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5.1 Introduction

In an explorative research study Woschank et al. (2020) the authors
stated that the usage of real-time data in logistics and operations manage-
ment is an important principle of Industry 4.0. This becomes especially
important because manufacturing processes are constantly generating a
large volume of data in the fourth industrial revolution. Up to now,
only a limited amount of data is used for production planning and
control (PPC) strategies. Real-time-orientated PPC strategies enable
highly responsive, reconfigurable, and time-efficient production systems
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(Arica and Powell 2014; Dallasega et al. 2019a; Dallasega et al. 2019b;
Dallasega et al. 2020) based on the concept of mass customization
(Bednar and Modrak 2014; Matt and Rauch 2016). Moreover, the inte-
gration of modern information and communication technology, inter-
connected networks, and physical processes is named Cyber-Physical
Systems (CPS). CPS capture data of the physical world via sensors, use
the Internet, and cloud computing to communicate between the connec-
tors, and interact with the physical world utilizing mechatronic actuators
(Lee 2008; Zsifkovits and Woschank 2019). This enables autonomous
control systems, which can satisfy customer demands in real-time (Spath
et al. 2013; Dallasega et al. 2017). CPS, as well as the Internet of Things
(IoT), allow enterprises to sense deviations from the production plan
as soon as they appear and identify delays in real-time (Magoutas et al.
2014; Chaopaisarn and Woschank 2019).
This chapter further investigates the postulated impact of different

levels of planning periods on logistics performance indicators in combi-
nation with the application of three PPC strategies. Therefore, the initial
simulation model from Woschank et al. (2020) was updated, recon-
figured, and subsequentially validated in three additional simulation
experiments by using a discrete event simulation study that was config-
ured based on the data from an industrial case study in the field of
electronics manufacturing.

5.2 Problem Formulation

Basically, in the area of PPC strategies, most Industry 4.0-related
approaches are focusing on the principles of decentralization and/or
aim to integrate real-time data for the ongoing improvement of the
overall logistics performance in terms of promised delivery dates, work
in progress, capacity utilization, and lead-times.

In a first step, the authors aim to evaluate significant differences
regarding the impact of a material requirement planning (MRP), a
KANBAN, or a constant work in process (CONWIP) strategy on logis-
tics performance indicators in an make to order production system. In
the second step, the authors further investigate the impact of real-time
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data usage by simulating a monthly, a two-week, and a weekly planning
period, within the MRP, KANBAN, and CONWIP strategy on logistics
performance indicators in an make to order production system.

Consequently, the two research questions of this chapter will be
formulated as follows:

• RQ1: There is a significant difference in lead-time (LT) and work
in progress (WIP) between the MRP, KANBAN, and CONWIP
strategy.

• RQ2: There is a significant difference in LT and WIP between a
monthly plan, a two-week plan, and a weekly plan within the MRP,
KANBAN, and CONWIP strategies.

5.3 RelatedWork

By reviewing the recent literature on PPC approaches in an MTO envi-
ronment, theWoschank et al. (2020) identified only a handful of relevant
research studies that will be presented within the next paragraphs.

• Cadavid et al. (2020) present a systematic literature review analyzing
the state of the art of Machine Learning (ML) approaches applied
to PPC. According to their results, scientific literature rarely
considers customer, environmental, and human-in-the-loop aspects
when linking ML to PPC. Moreover, applications rarely link PPC to
product and process design as well as to the logistics processes.

• Cadavid et al. (2020) suggest using IoT technologies in future research
to collect data and update the ML model to adapt it to manufacturing
system changes.

• Panetto et al. (2019) summarize the challenges for Cyber-Physical
Production Systems (CPPS) as studied by the IFAC research commu-
nity. According to their results, an infrastructure is needed that
supports the adaptation of models according to the changing envi-
ronment over time to support modification and (self-) adaptation.

• Similary, Bendul and Blunck (2019) present the vision of Industry
4.0 to assign tasks of production control to “smart” objects, such as
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machines, parts, and products, to reach distributed control architec-
tures with higher flexibility, higher adaptability, and, as such, a higher
logistics performance.

• According to Ivanov et al. (2018), Industry 4.0 technology enables
data interchange between the product and workstations, flexible
stations able to execute various technological operations, and real-time
capacity utilization control. However, modern production and supply
chains are challenged by increasing uncertainty and risks as well as
multiple feedback cycles where control theory could contribute to gain
further insights regarding the management of these challenges.

• Gräßler and Pöhler (2018) describe the change of a milling work-
station by adding different sensors and computers to reach a self-
controlling cyber-physical device in a laboratory environment. Specifi-
cally, the system is distributed and decentralized whereby, through the
negotiation of resources; a common planning schedule for all orders
is reached. The real-time measurement of data is used to improve
assessments in the planning process, improvements of process execu-
tion as well as for the identification of consequences of disturbances.
However, no quantitative improvement of logistics performance indi-
cators compared to a conventional workstation was reported.

• Similarly, Choi et al. (2017) state that, in a smart manufacturing envi-
ronment, procurement, production, logistics, service, and the product
itself are connected to the network and controlled in real-time based
on CPS. According to them, to establish CPS manufacturing systems,
real-time information exchanges from the shop-floor level to the busi-
ness level need to be enabled. They argue that data acquisition from
non-equipment factors, like human operators, is much more difficult
to obtain than from machines because of issues like non-standardized
working environments and data protection regulations.

• Hortskemper and Hellingrath (2016) present the concept of Order
Allocation Flexibility and the potential of CPS in implementing and
empowering the concept leading to a further increase of flexibility in
the production system. However, they argue that the concept might
introduce further complexity into the PPC system and the costs for
such a system might not be worthwhile for all companies.
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• According to Strandhagen et al. (2017), moving toward real-time
control requires new conceptual models for planning and control.
They state that real-time control is, today, mostly applied on machine
and production line level, while, on the planning levels, existing
concepts are based on conventional concepts like cyclic data processing
and re-planning. However, according to them, Industry 4.0 technolo-
gies have the potential to enable real-time planning and control of
all planning activities. They argue that real-time planning and control
is easier to be applied in repetitive production environments because
collecting data may be easier, enabling higher volumes and quality of
production data.

• Similarly, Ruiz Zúñiga et al. (2017) state that, even in more advanced
Industry 4.0 manufacturing companies, real-time data gathered at the
shop-floor level are mostly used for monitoring different machines
and work centers (e.g., processing times, failures, waiting and blocking
times) and not for optimizing PPC processes.

The systematic literature review confirms the fact that there is little
knowledge regarding the cause-effect relationships between different
centralized and/or decentralized PPC strategies and logistics performance
indicators in a make to order environment. Moreover, in contrast to the
Industry 4.0 philosophy of real-time data usage, most of the data gener-
ated in production systems are frequently not completely exploited for
PPC purposes. This further undermines the importance to answer the
proposed research questions.

5.4 Research Design/Methodology

This chapter aims to investigate and revalidate the impact of different
PPC strategies and real-time data usage in production systems on logis-
tics performance indicators by conducting simulation with data from
an industrial case study. Thereby, the two research questions assume
different PPC strategies and that different levels of planning periods and
will have a significant effect on the logistics performance of a production
system in an MTO environment.



170 M. Woschank et al.

In this context, the authors focus on the investigation of MRP,
KANBAN, and CONWIP as the most important PPC strategies in
industrial enterprises (Kapeller 2018). Thereby, in the centralized MRP
approach, the material is pushed to the subsequent machine after
processing the order. KANBAN, as a decentralized pull system, uses a
control system based on cards as a trigger for the transport of mate-
rial from the outbound storage. CONWIP, as a hybrid system, pursues
the goal of regulated order release procedures based on the current WIP
(Kapeller 2017; Kumar et al. 2007; Gstettner 1998; Jodlbauer and Huber
2008, Dolgui and Proth 2010). Moreover, according to Unver (2013),
we derived three levels of planning periods from the ISA 95 framework
leading to three test groups: (1) a monthly plan, (2) a two-week plan,
and (3) a weekly plan (Woschank et al. 2020). Figure 5.1 displays the
basic concept of our research.
In sum the two research questions were formulated as follows:

• RQ1: There is a significant difference in lead-time (LT) and work
in progress (WIP) between the MRP, KANBAN, and CONWIP
approach.

• RQ2: There is a significant difference in LT and WIP between a
monthly plan, a two-week plan, and a weekly plan within the MRP,
KANBAN, and CONWIP strategies.

Based on the formulation of the basic research questions, the research
process furthermore includes the following phases:

• Phase 1: Data collection based on the production process of an
electronics manufacturer

Performance Measurement

Planning Granularity

PPC Strategies

Unit of Analysis Case Study in an MTO 
Manufacturing Company

MRP

1 Month 2 Weeks 1 Week

KANBAN

1 Month 2 Weeks 1 Week

CONWIP

1 Month 2 Weeks 1 Week

Comparison of LT and WIP

Fig. 5.1 Concept of research
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• Phase 2: Programming of the simulation model
• Phase 3: Conducting a set of simulation runs
• Phase 4: Systematic evaluation of the calculated results

According to Woschank et al. (2020), in phase 1, the data collection was
based on the production process of an electronics manufacturer working
as an SME in a make to order environment. Therefore, we used the
secondary data from a Value StreamMapping (VSM) as a method for the
data gathering, where we focused on one specific product group. Based
on the VSM, we identified the following four value-adding production
processes: Step 1: production process 1 (PP1: raw printing, solver paste
printing, printing check), step 2: production process 2 (PP2: picking and
placing of components, soldering), step 3: production process 3 (PP3:
programming and function control and step 4: production process 4
(PP4: final assembly). The supporting processes SP1 and SP2 are used
for a temporary storage of material. Moreover, we recorded the following
parameters for every process step: change over time, cycle time, lot size,
availability, meantime to repair, LT, pieces per shift, and number of
shifts. In sum, we identified the following problems: (1) The produc-
tivity of production and logistics department is quite low, (2) frequently,
the customer demand cannot be satisfied, (3) high cost due to high stock-
levels within the production, and (4) the planning data in the production
planning system are not up to date.

Figure 5.2 displays the production process based on the initial process
analysis.

Phase 2 focused on the programming of the simulation model as a tool
for the systematic evaluation of research question 1 and research ques-
tion 2. Thereby, we used discrete event simulation as a research method
because this approach offers a high internal validity, high reliability, and
the possibility to systematically isolate potential confounding variables
because of the pre-defined modeling procedures (Cooper and Schindler
2014; Rabe et al. 2008; März et al. 2011; Woschank et al. 2020). Also,
the transferability of the established research findings, respectively, the
external validity of the simulation procedures will be ensured by using
the data from the conducted VSM analysis (Bortz and Döring 2007;
Woschank et al. 2020).
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PP 1 SP 1 PP 2

Value Adding Supporting Process Value Adding

SP 2 PP 4 PP 3

Supporting Process Value Adding Value Adding

1 2

34

PP1…4: Production Process
SP1…4: Supporting Process

Fig. 5.2 Production process

Moreover, the research design of this paper is based on the VDI 3633
guidelines for simulation of logistics systems which consider the steps of
preparation, simulation, and evaluation (März et al. 2011). In the prepa-
ration phase, we used the software Tecnomatix Plant Simulation 15.1
by Siemens PLM, which is a tool package for discrete event simulation
(Woschank et al. 2020). The simulation approach is displayed in Fig. 5.3.
The final simulation approach includes three PPC strategies (MRP,

KANBAN, and CONWIP), three different levels of planning periods
(1 month, two weeks, and a weekly plan), and two indicators for the
measurement of the logistics performance (lead-time (LT) and work in
progress (WIP)). The simulation includes five machines which represent

INBOUND MACHINE 1 MACHINE 2 MACHINE 3 MACHINE 4

STORAGE 1 STORAGE 2 STORAGE 3 STORAGE 4

PPC Strategy
• MRP
• KANBAN
• CONWIP

Planning Granularity
• 1 Month
• 2 Weeks 
• 1 Week

Performance Measurement
• LT
• WIP

OUTBOUND

Fig. 5.3 Simulation approach
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the identified value-adding production processes (PP1-PP2), four inter-
mediate storages in the production system as well as an inbound and an
outbound warehouse.

In phase 3, the author conducted a set of simulation runs by applying
the MRP, KANBAN, and CONWIP approach to the production
system. Thereby, in line with Woschank et al. (2020), the different levels
of planning periods were simulated by generating three different test
groups. Test group 1 is based on the usage of a monthly plan, test group
2 uses a two-week plan, and test group 3 uses a weekly plan for the PPC
process. The logistics performance was operationalized by using a set of
manifest indicators. In this case, we focused on the measurement of LT
and the measurement of WIP in the production system.

In sum, the authors conducted three simulation experiments with nine
simulation models, leading to 27,818 simulation runs within the first
simulation experiment. Moreover, within a second simulation experi-
ment, the authors furthermore computed 83,454 simulation runs, which
did not show any significant difference (p < 0.05) in comparison with
the initially computed results. Finally, the authors conducted a third
simulation experiment with 24,559 simulation runs leading to 49,118
performance indicators for the subsequent statistical analysis.

5.5 Results and Discussion

Figure 5.4 displays an overview of the conceptualized PPC strategies in
the present case study.
In phase 4, the authors systematically evaluate the calculated results

from the third simulation experiment to answer the following research
questions:

• RQ1: There is a significant difference in lead-time (LT) and work
in progress (WIP) between the MRP, KANBAN, and CONWIP
strategy.

• RQ2: There is a significant difference in LT and WIP between a
monthly plan, a two-week plan, and a weekly plan within the MRP,
KANBAN, and CONWIP strategies.
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PPC strategy 1: MRP concept coupled with real-time progress measurement

PPC strategy 2: KANBAN concept coupled with real-time progress measurement

PPC strategy 3: CONWIP concept coupled with real-time progress measurement

Fig. 5.4 PPC strategies

5.5.1 Research Question 1 (RQ1): Comparative
Evaluation of PPC Strategies

To answer research question 1, the authors conducted a comparative
evaluation of the three pre-defined PPC strategies. Therefore, a one-way
analysis of variance (ANOVA) was used to evaluate significant differ-
ences in the two logistics performance indicators lead-time (LT) and
(WIP) between the MRP, KANBAN, and CONWIP strategies. There-
fore, the authors used the software package IBM SPSS Statistics 26 for
the computation of the statistical procedures. The summarized results of
the conducted ANOVA analyses are displayed in Fig. 5.5 and Fig. 5.6.
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Fig. 5.5 Comparison of PPC strategies—lead-time (LT)

Planning Granularity
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Fig. 5.6 Comparison of PPC strategies—work in progress (WIP)
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Following Fig. 5.5 and Fig. 5.6, the results of the ANOVA revealed a
highly significant difference (p < 0.01) in LT and WIP between MRP,
KANBAN, and CONWIP based on a monthly planning period.

Moreover, the descriptive statistics of the computed sample are
displayed in Table 5.1.

In detail, MRP, as the conventional pull-based strategy, leads to the
longest LT and the highest WIP in the production system. Moreover, a
T-test showed highly significant differences (p < 0.01) in LT and WIP
between the MRP and the KANBAN strategy on the level of a monthly
planning period. In detail, compared to MRP, the implementation of
KANBAN would lead to a reduction of 30.07% in LT and a reduction
of 56.51% in WIP.

An additional T-test further revealed highly significant differences (p
< 0.01) in LT and WIP between the MRP and the CONWIP strategy
on the level of a monthly planning period. In detail, the implementation
of CONWIP would lead to a reduction of 5.37% in LT and 48.60% in
WIP, in comparison with the MRP approach.

5.5.2 Research Question 2 (RQ2): Evaluation
of Real-Time Data Usage within the PPC
Strategies

In the first step, the authors evaluated the effects of real-time data usage
within the MRP strategies by using three test groups for the pre-defined
levels of planning periods. Therefore, we used a one-way analysis of vari-
ance (ANOVA) to test significant differences in lead-time (LT) and work
in progress (WIP) between a monthly, a two-week, and a weekly plan-
ning period. The computed ANOVA results are displayed in Fig. 5.7 and
Fig. 5.8.
Within the MRP strategies, the computed ANOVA revealed highly

significant differences (p < 0.01) in lead-time (LT) and work in progress
(WIP) between a monthly, a two-week, and a weekly planning period.
The detailed statistical analysis revealed, that, within the MRP strategies,
a higher level of planning will lead to better LT and a lower WIP, but
only with a relatively low effect. In detail, a reduction in planning from
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Fig. 5.7 Real-time data usage within the MRP strategy—lead-time (LT)
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Fig. 5.8 Real-time data usage within the MRP strategy—work in progress (WIP)
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a monthly plan to a weekly plan would result in a reduction of 0.73%
in LT and 0.45% in WIP.

In the second step, the authors evaluated the effects of real-time
data usage within the KANBAN strategies by using a one-way analysis
of variance (ANOVA) to test significant differences in lead-time (LT)
and work in progress (WIP) between a monthly, a two-week, and a
weekly planning period. The computed ANOVA results are displayed
in Fig. 5.9.
Within the KANBAN strategies, the computed ANOVA revealed

highly significant differences (p < 0.01) in lead-time (LT), but no signifi-
cant differences (p > 0.05) work in progress (WIP) between a monthly, a
two week, and a weekly planning period. Thereby, the detailed statistical
analysis revealed, that, within the KANBAN strategies, a higher level of
planning will lead to a reduction of 1.79% in LT.

In the third step, the authors evaluated the effects of real-time data
usage within the CONWIP strategies by using three test groups for the
pre-defined levels of planning periods. Therefore, we used a one-way
analysis of variance (ANOVA) to test significant differences in lead-time

Planning Granularity

LT
 (s

ec
)

Fig. 5.9 Real-time data usage within the KANBAN strategy—lead-time (LT)
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(LT) and work in progress (WIP) between a monthly, a two-week, and
a weekly planning period. However, within the CONWIP strategies, the
computed ANOVA results showed no significant differences (p < 0.010)
in LT and no significant differences in WIP between a monthly plan, a
two-week plan, and a weekly plan. Therefore, the authors conclude that
different planning periods have no significant effect on the LT and WIP
within the CONWIP approach.

5.6 Conclusions and Outlook

In this chapter, the authors have updated and reconfigured the simula-
tion model by Woschank et al. (2020) to investigate and subsequently
validate and the impact of different PPC strategies and different levels of
planning periods on logistics performance indicators by using a discrete
event simulation based on an industrial case study.
Research question 1 aimed to investigate significant differences

in lead-time (LT) and work in progress (WIP) between the MRP,
KANBAN, and CONWIP strategy. Thereby, the results of the statistical
analysis confirmed significant differences between MRP, KANBAN, and
CONWIP in WIP and LT (Fig. 5.5). Moreover, the KANBAN approach
performed best in terms of WIP and LIT. In detail, the application of
the KANBAN strategy would lead to a reduction of 30.07% in LT and a
reduction of 56.51% in WIP, while the implementation of CONWIP
would lead to a reduction of 5.37% in LT and 48.60% in WIP, in
comparison with the traditional MRP strategy.
Research question 2 was formulated to investigate significant differ-

ences in LT and WIP between a monthly plan, a two-week plan, and
a weekly plan within the MRP, KANBAN, and CONWIP strategies.
Hereby, the statistical analysis showed significant differences in LT and
WIP within the MRP strategy and significant differences in LT within
the KANBAN strategy according to the different levels of planning
periods (Fig. 5.7). In this case, this could be explained because the usage
of real-time data could have a positive impact on the adaptation of the
system to changes, thus making the system more responsive. Within
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the CONWIP strategy, no significant differences in LT and WIP were
indicated between the different levels of planning periods.

In general, this chapter contributes to a better understanding of
PPC strategies and the usage of real-time data in production systems.
The updated and reconfigured simulation model from Woschank et al.
(2020) further increases the transferability and, therefore, the external
validity of the computed statistical results and the established research
findings. Future research should focus on the further development of the
proposed model by transferring it to other industrial branches, by incor-
porating additional PPC strategies, or by using a different set of products
and/or machines within the simulation model.
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