-time processing and decision making” articulated in the
course of the project and presented in Deliverable 4.4 of the project [13]. This generic
pipeline is an example of a pattern that fits the two aspects of generalisation. The
main characteristic of this generic pipeline is the collection of real-time data coming
from IoT devices to generate insights for operational decision-making, by applying
real-time data analytics on the collected data.

Figure 11.1 depicts the common data flow among three pilots of the DataBio
project: two in agriculture (“Prediction and real-time alerts of diseases and pests

Decision Making

Visualiza�on

IoT devices

Real-�me Data 
Collec�on

Complex Event 
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Real-�me Data 
Preprocessing
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complex events

complex events

inputevents events

Fig. 11.1 Data flow for real-time IoT data processing and a decision-making generic pipeline
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breakouts in crops” and “Cereals and biomass crop”) and one in fisheries (“Mon-
itoring, real-time alerts, and visualization for operation efficiency in tuna fishery
vessels”).

Streaming data from IoT sensors are collected in real-time, from sources such as
agricultural sensors, machinery sensors, and fishing vessels’ monitoring equipment.
These streaming data (aka events) can then be pre-processed to lower the amount of
data to be further analysed. Pre-processing can include filtering the data (filtering out
irrelevant data and filtering in only relevant events); performing simple aggregation
of the data; and storing the data (e.g., on the cloud or using other storage models,
or even simply on a computer’s file system) such that conditional notification on
data updates to subscribers can be done. After being pre-processed, data enters the
CEP component for further analysis, which generally means finding patterns in time
windows (temporal reasoning) over the incoming data to form new, more complex
events (aka as situations or alerts/warnings). These complex events are emitted to
assist in the decision-making process that is carried out by humans (“human in the
loop”) or automatically by actuators (e.g., sensors that starts irrigation in a greenhouse
following a certain alert). The situations can also be displayed using visualisation
tools to assist humans in the decision-making process. The idea is that the detected
situations can provide useful real-time insights for operational management, such as
preventing possible pest infestations in crops or machinery failure.

Figure 11.1 shows the end-to-end flow. In essence, all components except the
data producers (i.e., sensors) and a data consumer (either human or automatic) can
be optional. The level of analysis of the data and its level of abstraction is driven by
the specific use case. Sometimes, some filtering on the data is enough, while in other
cases, theCEPcomponent performs all types of analysis in a centralmanner. Commu-
nication between the software components is performed using standard RESTful
APIs, while communication between IoT devices and the Real-time data collection
component is based on standard IoT communication protocols (e.g., MQTT).

As mentioned above, the Generic pipeline for IoT data real-time processing and
decision making is a generalization of three of the project’s pilots, but it is also a
specification of the top-level pipeline devised in the project as shown in Fig. 11.2
[13].

11.6 Conclusions

The major factors driving the growth of the ESP market are the increasing demand
for IoT and smart devices, and the growing focus on drawing real-time insights to
gain a competitive edge. IoT provides numerous opportunities for ESP vendors, such
as real-time remote management, monitoring, and insights from connected devices,
such as mobile phones or connected cars.

ESP is one of the key enablers of continuous intelligence and other aspects of
digital business. It has transformed financial markets and become essential to smart
electrical grids, location-basedmarketing, supply chain, fleet management, and other
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transportation operations. From the analysts’ reports covered, we can conclude that
ESP solutions can enable newways of doing business; thus, companies who have not
yet done so should consider adopting ESP systems. Furthermore, the bioeconomy
domains investigated in DataBio (i.e., agriculture, forestry, and fishery) that are not
mentioned in reports so far, have a unique opportunity to be innovative by embracing
this technology. In DataBio, we have already paved the way for such applications by
applying event-driven solutions in pilots in both the agriculture and fishery domains.

The generic pipeline for IoT data real-time processing and decision making has
been applied to three pilots in the project from the agriculture and fishery domains
and, as such, can be seen as a “pipeline design pattern”. Conceptually, it can also be
applied to other domains beyond fisheries and agriculture. Basically, use cases from
any domain in which data is collected from IoT sensors and analysed in real-time
to provide real-time alerts for operational decision-making can be adapted to this
generic pipeline.

For example, sensor readings from a supply chain scenario in which objects are
monitored for tracking and tracing can be collected for further processing by a CEP
engine to detect potential delays. The detected situations can be displayed to oper-
ators so they can take action if such delays are detected (e.g., reschedule trajec-
tory). Another use case can be found in a classical manufacturing process, in which
machinery sensors are monitored to detect potential failures. The sensor data in the
factory can be collected and transmitted to a CEP engine, which can detect potential
failure situations and emit alerts to aid in decision-making (e.g., stop the machine,
replace a part, etc.).
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