Skip to main content

Information Visualization in Mental Health Research and Practice

  • Chapter
  • First Online:
Mental Health Informatics

Part of the book series: Health Informatics ((HI))

Abstract

Understanding the complex relationships between a range of disparate types of data including (but not limited to) clinical signs and symptoms, socio-economic statuses, and environmental exposures is an ongoing struggle for researchers, administrators, clinicians, public health experts, and patients who struggle to use data to understand mental health. Information visualization techniques combining rich displays of data with highly responsive user interactions allow for dynamic exploration and interpretation of data to gain otherwise unavailable insights into these challenging datasets. To encourage broader adoption of visualization techniques in mental health, we draw upon research conducted over the past thirty years to introduce the reader to the field of interactive visualizations. We introduce theoretical models underlying information visualization and key considerations in the design of visualizations, including understanding user needs, managing data, effectively displaying information, and selecting appropriate approaches for interacting with the data. We introduce various types of mental health data, including survey data, administrative data, environmental data, and mobile health data, with a focus on focus on data integration and the use of predictive models. We introduce currently available open-source and commercial tools for visualization. Finally, we discuss two outstanding challenges in the field: uncertainty visualization and evaluation of visualization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ruddle RA, Fateen W, Treanor D, Sondergeld P, Ouirke P Leveraging wall-sized high-resolution displays for comparative genomics analyses of copy number variation. In 2013 IEEE Symposium on Biological Data Visualization (BioVis). 2013. p. 89–96. https://doi.org/10.1109/BioVis.2013.6664351.

  2. Robertson GG, Card SK, Mackinlay JD. Information visualization using 3D interactive animation. Commun ACM. 1993;36:57–71.

    Google Scholar 

  3. Dubois WEB. [The Georgia Negro] Income and expenditure of 150 Negro families in Atlanta, Ga., USA.

    Google Scholar 

  4. Readings in information visualization: using vision to think. San Francisco: Morgan Kaufmann Publishers; 1999.

    Google Scholar 

  5. Bertin J. Semiology of graphics: diagrams, networks, maps. Madison: The University of Wisconsin Press; 1983.

    Google Scholar 

  6. Friedman JH, Stuetzle W, John W. Tukey’s work on interactive graphics. Ann Stat. 2002;30:1629–39.

    Google Scholar 

  7. Cleveland WS. Elements of graphing data. Monterey, CA: Wadsworth Advanced Books and Software; 1985.

    Google Scholar 

  8. Tufte ER. The visual display of quantitative information. Cheshire: Graphics Press; 1986.

    Google Scholar 

  9. Russell DM, Stefik MJ, Pirolli P, Card SK. The cost structure of sensemaking. In: Proceedings of the INTERACT ‘93 and CHI ‘93 conference on human factors in computing systems. New York: ACM; 1993. p. 269–76. https://doi.org/10.1145/169059.169209.

    Chapter  Google Scholar 

  10. Ware C. Information visualization: perception for design. Amsterdam: Elsevier; 2012.

    Google Scholar 

  11. Shneiderman B The eyes have it: a task by data type taxonomy for information visualizations. In Proceedings 1996 IEEE symposium on visual languages. 1996. p. 336–343. https://doi.org/10.1109/VL.1996.545307.

  12. Amar R, Stasko J BEST paper: a knowledge task-based framework for design and evaluation of information visualizations. In IEEE symposium on information visualization. 2004. p. 143–150. https://doi.org/10.1109/INFVIS.2004.10.

  13. Yi, J. S., Ah-Kang, Y. a & Stasko, J. Toward a deeper understanding of the role of interaction in information visualization. IEEE Trans Vis Comput Graph. 13, 1224–1231 (2007).

    Google Scholar 

  14. Tory M, Moller T. Human factors in visualization research. IEEE Trans Vis Comput Graph. 2004;10:72–84.

    PubMed  Google Scholar 

  15. Ward MO, Grinstein G, Keim D, Grinstein G, Keim D. Interactive data visualization: foundations, techniques, and applications. 2nd ed. Boca Raton, FL: A K Peters/CRC Press; 2015. https://doi.org/10.1201/b18379.

    Book  Google Scholar 

  16. Spence R. Information visualization: an introduction. Incorporated: Springer Publishing Company; 2014.

    Google Scholar 

  17. Thomas JJ, Cook KA. A visual analytics agenda. IEEE Comput Graph Appl. 2006;26:10–3.

    PubMed  Google Scholar 

  18. Keim DA, et al. Visual analytics: definition, process, and challenges. In: Information visualization. Heidelberg: Springer; 2008. https://doi.org/10.1007/978-3-540-70956-5_7.

    Chapter  Google Scholar 

  19. Tukey JW. Exploratory data analysis. Reading, MA: Addison-Wesley; 1977.

    Google Scholar 

  20. Du Toit S, Steyn G, Stumpf R. Graphical exploratory data analysis. Berlin: Springer-Verlag; 1986.

    Google Scholar 

  21. Liu Q, et al. Symptom-based patient stratification in mental illness using clinical notes. J Biomed Inform. 2019;98:103274.

    PubMed  PubMed Central  Google Scholar 

  22. Blei DM, Ng AY, Jordan MI. Latent Dirichlet allocation. J Mach Learn Res. 2003;3:993–1022.

    Google Scholar 

  23. van der Maaten L, Hinton G. Visualizing Data using t-SNE. J Mach Learn Res. 2008;9:2579–605.

    Google Scholar 

  24. Amar R, Eagan J, Stasko J. Low-level components of analytic activity in information visualization. In: Proceedings of the proceedings of the 2005 IEEE symposium on information visualization 15. Minneapolis, MN: IEEE Computer Society; 2005. https://doi.org/10.1109/INFOVIS.2005.24.

    Chapter  Google Scholar 

  25. Pangman VC, Sloan J, Guse L. An examination of psychometric properties of the mini-mental state examination and the standardized mini-mental state examination: implications for clinical practice. Appl Nurs Res. 2000;13:209–13.

    CAS  PubMed  Google Scholar 

  26. Amar RA, Stasko JT. Knowledge precepts for design and evaluation of information visualizations. IEEE Trans Vis Comput Graph. 2005;11:432–42.

    PubMed  Google Scholar 

  27. Heer J, Shneiderman B. Interactive dynamics for visual analysis. Commun ACM. 2012;55:45–54.

    Google Scholar 

  28. Brehmer M, Munzner T. A multi-level typology of abstract visualization tasks. IEEE Trans Vis Comput Graph. 2013;19:2376–85.

    PubMed  Google Scholar 

  29. Ahn J, Plaisant C, Shneiderman B. A task taxonomy for network evolution analysis. IEEE Trans Vis Comput Graph. 2014;20:365–76.

    PubMed  Google Scholar 

  30. Lee B, Plaisant C, Parr CS, Fekete J-D, Henry N. Task taxonomy for graph visualization. In: Proceedings of the 2006 AVI workshop on BEyond time and errors: novel evaluation methods for information visualization 1–5. New York: ACM; 2006. https://doi.org/10.1145/1168149.1168168.

    Chapter  Google Scholar 

  31. Kerracher N, Kennedy J, Chalmers K. A task taxonomy for temporal graph visualisation. IEEE Trans Vis Comput Graph. 2015;21:1160–72.

    PubMed  Google Scholar 

  32. Gratzl S, Lex A, Gehlenborg N, Pfister H, Streit M. LineUp: visual analysis of multi-attribute rankings. IEEE Trans Vis Comput Graph. 2013;19:2277–86.

    PubMed  PubMed Central  Google Scholar 

  33. Roth RE. An empirically-derived taxonomy of interaction primitives for interactive cartography and Geovisualization. IEEE Trans Vis Comput Graph. 2013;19:2356–65.

    PubMed  Google Scholar 

  34. Chi EH. A taxonomy of visualization techniques using the data state reference model. In IEEE symposium on information visualization 2000. INFOVIS 2000. PRO 69–75 (2000). https://doi.org/10.1109/INFVIS.2000.885092.

  35. Munzner T. A nested model for visualization design and validation. IEEE Trans Vis Comput Graph. 2009;15:921–8.

    PubMed  Google Scholar 

  36. Meyer M, Sedlmair M, Quinan PS, Munzner T. The nested blocks and guidelines model. Inf Vis. 2015;14:234–49.

    Google Scholar 

  37. Beyer H, Holtzblatt K. Contextual design: defining customer-centered systems. Cambridge, MA: Morgan Kaufmann; 1998.

    Google Scholar 

  38. Lazar J, Feng JH, Hochheiser H. Research methods in human-computer interaction. Cambridge, MA: Morgan Kaufmann; 2017.

    Google Scholar 

  39. ClowdFlower. Data science report. 2016. http://visit.crowdflower.com/rs/416-ZBE-142/images/CrowdFlower_DataScienceReport_2016.pdf.

  40. Human Phenotype Ontology. Nucleic acids research. Oxford: Oxford Academic; 2017. https://academic-oup-com.pitt.idm.oclc.org/nar/article/45/D1/D865/2574174

    Google Scholar 

  41. Musen MA. The protégé project: a look back and a look forward. AI Matters. 2015;1:4–12.

    PubMed  PubMed Central  Google Scholar 

  42. Ma X, Sayama H. Mental disorder recovery correlated with centralities and interactions on an online social network. PeerJ. 2015;3

    Google Scholar 

  43. Beck F, Burch M, Diehl S, Weiskopf D. A taxonomy and survey of dynamic graph visualization. Comput. Graph. Forum. 2017;36:133–59.

    Google Scholar 

  44. Gibson H, Faith J, Vickers P. A survey of two-dimensional graph layout techniques for information visualisation. Inf Vis. 2013;12:324–57.

    Google Scholar 

  45. Bederson BB. The promise of zoomable user interfaces. Behav Inf Technol. 2011;30:853–66.

    Google Scholar 

  46. Weaver C. Cross-filtered views for multidimensional visual analysis. IEEE Trans Vis Comput Graph. 2010;16:192–204.

    PubMed  Google Scholar 

  47. di Battista G, Eades P, Tamassia R, Tollis IG. Graph drawing: algorithms for the visualization of graphs. Upper Saddle River, NJ: Prentice Hall PTR; 1998.

    Google Scholar 

  48. Mackinlay J. Automating the Design of Graphical Presentations of relational information. ACM Trans Graph. 1986;5:110–41.

    Google Scholar 

  49. Cleveland WS, McGill R. Graphical perception and graphical methods for analyzing scientific data. Science. 1985;229:828–33.

    CAS  PubMed  Google Scholar 

  50. Cooper RJ, Schriger DL, Close RJH. Graphical literacy: the quality of graphs in a large-circulation journal. Ann Emerg Med. 2002;40:317–22.

    PubMed  Google Scholar 

  51. Pastore M, Lionetti F, Altoè G. When one shape does not fit all: a commentary essay on the use of graphs in psychological research. Front Psychol. 2017;8

    Google Scholar 

  52. Drummond GB, Vowler SL. Show the data, don’t conceal them. J Physiol. 2011;589:1861–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Weissgerber TL, Milic NM, Winham SJ, Garovic VD. Beyond Bar and line graphs: time for a new data presentation paradigm. PLoS Biol. 2015;13:e1002128.

    PubMed  PubMed Central  Google Scholar 

  54. Hosseinpoor AR, AbouZahr C. Graphical presentation of relative measures of association. Lancet. 2010;375:1254.

    PubMed  Google Scholar 

  55. Tufte ER. Visual explanations: images and quantities, evidence and narrative. Cheshire: Graphics Press; 1997.

    Google Scholar 

  56. Tufte ER. Envisioning information. Cheshire: Graphics Press; 1990.

    Google Scholar 

  57. Tufte ER. Beautiful evidence. Cheshire: Graphics Press; 2006.

    Google Scholar 

  58. Harrower M, Brewer CA. ColorBrewer.org: An online tool for selecting colour schemes for maps. Cartogr J. 2003;40(1):27–37.

  59. Wattenberg M. Baby names, visualization, and social data analysis. In IEEE symposium on information visualization, INFOVIS 2005. 2005. p. 1–7. https://doi.org/10.1109/INFVIS.2005.1532122.

  60. Wattenberg M, Kriss J. Designing for social data analysis. IEEE Trans Vis Comput Graph. 2006;12:549–57.

    PubMed  Google Scholar 

  61. Shneiderman B. Direct manipulation: a step beyond programming languages. Computer. 1983;16:57–69.

    Google Scholar 

  62. Shneiderman B. Dynamic queries for visual information seeking. IEEE Softw. 1994;11:70–7.

    Google Scholar 

  63. Tweedie L, Spence B, Williams D, Bhogal R. The attribute explorer. In: Conference companion on human factors in computing systems. New York: ACM; 1994. p. 435–6. https://doi.org/10.1145/259963.260433.

    Chapter  Google Scholar 

  64. Mane KK, et al. VisualDecisionLinc: a visual analytics approach for comparative effectiveness-based clinical decision support in psychiatry. J Biomed Inform. 2012;45:101–6.

    PubMed  Google Scholar 

  65. Boyd AD, Young C, Matayakul M, Dieter MG, Pawola LM. Developing visual thinking in the electronic health record. Stud Health Technol Inform. 2017;245:308–12. https://doi.org/10.3233/978-1-61499-830-3-308.

    Article  PubMed  Google Scholar 

  66. Silverman W. Frequently performed psychological tests. In: Walker HK, Hall WD, Hurst JW, editors. Clinical methods: The history, physical, and laboratory examinations. 3rd ed. Boston: Butterworths; 1990. Chapter 208. PMID: 21250163.

    Google Scholar 

  67. Fowler FJ. The redesign of the National Health Interview Survey. Public Health Rep Wash DC. 1996;1974(111):508–11.

    Google Scholar 

  68. Nelson DE, Holtzman D, Bolen J, Stanwyck CA, Mack KA. Reliability and validity of measures from the behavioral risk factor surveillance system (BRFSS). Soz Praventivmed. 2001;46(Suppl 1):S3–42.

    PubMed  Google Scholar 

  69. Centers for Disease Control and Prevention. General Information about the NHANES 2003–2004 laboratory methodology and public data files; 2006.

    Google Scholar 

  70. Tomitaka S, et al. Item response patterns on the patient health Questionnaire-8 in a nationally representative sample of US adults. Front Psych. 2017;8:251.

    Google Scholar 

  71. Boonstra A, Versluis A, Vos JFJ. Implementing electronic health records in hospitals: a systematic literature review. BMC Health Serv Res. 2014;14:370.

    PubMed  PubMed Central  Google Scholar 

  72. Evans RS. Electronic health records: then, now, and in the future. Yearb Med Inform. 2016;Suppl 1:S48–61.

    CAS  PubMed  Google Scholar 

  73. Castillo EG, Olfson M, Pincus HA, Vawdrey D, Stroup TS. Electronic health Records in Mental Health Research: a framework for developing valid research methods. Psychiatr Serv. 2015;66:193–6.

    PubMed  Google Scholar 

  74. Rind A, et al. Interactive information visualization to explore and query electronic health records. Found. Trends® Human–Computer Interact. 2013;5:207–98.

    Google Scholar 

  75. Kaur H, et al. Automated chart review utilizing natural language processing algorithm for asthma predictive index. BMC Pulm Med. 2018;18:34.

    PubMed  PubMed Central  Google Scholar 

  76. Assale M, Dui LG, Cina A, Seveso A, Cabitza F. The revival of the notes field: leveraging the unstructured content in electronic health records. Front Med. 2019;6:66.

    Google Scholar 

  77. Sheikhalishahi S, et al. Natural language processing of clinical notes on chronic diseases: systematic review. JMIR Med Inform. 2019;7:e12239.

    PubMed  PubMed Central  Google Scholar 

  78. Barrett N, Weber-Jahnke JH. Applying natural language processing toolkits to electronic health records – an experience report. Stud Health Technol Inform. 2009;143:441–6.

    PubMed  Google Scholar 

  79. Yuan Z, Finan S, Warner J, Savova G, Hochheiser H. Interactive exploration of longitudinal cancer patient histories extracted from clinical text. JCO Clin. Cancer Inform. 2020;4:412–20. https://doi.org/10.1200/CCI.19.00115.

    Article  PubMed  Google Scholar 

  80. Hirsch JS, et al. HARVEST, a longitudinal patient record summarizer. J Am Med Inform Assoc. 2015;22:263–74.

    PubMed  Google Scholar 

  81. Demkow U, Wolańczyk T. Genetic tests in major psychiatric disorders—integrating molecular medicine with clinical psychiatry—why is it so difficult? Transl Psychiatry. 2017;7:e1151.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Gandal MJ, et al. Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. Science. 2018;359:693–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Nusrat S, Harbig T, Gehlenborg N. Tasks, techniques, and tools for genomic data visualization. Comput. Graph. Forum. 2019;38:781–805.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. O’Donoghue SI, et al. Visualization of biomedical data. Annu Rev Biomed Data Sci. 2018;1:275–304.

    Google Scholar 

  85. Cuellar-Partida G, Renteria ME, MacGregor S. LocusTrack: integrated visualization of GWAS results and genomic annotation. Source Code Biol Med. 2015;10:1.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Verma A, et al. Human-disease phenotype map derived from PheWAS across 38,682 individuals. Am J Hum Genet. 2019;104:55–64.

    CAS  PubMed  Google Scholar 

  87. George G, et al. PheGWAS: a new dimension to visualize GWAS across multiple phenotypes. bioRxiv. 2019; https://doi.org/10.1101/694794.

  88. Dalabira E, et al. DruGeVar: an online resource triangulating drugs with genes and genomic biomarkers for clinical pharmacogenomics. Public Health Genomics. 2014;17:265–71.

    PubMed  Google Scholar 

  89. Bihlmeyer NA, et al. Novel methods for integration and visualization of genomics and genetics data in Alzheimer’s disease. Alzheimers Dement J Alzheimers Assoc. 2019;15:788–98.

    Google Scholar 

  90. Helbich M. Mental health and environmental exposures: an editorial. Int J Environ Res Public Health. 2018;15:2207.

    PubMed Central  Google Scholar 

  91. Xie S, Greenblatt R, Levy MZ, Himes BE. Enhancing electronic health record data with geospatial information. AMIA Jt Summits Transl Sci Proc AMIA Jt Summits Transl Sci. 2017;2017:123–32.

    Google Scholar 

  92. Ramirez-Andreotta MD, et al. Improving environmental health literacy and justice through environmental exposure results communication. Int J Environ Res Public Health. 2016;13:690.

    PubMed Central  Google Scholar 

  93. Andrew L, Jane L, Martin C, Scott L. Original quantitative research exploring and visualizing the small-area-level socioeconomic factors, alcohol availability and built environment influences of alcohol expenditure for the City of Toronto: a spatial analysis approach. Health Promot Chronic Dis Prev Can Res Policy Pract. 2019;39:15–24.

    Google Scholar 

  94. Isvoranu A-M, Borsboom D, van Os J, Guloksuz S. A network approach to environmental impact in psychotic disorder: brief theoretical framework. Schizophr Bull. 2016;42:870–3.

    PubMed  PubMed Central  Google Scholar 

  95. Sort A. The role of mHealth in mental health. mHealth. 2017;3:1–1.

    PubMed  PubMed Central  Google Scholar 

  96. Chandrashekar P. Do mental health mobile apps work: evidence and recommendations for designing high-efficacy mental health mobile apps. mHealth. 2018;4:6.

    PubMed  PubMed Central  Google Scholar 

  97. Holzinger A, Bruschi M, Eder W. On interactive data visualization of physiological low-cost-sensor data with focus on mental stress. In: Cuzzocrea A, Kittl C, Simos DE, Weippl E, Xu L, editors. Availability, reliability, and security in information systems and HCI. Berlin: Springer; 2013. p. 469–80. https://doi.org/10.1007/978-3-642-40511-2_34.

    Chapter  Google Scholar 

  98. Kamdar MR, Wu MJ. Prism: a data-driven platform for monitoring mental health. In: Biocomputing 2016. Singapore: World Scientific; 2015. p. 333–44. https://doi.org/10.1142/9789814749411_0031.

    Chapter  Google Scholar 

  99. Gravenhorst F, et al. Mobile phones as medical devices in mental disorder treatment: an overview. Pers Ubiquitous Comput. 2015;19:335–53.

    Google Scholar 

  100. Observational health data sciences and informatics. The book of OHDSI.

    Google Scholar 

  101. Becker D, et al. Predictive modeling in e-mental health: a common language framework. Internet Interv. 2018;12:57–67.

    PubMed  PubMed Central  Google Scholar 

  102. Zhao J, Henriksson A, Asker L, Boström H. Predictive modeling of structured electronic health records for adverse drug event detection. BMC Med Inform Decis Mak. 2015;15(Suppl 4):S1.

    PubMed  PubMed Central  Google Scholar 

  103. Webb CA, et al. Personalized prognostic prediction of treatment outcome for depressed patients in a naturalistic psychiatric hospital setting: a comparison of machine learning approaches. J Consult Clin Psychol. 2020;88:25–38.

    PubMed  PubMed Central  Google Scholar 

  104. Bhagwat N, Viviano JD, Voineskos AN, Chakravarty MM, Alzheimer’s Disease Neuroimaging Initiative. Modeling and prediction of clinical symptom trajectories in Alzheimer’s disease using longitudinal data. PLoS Comput Biol. 2018;14:e1006376.

    PubMed  PubMed Central  Google Scholar 

  105. Lee Y, et al. Applications of machine learning algorithms to predict therapeutic outcomes in depression: a meta-analysis and systematic review. J Affect Disord. 2018;241:519–32.

    PubMed  Google Scholar 

  106. Shannon P, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Agg B, et al. The EntOptLayout Cytoscape plug-in for the efficient visualization of major protein complexes in protein-protein interaction and signalling networks. Bioinformatics. 2019;35(21):4490–2. https://doi.org/10.1093/bioinformatics/btz257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Lex A, Gehlenborg N, Strobelt H, Vuillemot R, Pfister H. UpSet: visualization of intersecting sets. IEEE Trans Vis Comput Graph. 2014;20:1983–92.

    PubMed  PubMed Central  Google Scholar 

  109. Conway JR, Lex A, Gehlenborg N. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinforma Oxf Engl. 2017;33:2938–40.

    CAS  Google Scholar 

  110. Rosenthal SB, et al. Interactive network visualization in Jupyter notebooks: visJS2jupyter. Bioinforma Oxf Engl. 2018;34:126–8.

    CAS  Google Scholar 

  111. Bostock M, Ogievetsky V, Heer J. D3 Data-Driven Documents. IEEE Trans Vis Comput Graph. 2011;17:2301–9.

    PubMed  Google Scholar 

  112. Satyanarayan A, Moritz D, Wongsuphasawat K, Heer J. Vega-lite: a grammar of interactive graphics. IEEE Trans Vis Comput Graph. 2017;23:341–50.

    PubMed  Google Scholar 

  113. Satyanarayan A, Russell R, Hoffswell J, Heer J. Reactive Vega: a streaming dataflow architecture for declarative interactive visualization. IEEE Trans Vis Comput Graph. 2016;22:659–68.

    PubMed  Google Scholar 

  114. Pomare C, Ellis LA, Churruca K, Long JC, Braithwaite J. The reality of uncertainty in mental health care settings seeking professional integration: a mixed-methods approach. Int J Integr Care. 2018;18:13.

    PubMed  PubMed Central  Google Scholar 

  115. Agniel D, Kohane IS, Weber GM. Biases in electronic health record data due to processes within the healthcare system: retrospective observational study. BMJ. 2018;361:k1479. https://doi.org/10.1136/bmj.k1479.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Skeels M, Lee B, Smith G, Robertson GG. Revealing uncertainty for information visualization. Inf Vis. 2010;9:70–81.

    Google Scholar 

  117. Behrisch M, et al. Quality metrics for information visualization. Comput Graph Forum. 2018;37:625–62.

    Google Scholar 

  118. Hung Y-H, Parsons P. Assessing user engagement in information visualization. In: Proceedings of the 2017 CHI conference extended abstracts on human factors in computing systems. New York: ACM; 2017. p. 1708–17. https://doi.org/10.1145/3027063.3053113.

    Chapter  Google Scholar 

  119. North C. Toward measuring visualization insight. IEEE Comput Graph Appl. 2006;26:6–9.

    PubMed  Google Scholar 

  120. North C, Saraiya P, Duca K. A comparison of benchmark task and insight evaluation methods for information visualization. Inf Vis. 2011;10:162–81.

    Google Scholar 

  121. Shneiderman B, Plaisant C. Strategies for evaluating information visualization tools: multi-dimensional in-depth long-term case studies. In: Proceedings of the 2006 AVI workshop on beyond time and errors: novel evaluation methods for information visualization. New York: ACM; 2006. p. 1–7. https://doi.org/10.1145/1168149.1168158.

    Chapter  Google Scholar 

  122. Tory M, Moller T. Evaluating visualizations: do expert reviews work? IEEE Comput Graph Appl. 2005;25:8–11.

    PubMed  Google Scholar 

  123. Wall E, et al. A heuristic approach to value-driven evaluation of visualizations. IEEE Trans Vis Comput Graph. 2019;25:491–500.

    Google Scholar 

  124. Saket B, Endert A, Stasko J. Beyond usability and performance: a review of user experience-focused evaluations in visualization. In: Proceedings of the sixth workshop on beyond time and errors on novel evaluation methods for visualization. New York: ACM; 2016. p. 133–42. https://doi.org/10.1145/2993901.2993903.

    Chapter  Google Scholar 

  125. Sukumar PT, Metoyer R Towards designing unbiased replication studies in information visualization. In 2018 IEEE evaluation and beyond – methodological approaches for visualization (BELIV) 93–101. 2018. https://doi.org/10.1109/BELIV.2018.8634261.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry Hochheiser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hochheiser, H., Verma, A. (2021). Information Visualization in Mental Health Research and Practice. In: Tenenbaum, J.D., Ranallo, P.A. (eds) Mental Health Informatics. Health Informatics. Springer, Cham. https://doi.org/10.1007/978-3-030-70558-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70558-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70557-2

  • Online ISBN: 978-3-030-70558-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics