t‘)

Check for
updates

3

Al and ML for Human-Robot Cooperation
in Intelligent and Flexible Manufacturing
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and Dominik T. Matt

3.1 Introduction

The last decades were marked by the further development of modern
production systems and the introduction of Industry 4.0 in manu-
facturing. The concepts and technologies of Industry 4.0 are mostly
aimed at the networking of production and the efficient design of
production systems. The logic of Industry 4.0 foresees humans and
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robots as indistinguishable parts of a larger heterogeneous body of
distributed autonomous and cooperative entities. Under such a perspec-
tive, robots are endowed with self and environment awareness and are
able to smartly interact with both humans and other machines (Ruiz
Garcia et al. 2019). Consequently, and in contrast to the third industrial
revolution, machines are not intended to substitute humans in industry,
but to work with them in synergy.

In collaborative industrial scenarios, safety greatly depends on the
reciprocal understanding between the human operator and the robotic
system. In particular, the most dangerous risk specific to robots is the
unexpected collisions between the robot and the environment (Sicil-
iano and Khatib 2016). When an unexpected exertion occurs between
a collaborative robot and its surrounding environment, impact forces are
eased thanks to their lightweight design and compliant mechanisms and
control. However, avoiding unexpected force exertions implies foreseeing
dangerous situations, and thus it relies on sensing, situational awareness,
planning and decision-making capabilities. Therefore, without suitable
exteroceptive sensing a collaborative robot cannot be considered as a safe
companion in the context of human-robot cooperation (HRC). In other
words, to safely interact with a human operator and the environment,
a collaborative robot must predict and prevent any risky circumstances
based on its own situational awareness. That is, the robot must identify,
understand and forecast operator’s actions and environmental changes to
promptly react and safely adapt to either expected or unexpected opera-
tive conditions. On the other hand, the operator needs to be aware of
the collaborative robot’s motion to guarantee him or her own safety.
Therefore, in the context of HRC, beyond the sensing capabilities a
collaborative robot also needs to be endowed with suitable means of
interaction so to constantly inform the human operator about what are
the current and future goals and actions to be reached and performed,
respectively, on a finite time horizon.
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Another important aspect is that Industry 4.0 is also seen as an
enabler for the flexibilization of production systems and, thus, it poten-
tially represents an important milestone for multi-variant manufacturing.
In this concern, mass customization can be defined as the capability
to deliver products and services that best meet individual customers’
needs with near mass production efficiency (Tseng et al. 1996). Such
a diversification in production requires to manage not only the inner
product variety, but also the induced process variety due to differences
in assembly sequence and the necessary changes of the manufacturing
system required to handle them. A natural way to achieve this goal
is through the flexibilization of manufacturing systems, such to allow
changing from one product to the other without the need to stop the
production for a changeover nor including other manual adaptations of
the manufacturing system. It is worth noticing that such an automated
adaptation in the context of collaborative manufacturing greatly resem-
bles the ones required by a collaborative robot to stablish a safe HRC.
Indeed, the understanding and the forecasting of the operator’s actions
and environmental changes, in terms of the current product variant,
provide all the necessary information required for the definition of such
an adaptation. On the other hand, the automation of such an adaptation
relies on planning and decision-making capabilities.

Therefore, in abstract terms, the definition of a safe HRC and the
automated adaptation of a multi-variant collaborative manufacturing
system represent two particular instances of a general problem. This
chapter is devoted to the deconstruction of such a general problem in
terms of three smaller perceptive and cognitive issues: scene monitoring,
task modelling and planning.

3.2 Artificial Intelligence and Machine
Learning

Since the beginning of the twenty-first century, there has been a
widespread use of ML techniques, specially Deep Learning (DL) ones, in
the analysis of large amounts of data so to automatically drawn conclu-
sions from it. Since then ML and DL, together with Al, are now terms
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belonging to the common imagination. However, there seems to be a
common believe that Al, ML and DL refer to the same—or nearly
the same—concept. In some particular rhetorical circumstances, this
could be the case, but in general terms such a concept overlap is totally
misleading. The aim of this section is twofold. On the one hand, to
briefly clarify what is the scope of each research field and to highlight
the relationships between them. On the other, to identify the key general
problems that such techniques can potentially solve in the context of
collaborative manufacturing.

3.2.1 What's Artificial Intelligence?

As a starting point, one can state that DL is a subset of ML, and that at
the same time ML seems to be subset of Al. Therefore, it comes natural
to start with the definition of Al. However, due historical reasons that
fall beyond the scope of the present chapter, it is not possible to provide
a “gold-standard” definition of Al unless one assumes that some back-
ground on the field is already known. So let us start instead with a
brief digression on what an artificial system should do to be considered
as intelligent. First of all, it is worth noticing that intelligence can be
conceived either in terms of reasoning (thinking) or behaviour (acting).
On the other hand, one can build a comparison metric of intelligence
with respect to the human performance or with respect to an ideal model
of intelligence, commonly known as rationality. Therefore, an artificial
system can be considered as intelligent if it (Russell and Norvig 2010):

1 Acts like a human (Turing test approach). An artificial system acting
like a human should be able to fool a human interrogator, who cannot
distinguish if the answers are being provided by a computer or by a
human. However, this evaluation mechanism implicitly assumes that
the artificial system is already equipped with all the necessary means
for communicating naturally and understanding the interrogator ques-
tions. Clearly, this approach doesn't logically scale, since providing
such necessary means would require solving some general Al problems

beforehand.
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2 Thinks like a human (cognitive modelling approach). Whether an arti-
ficial system is able to think or not like a human, depends on the
availability of an accurate theory or model of the mind, which can
only be defined by experimental evaluation and validation either with
human or animals. Although closely related to Al all of such cognitive
research efforts are totally out of scope.

3 Thinks rationally (laws of thought approach). To understand if an arti-
ficial system thinks rationally, an irrefutable reasoning process needs
to be known. In this regard, the formal logic was introduced to study
the inference in abstract (or formal) content. Based on such theo-
ries, the classical Al approach assumes that intelligent systems can be
built on top of computer programs that search without exhaustion
for a solution of given a set of problems stated in logical notation.
Unfortunately, one key limitation of this approach is that it is diffi-
cult to model knowledge uncertainty, thus reality. On the other hand,
computational resources can be easily exhausted when performing
some (general) reasoning steps.

4 Acts rationally (rational agent approach). An artificial systems act ratio-
nally when focused on achieving a goal given a set of beliefs. Therefore,
acting rationally implies perceiving, then acting, or equivalently, it
implies mapping perceptual inputs or percepts into actions. Any arti-
ficial system able to perceive and act is what is called an agent. Here
rationality is concerned with a success expectation in terms of what has
been perceived—in contrast to the laws of thought approach, where
rationality implies making correct inferences. As a result, a rational
agent performs actions that are expected to maximize a performance
measure, given a designated goal, a sequence of percepts and whatever
built-in knowledge it may have. We observe that causality is a necessary
condition for rationality.

Based on the latter approach, Al can be defined as the branch of
computer science concerned with the study and development of rational
agents. In particular, Al deals with the different ways to represent and
implement how a rational agent maps percepts into actions. Conse-
quently, Al aims to develop algorithms that, given the properties of the
environment and the agent’s structure, produce rational behaviours. In
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the rest of the section, agent will always refer to a rational agent unless
stated otherwise. The environmental properties can be summarized as
follow:

e Observability: an environment is fully observable if the agent’s sensors
allow reconstructing the whole state of the environment at each
time instant; partially observable if the only part of the state can be
reconstructed; unobservable if the agent has no sensors.

e Predictability: an environment is said to be deterministic if its next
state can be uniquely determined in terms of its current state and the
executed action by the agent; nondeterministic otherwise. One partic-
ular case of nondeterministic environments is the stochastic one, were
the possible outcomes of actions are characterized by probabilities. In
most practical scenarios partially observable environments are treated
as stochastic ones. Therefore, an environment is uncertain if it is either
partially observable or non-deterministic.

e Staticness: an environment is said to be dynamic if it changes while
the agent is deliberating; szatic otherwise. It is worth noticing that
a dynamic the environment may change either autonomously (time-
variant) or due to the actions executed by the agent. If the environ-
ment changes only due to the agent’s actions, then it is said to be
semidynamic.

e Discreteness: the environment’s state evolution can be either conzin-
uous or discrete. In total analogy, also the agent’s percepts and actions
can be of either type.

e Knowledge: in a known environment, the consequences of executing
an action (either the outcomes itself or the outcomes’ probabilities)
are well understood by the agent. That is, in a known environment
the agent understands the “laws” governing the environment’s evolu-
tion. When those “laws” are missing from the agent’s knowledge, the
environment is said to be wunknown. The environment’s knowledge
property is independent from its observability. It is worth noticing
that in the case of an unknown environment the agent must learn the
way it works to able to make decisions.

e Episodicness: an ¢pisodic environment does not depend on the actions
taken previously; such an environment can be split as a series of
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independent one-shot actions overtime. In contrast, a sequential envi-
ronment depends on previous actions. That is, its current state is
determined by past actions.

e Agency: an environment can be single agent or multi-agent. In the
latter case, agents can either cooperate to reach a common goal or
compete to conclude their individual goals or a mix of both.

As an example, an autonomous driving agent deals with a partial observ-
able (it is not always possible to fully observe all pedestrians, vehicles or
other entities on the road), stochastic (it is not possible to fully predict
how such entities are going to move next), dynamic (entities’ states evolve
in time), continuous (likewise the rest of our world), known (pedestrians
or other vehicles are not expected to fly), sequential (as a result of its
continuity) and multi-agent (entities act on their own free will) where
agents follow both common (e.g. avoid collisions) and individual goals
(e.g. reach home on time).

The agent structure is defined by the way percepts are mapped into
actions in order to achieve a goal. In particular, one can identify:

e Reflex agents: this type of agents execute one single action a time,
given either the current percept or the whole percepts sequence. When
the reflex agent relies only on the current percept to make a decision,
the agent’s structure is defined by a set of condition-action rules. On
the other hand, when the agent deliberates what to do next based on
the whole (or partial) percept sequence, its structure is given by an
internal model representation of the environment together with a set
of condition-action rules. Therefore, reflex agents are not concerned
with the implications of their actions, the simply act as prescribed by
their built-in rules. In such a sense, the goal of a reflex agent is implicit
and uniquely determined for each environmental state.

e Goal-oriented agents: agents of this type are provided with some extra
information, specifying what’s the expected final or target configura-
tion of the environment. Therefore, goal-oriented agents cannot rely
on a set of condition-action rules to make decisions. On the other
hand, they necessarily need to be aware about the implications each of
their actions could lead. Also, they may need to execute more than one
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action to actually achieve one particular goal. In general, however, it
is not possible to guarantee that a goal-based agent will succeed with
all given goals, even through the execution of an infinite number of
actions. First, some goals may not be reachable from the current envi-
ronmental state (unfeasible or due uncertainty). Second, goals may be
conflicting in between. Also, when multiple action sequences allow
to reach the same target, the goal based agent lacks a rational way to
decide which sequence to execute.

e Utility-based agents: in the aforementioned cases where a goal based
agent fails to succeed, the agent can, instead of exactly achieving a
set of goals, try to execute the set of actions that maximize a given
utility function, which specifies the appropriate trade-offs between
them. Such an utility function represents the agent’s internalization
of the rationality’s performance measure. It is worth noticing that in
the case when different sets of action sequences allow to reach the
same result, the utility function can be used to discern what's the best
sequence among them.

Not all agent structures are appropriate for dealing with all types of envi-
ronments. On the other hand, not always an utility-based agent will
perform better than another agent with a simpler internal structure.
This will depend mostly on environmental properties and the agent’s
adaptation to the environmental changes—in practice, it is impossible
to have a perfect built-in knowledge of the environment. For example:
modern collaborative robots implement a reflex agent to suddenly stop
the robot motion when the external force exertions are above a prede-
fined threshold to guarantee a safe physical interaction; in this applicative
context the reflex agent guarantees the smallest decisional latency, thus
minimizing the risk of damage to the environment or robot. In contrast,
a trajectory planner implementing a reflex agent based on artificial poten-
tial fields may fail to reach the desired goal when getting trapped on a
local minima.

Agent structures and environment states can be decomposed into a
finite set of fundamental units or blocks. For example, one can encap-
sulate all perceptive aspects of an agent into a sensing unit. Each such
an unit can be seen either as black box (azomic representation) or as a set
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of variables and attributes (factored representation) or as a set of inter-
acting objects (structured representation). Based on the environmental
properties, agent’s structure and the ways of representing them, it is now
possible to identify what are the basic Al problems and the algorithms
and techniques to solve them.

Planning agents seck to identify and execute a sequence of actions to
reach their objectives. In terms of the environmental properties, we can
identify four major categories of planning agents:

o Problem-solving agents: use an atomic or a domain dependent factored
representation of the environment. This kind of agents rely on general
searching algorithms: depending on the environmental properties, the
agent can use blind search, heuristic search, local search or adversarial
search; in the case of factored representations, the problem-solving
agent can take advantage of constraint satisfaction search. A clear limi-
tation of atomic representations is that the searching algorithm cannot
exploit any knowledge contained on atomic black boxes, that is, there’s
no room for inference. Example of problems that can be solved with
this type of agents is the VLSI layout design and the classical travelling
salesman.

o Logical agents: take advantage of a domain-independent structured
representation of the environment. This allows to split the agents
structure into a representation unit (knowledge base) and a reasoning
unit (inference engine). The knowledge base (KB) contains all domain-
specific content, but it is stored as a set of formal (abstract, logical)
sentences or statements expressed according to the syntax of a repre-
sentation language. Each sentence can result either true or false,
depending on the model used to evaluate it. Models are the mathe-
matical abstraction of any possible environmental state. The inference
engine allows to derive new sentences from the old ones in terms of
logical entailment, that is, new sentences logically follow form the old
ones. Such a logical reasoning can be done either in terms of model
checking or theorem proving.

o Classical planning agents: in contrast to logical agents, which rely on a
structured variable-free representation, planning agents use a factored
representation of the environment in terms of stte variables. This
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leads to a more flexible and succinct representation for actions, goals
and plans, through the introduction of specific planning languages for
representing the KB. This kind of agents relies on specific searching
algorithms that, depending on the environmental properties, can be
state-space search, planning graphs or hierarchical search.

e Rational planning agents: when dealing with uncertain environments,
all previously described agents keep track of what is called the belief
state, that is, the set of all possible environmental states logically
explaining the observations. In turns, solving a planning task on an
uncertain environment implies considering all possible explanations,
no matter how wunlikely they might be. Clearly, finding solutions on
large search spaces becomes unfeasible with such agents. Another
important limitation is given by the gualification problem: in logical
terms it is not possible to specify all preconditions required for an
action to succeed. In other words, it cannot be deduced whether
an unexpected exception happens or not and, when such an excep-
tion happens, the plan’s outcome cannot be inferred. Therefore, a
rational decision must take into account both, the relative signifi-
cance between goals (uzility) and the prospect whether they will be
achieved or not (probability). In particular, rational decisions maxi-
mize the expected utility when averaged over all of the possible
outcomes of the action. These represent the bases of the probabilistic
reasoning. Basic algorithmic approaches for implementing such type of
reasoning are Bayesian networks, sampling-based methods for approx-
imate inference and fuzzy logic. In case of partial observability, one can
take advantage of hidden Markov models, Kalman filter or dynamic
Bayesian networks to reconstruct the current environmental state.
Rational agents immerse in episodic environment can make use of
decision networks or their dynamic extension in case of sequential
environments, which are modelled as (partially observable) Markov
decision processes.

Perception is the process of extracting information about the environ-
ment from the sensors data. Although there’s a large variety of sensing
technologies providing sensory modalities, the most of the Al research
efforts have been focused on vision (computer vision) and speech (natural
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language processing). Agents require perception to improve their knowl-
edge of the environment and thus to achieve their goals; perception is
not an end by itself. In general terms, an agent needs to identify what
aspects of the perceptual stimulus actually bear or not relevant informa-
tion. In general, there are three different approaches that can lead to this
identification:

o Feature extraction: feature extraction refers to the process where raw
data measurements are converted into a low-dimensional vector of
numerical values, bearing the same informative content of the orig-
inal measurements. Due to the dimensionality reduction, features are
intended to be not only informative but also non-redundant. Nowa-
days manual or hand-crafted feature extraction is no longer a common
practice in applied sciences, due to the advancements of machine
learning algorithms (some of them listed on Sect. 3.2.2) together with
the availability of large public datasets. Classical examples of feature
extraction procedures could be the identification of the principal axes
of a data cluster and the computation of the intensity histogram of an
image.

e [lattern recognition: implies the automatic identification of regularities
on data that are representative of some properties of the environment.
Depending on the application context and nature of the perceptual
information, a pattern recognition strategy can be applied directly
to the raw measurements or to the features representations. As in
the case of features extraction, nowadays pattern recognition prob-
lems are solved by means of machine learning algorithms. Some
common examples of pattern recognition applications include auto-
matic tumour identification from medical images, speech recognition,
spam filtering and face detection.

o Reconstruction: refers to the direct inference of physical properties of
the environment in terms of the measured data. For example, in the
case of images, a reconstruction problem could be to infer the depth
of each pixel. In the case of audio signals, to localize the source given
a distributed array of measurements. Also the agent’s velocity esti-
mation given a sequence of range scans is a particular instance of a
reconstruction problem (szate estimation). In general, reconstruction
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problems require specific algorithms to be solved. Despite, there are
many successful application of machine learning algorithms on specific
reconstruction tasks.

Natural language processing (NLP) deals with structured representa-
tions of the language and aims either, to acquire knowledge from data
(audio or text) given in natural language, or to naturally communi-
cate with humans or other agents. Information-secking tasks rely on a
language model (n-gram) based on characters or words, to predict the
probability distribution of the language expressions. Categorization of
documents can be effectively implemented using naive Bayes n-gram
models or general classification algorithms (some of them listed on
Sect. 3.2.2). Information retrieval is the task of finding documents that
are relevant to a given information query and can be effectively achieved
with a bags of words modelling. Information extraction consists of the
automatic knowledge acquisition from documents; using a primitive
notion of language’s syntax and semantics, successful information extrac-
tion systems have been implemented using finite-state machine, hidden
Markov model and conditional random fields. Natural communication:
require more complex grammatical models and reasoning algorithms
that takes into account the syntax, semantics and pragmatics of the
language. Machine translation and speech recognition represent the most
outstanding achievements of NLP in natural communication.

Robotics represents one of the most active and successful fields of Al
research. Robots are complex physical agents that perform tasks on the
physical world. Robotic system can exhibit distinct levels of autonomy
depending on its learning and deliberating capabilities. In particular,
Al methods are widely used the highest planning levels, that is, action
planning and path planning. Action planning refers to the identifica-
tion of a sequence of actions aimed to satisfy a given goal; task that
can be addressed with any of the previously described methods for clas-
sical and stochastic planning agents. Path planning aims to identify a
sequence of collision-free configurations that allow reaching a destina-
tion pose in the environment; this task can be solved by geometric
algorithms, Markov decision process, sampling-based search, artificial
potential fields, rapidly-exploring random trees, among others. Other
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low-level aspects affecting the behaviour, like for example trajectory plan-
ning, motion planning, trajectory following and motion control can be
tackled either by classical methods and techniques found on the automa-
tion and control systems literature or through the application of machine
learning techniques.

Knowledge representation studies what information or facts about
the world should be included on the KB and how such information
should be represented. The knowledge abstraction is built in terms of
a conceptualization of the individuals and their relations in the environ-
ment, that is, a map that assigns to each one of them a symbol or a set of
symbols in a computer program (the set of symbols is commonly known
as vocabulary). The ontology provides the specification of a conceptu-
alization (Poole and Mackworth 2017). In other words, an ontology
specifies the meanings of symbols in terms of the environment under
study. The specification provided by the ontology includes what entities
can be modelled (caregories), their properties, relationships (hierarchy)
and clarifications (restrictions) on the meanings of some of the symbols
in the form of axioms. Considering the central role of categories in any
large-scale KB, algorithms for reasoning with categories has been also
developed: semantic networks and description logics.

As already mentioned, together with the perceptual stimuli, an agent
also relies on its built-in or prior knowledge of the environment.
Learning refers to the ability of an agent to update, upgrade or depre-
cate any prior knowledge based on its own percepts sequence. Therefore,
the behaviour of a learning agent can become effectively independent
of its prior knowledge after sufficient experience. As a consequence, any
learning agent is inherently autonomous: modifying its own beliefs with
respect to experience, implies a behavioural evolution on time. It is worth
noticing that learning implies adaptation, but not the other way around.
Regardless of the internal structure, any agent can take advantage of
learning to increase its own levels of autonomy. In general, there are two
learning strategies that an agent can try: muning its own beliefs based on
a direct feedback of the executed actions and expanding its knowledge
by exploration, that is, by executing actions leading to new experiences.
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The branch of computer science focused on the study and implementa-
tion of algorithms that improve through experience is known as machine
learning. The following section introduces ML in detail.

3.2.2 What's Machine Learning?

We have already mentioned that ML deals with algorithms that improve
with experience. However, some clarifications are needed. On the one
hand, experience refers to collecting evidence about the relation that
must hold between the inputs and outputs of the algorithm. Evidence
is given in the form of data samples, that is a collection of observations-
outcomes pair. It is worth noticing that often the observations-outcomes
pair corresponds to the inputs-outputs pair of the algorithm. However,
in general, such a correspondence may depend on the problem under
study and the algorithm itself (i.e. the learning strategy). Most of the
ML algorithms rely on a factored representation, were both inputs and
outputs are given as N-dimensional vectors of either discrete or contin-
uous numerical values. On the other hand, 70 improve means lessening
the uncertainty regarding the nature of the inputs-outputs relationship.
In view of this, ML algorithms reach their objective by generalizing (or
extrapolating) from specific evidence to general rules. That is, they follow
an inductive reasoning (bottom-up paradigm). And as such, the predic-
tions of any ML algorithm strongly depend on the evidence supplied to
it: no ML algorithm is able to generalize beyond the domain of support
induced by the known evidence.

Assuming that the input—output relationship can assume a functional
representation, then reducing the uncertainty implies finding a better
approximation, or hypothesis, to it. In general, different hypotheses may
be consistent with the evidence, and one fundamental problem is how
to select the best hypothesis among them. Based on the Ockham’s razor
(Mitchell 1997), the simplest consistent hypothesis should be preferred.
However, in general, there should be a trade-off between the consis-
tency and complexity of a hypothesis. Indeed, increasing the complexity
reduces the aleatoric uncertainty (improves robustness), but at the same it
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increases the epistemic uncertainty, since generalizing becomes more diffi-
cult and requires more evidence to deal with sparsity (Hiillermeier and
Waegeman 2019). Therefore, it is common to set up the quest for the
best hypothesis in two steps. The first, known as model selection, defining
the hypothesis space. The second, in terms of optimization to determine
the best hypothesis in such a space. A learning model assuming that a
finite number of parameters suffices to capture everything about the data
is called parametric. Although, such an assumption notably restricts flex-
ibility, the complexity of parametric models is bounded, no matter if the
amount of available evidence is unbounded. In contrast, non-parametric
assume that it is not possible to capture the data distribution in terms of
a finite set of parameters. This makes such models way more flexible than
the parametric ones, but their complexity increases with the amount of
data provided.

Based on the information provided by the observations-outcomes
samples defining the available evidence, distinct forms of learning can
be identified (Bishop 2006):

1. Supervised learning: in this case the evidence is composed by samples
of inputs-outputs pairs. Then, the learning objective is to generate
the best hypothesis approximating the function that maps inputs into
outputs. The best hypothesis is obtained though optimization and
corresponds to the one minimizing a loss function, measuring the
amount of utility lost between the prediction and the true output
value. When the output of the algorithm corresponds to a finite
number of discrete categories, or labels, the learning problem is called
classification, otherwise regression. Many algorithms have been devel-
oped to solve this kind of problems, to name a few: decision tree
learning, naive Bayes classifier, k-nearest neighbour (k-NN), metric
learning, support vector machines (SVM), random forests, artificial
neural network (ANN), ensembles of classifiers and Gaussian process
regression.

2. Unsupervised learning: the evidence consists of samples containing
only the inputs of the algorithm. The learning objective could be:
to discover groups of samples having similar attributes (clustering),
to project the samples into a low-dimensional space while preserving
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some of their meaningful properties (features extraction, dimension-
ality reduction) or to determine the data distribution within the space
(density estimation). Algorithm for solving unsupervised learning
problems is special ANN architectures (auto-encoders, self-organizing
map), k-means, DBSCAN, hierarchical clustering, principal compo-
nent analysis (PCA), mixture models and Gaussian processes.

3. Reinforcement learning (RL): evidence is composed by a collection of
samples of the form observations-reinforcements, where each obser-
vation is a state-action pair and the reinforcements can be either a
reward or a punishment. The learning objective is to determine the
optimal policy maximizing the overall total reward. In RL, a policy
is the mapping from every possible state to the best action in that
state. In practical applications, there’s no prior evidence; it is obtained
during the learning process by trial and error. Actions are executed
based on a trade-off between exploitation of known state-actions pair
generating high rewards and exploration to discover new ones. Most of
the RL algorithms that can be found on literature are variants either
of the policy gradient or the Q-learning methods.

It is worth mentioning that nowadays there are semi-supervised forms of
learning dealing with evidence having a large number of data samples
with uncertain or missing information about the outcomes.

In general terms, deep learning (DL) refers to the principle that
learning with multiple levels of composition (hierarchy) allows to
improve the learning outcomes when sufficient evidence is provided.
Such a principle can be potentially applied to any ML algorithm (Deng
and Yu 2014). However, in practice, due the contemporary real-world
impact of deep neural network (DNN) on the fields of computer vision
and natural langue processing, DL is widely understood as a synonym
of DNN. From this standpoint, DL (DNN) is a special type of ANN
having a very large number of hidden layers. With respect to the 1980s,
today we have the enough computational power (GPGPU) and the sufh-
ciently large datasets that such complex ANN models require to succeed:
the only way to deal with the intrinsic epistemological uncertainty of a
complex model is to feed it with sufficient amounts of (non-redundant)
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data. Moreover, although there were no significant theoretical contribu-
tions to the field of ANN since then, the use of convolutional neural
networks (CNN) allows to dramatically reduce the number weights and
thus to speed-up the learning algorithm. As a last remark, it is worth
mentioning the technique known as transfer learning. In brief, the tech-
nique consists of exploiting the available knowledge for solving one task
and applying it for solving a different one (Goodfellow et al. 2016). This
technique is widely used on DL applications, in particular through fine
tuning.

3.2.3 What's the Relation Between Artificial
Intelligence and Machine Learning?

As a first approximation, one can say that ML seems to be a branch
of Al. However, in analogy with the perception case, agents require
learning to improve their knowledge of the environment and, conse-
quently, to further their own goals. Therefore, learning in Al is not an
end to itself, but a necessary constituent to build intelligent machines.
It follows that, although AI and ML are highly related, they pursue two
different avenues. The distinction between the two research fields can be
also traced through a historical perspective.

In the early days of Al, some researchers were experimenting the
ways machines can learn from data. Different approaches were devel-
oped to achieve such a goal. In particular, nowadays ANN is the most
widely known. However, due to the strong emphasis that settle the Al
community on the KB logical approach, by 1980 the data driven and
the statistical ones were already ignored by the Al community. The latter
approaches continued their way on the fields of pattern recognition and
information retrieval, while the ANN enthusiast continued the research
as part of the connectionism line of though. After the reinvention by
them of the back-propagation algorithm, ML started to gain attention as
a separate field in the 1990s. The focus of ML was no longer to achieve
Al but to solve practical problems based on statistical and probabilistic
methods and models.
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3.3 Human-Robot Cooperation for Smart
Manufacturing

Industry 4.0 foresees humans and CPS as cooperative entities. Under
such a perspective, CPS need to aware not of its inner state, but also
of the environmental ones, including any other entity on its surround-
ings. Moreover, CPS are required to smartly interact with both humans
and other machines. Such a rich interaction between humans and CPS
requires safe physical human-machine interaction (pHRI), unambiguous
and resilient information flows, autonomous information processing and
real-time decision-making capabilities. The first requirement is automat-
ically satisfied in the context of collaborative robotics. The second deals
exclusively with the Internet of Things (IoT) infrastructure. The last two
are, in general, open research problems. The goal of this section is to
highlight the potential of Al and ML approaches to tackle such problems

in the context of human-robot cooperation in assembly.

3.3.1 CPS and Safety

Cyber-physical systems (CPS) represent one of the fundamental key
enabling technologies for Industry 4.0. Although CPS are still in the
making, it has been conjectured that their introduction in industry will
dramatically change the way value is created along all the digitization
axes of the manufacturing sector: smart product, smart manufacturing
and business model. Based on the 5C architecture (Lee et al. 2015),
implementing a CPS comprises the following levels:

o Smart connection level: is concerned with the sensing and transduc-
tion technologies and the IoT infrastructure for real-time, seamless
and resilient data exchange between all parties.

o Data-to-information conversion level: incorporate all information
retrieval methodologies aimed to understand the state of the machine
and its components. In other words, this level deals with the imple-
mentation of the single machine self-awareness.
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o Cyber level: represents a central information hub between all machines.
Trough the data aggregation and subsequent analysis is could be
possible to compare the performance between different machines and
to predict the future behaviour of each.

o Cognition: includes a set of decision support systems that implement
preliminary data analysis and valuable means for data visualization,
aimed to transfer efficiently the inferred knowledge to the human
experts.

o Configuration level: refers to the actuation mechanism aimed to apply
any corrective or preventive decision taken at the cognition level to the

physical space.

The 5C architecture is thus defined as a human-in-the-loop (HiTL)
scheme were human experts, aided by decision support systems, take
all decisions regarding how to improve the manufacturing process. It
is worth noticing that the applicative context of this architecture is
limited to classical manufacturing processes. Indeed, it doesn’t account
for possible interactions with the environment (safety) and it lacks of a
proper design for distributed processing capabilities. Therefore, the 5C
architecture is not well suited for modern robotic assembly workstations,
specially for those having shared collaborative environments. Another
key concept in Industry 4.0 not captured by the 5C architecture is that
CPS should be able to cooperate with humans and other CPS. Coop-
eration implies two fundamental objectives. The first, to ensure safety; a
constraint that cannot be violated by any means. The second, to conclude
the assigned task; whose achievement can be only guaranteed in safe
operative conditions. With regard to safety, CPS must be able to build
their own knowledge not only in terms of self-awareness but also in terms
of situational-awareness, including both, the state of the physical environ-
ment and the state of the current assembly cycle. With regard to the task
completion, CPS must manifest some degrees of decision-making capa-
bilities. In other words, they must be able to learn how to interact with
the environment, including other entities, based on their beliefs about
the environmental state.

With this idea in mind, let’s rephrase the above considerations in Al
jargon. We start by observing CPS are able to perceive and act, thus,
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from the very basic definition, it follows that CPS are indeed rational
agents. In particular, CPS belong to the class of model-based agents: they
must keep an internal representation of their physical counterpart and
of their environment, including the state of the manufacturing process
(self- and situational-awareness). Moreover, they should achieve multiple
goals at the same time based on the current beliefs: an utility measure
is required to define the proper trade-off. Consequently, CPS should
plan their actions so to maximize the expected utility when averaged
among all possible outcomes that can result from their actions. Further-
more, CPS must cooperate between them considering that the overall
goal is to improve production; still, competing CPS willing to reach
the highest performance can be desirable in a manufacturing context
(paradigm defined as “self-compete” in the 5C architecture). Finally, CPS
must deal with both aleatoric and epistemic uncertainty, specially on
workspaces share with human beings. Nevertheless, there are some key
different that makes a CPS something more fangible than an abstract
agent. On the one hand, CPS are always associated to a physical coun-
terpart and a concrete implementation. On the other hand, a CPS may
exhibit degrees of complexity that are difficult to express or implement
in terms of a single rational agent.

Based on the above considerations, we identify a structured represen-
tation for a machine or robot to be considered as a safety-aware CPS
(SA-CPS), defined in terms of four interacting components (see Fig. 3.1):

1. Safety monitor: based on the percepts sequence and current beliefs,
the aim of this block is to monitor the operative conditions of the
CPS and to trigger an alarm when safety is unexpectedly lost or when
it can be potentially lost in a finite time horizon. Therefore, this unit
relies on an internal model to predict potential risky circumstances
and to decide when to notify the other components of the CPS. This
block is always active and runs in parallel with any of the other three
units.

2. Safety reflexes: the aim of this block is to promptly react when an alarm
is triggered by the safety monitor. The set of actions executed by this
block seek to quickly restore the save operative conditions despite the
current operative state. In terms of the Al agents taxonomy, this unit
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Fig. 3.1 Structured representation of the abstract safety CPS

together with the safety monitor one can be considered as a model-
based reflex agent.

3. Reactive recovery: this block aims to restore a pre-empted operative
state when the safe operative conditions are recovered again. There-
fore, the goal of this component is to plan a sequence of actions
allowing to ensure that the normal operations can be restarted just
after a risky circumstance has been mitigated. When this component
is active, normal operations are on hold.

4. Normal operations: this block incorporates all the functionalities
required to reach the CPS goals. It can pre-empted at any time by the
safety reflexes and can only restart operations after suitable recovery
actions had taken place. This component can be seen as an utility-
based agent, focused on the completion of the manufacturing task

assigned to the CPS.

It is worth noticing that Fig. 3.1 only captures the logical relation
between the four components. However, the interactions between them
are in general richer and complex. As a last remark, modern collaborative
robots have a similar internal structure. In particular, safety is defined
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in terms of physical interaction; prompt reactions imply stopping the
current motion and blocking the motor actuators; and recovery actions
consist of unlocking again the motors and restarting the pre-empted
motion.

3.3.2 Human-Robot Cooperation in Assembly

The most dangerous risk specific to robots is the unexpected colli-
sions between the robot and the environment (Siciliano et al. 2010).
When an unexpected exertion occurs between a collaborative robot and
its surrounding environment, impact forces are eased thanks to their
lightweight design and compliant mechanisms and control. However,
avoiding unexpected force exertions implies foreseeing dangerous situ-
ations, and thus it relies on sensing, situational awareness, planning
and decision-making capabilities. Therefore, without suitable exteroceptive
sensing a collaborative robot cannot be considered as a safe companion in
the context of human—robot cooperation. Indeed, to safely interact with a
human operator a collaborative robot must predict and prevent any risky
circumstances based on its own situational awareness. To this end, it is
required to associate to the human operator and the environment a set
of meaningful spatio-temporal features that allows—with some degree of
accuracy, within a finite time horizon—to model and predict the oper-
ator’s behaviour and the environmental changes. In terms of safety, it is
required to sense and predict the operator’s motion. In terms of cooper-
ation, it is required to understand and predict the operator’s actions and
intentions.

We identify three major synergic elements (see Fig. 3.2) required for a
collaborative robot to be considered as a safe companion in the context
of human-robot cooperation: (i) scene monitoring, (ii) tasks modelling
and (iii) planning. Although these general problems can be unreasonable
complex, within the context of cooperative assembly workstations where
different constraints are imposed to the environment and due to the
cyclic nature of the assembly process, the analysis of each element can be
greatly simplified. In particular, we introduce the following simplifying
assumptions:
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Fig. 3.2 Key enabling technologies for human-robot cooperation

i. The environment is limited to the collaborative workstation and its
assembly process.
ii. There’s only one human operator and one collaborative robot active
a time in the workstation.
iii. The state transitions on the environment are triggered only by events.
iv. There’s a finite number of sequences of state transitions that allow
reaching the final state.
v. There’s a finite number of environmental states.

The first and second allow us to focus on the human-robot cooper-
ation by ignoring the interactions with the rest of the assembly line.
Therefore, we assume that the inputs of the assembly process are always
available and that the outputs of the assembly process are being gath-
ered autonomously by an external entity without affecting the assembly
process. The third, to limit how deep the robot’s understanding of
the environment should be. For example, when a human operator is
finishing one part, it is not always possible to know what specific
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finishing touch is being performed, what are the missing ones or what
were already performed. At a higher level, however, the part is being
finished. Thus, we implicitly assume that in terms of cooperation it is
not required to reconstruct the whole product state, but only up to
the process state. The fourth accounts for the inner variability inside
the assembly process. The fifth implies that the assembly process can
be split in a finite sequence of tasks. Based on these assumptions, the
environment results:

e Fully observable, all state transitions are distinguishable with suitable
sensing and perceptive capabilities.

e Stochastic. On the one hand, there’s not an unique combination of
state transitions allowing to complete the assembly task. On the other,
the time between successive state transitions can (greatly) vary between
different assembly cycles.

e Static, mainly due to assumptions (i) and (ii). However, in the context
of flexible manufacturing some clarifications are required. In case of
multi-variant or multi-product lines both, the assembly cycle and
the workstation layout may require some adjustments. However, such
adjustments do not occur whiting the assembly cycle. Indeed, the
current product under manufacture must be completed, aborted or
pre-empted before switching the assembly goal. In other words, any
environmental change required for a flexible assembly line will be
triggered by an event (in analogy to assumption [iii]). Moreover, all
possible environmental changes are necessarily countable and finite.
Therefore, without loss of generality, we can assume that in the context
of flexible manufacturing there exists a finite set of static environments
and that each of them can be handled independently from the other.
Discrete, by assumption (v).

Known. All possible state transitions are well understood, in terms of
the expected outcomes of the assembly process. This is also enforced
by assumption (iv).

Sequential, as the assembly process.

Defining the environment’s agency is rather ambiguous, considering
that under our modelling assumptions a single CPS may be defined
in terms of several interacting rational agents. However, due to the
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restriction in assumption (i) and (ii), we assume that there’s only one
CPS, given by the collaborative robot and its associated sensing and
processing capabilities.

Based on the properties of the environment, we can introduce the key
enabling technologies for a safe human-robot cooperation in collabora-
tive assembly.

Scene monitoring refers to the real-time reconstruction of the state
of both the operator and the manufacturing parts and products along
the whole assembly processes. Here the objective is not to reconstruct
the state of the assembly process, but to increase the CPS’s awareness
about were the objects and operator are in physical terms (pose, motion,
etc.). In other words, the goal of the scene monitoring unit is twofold.
On the one hand, to extract from the percepts sequence the information
required to evaluate and guarantee the safe operative conditions at every
time instant. On the other hand, to extract from the percepts sequence
the required information to allow further inference regarding the current
and future operator’s activities, and the current and future state of the
ongoing assembly cycle. Therefore, the scene monitoring problem can
be analysed in terms of both, the recognition and tracking of assembly
parts and products, and the operator’s motion tracking.

o Object’s recognition and tracking: there are different technologies that
can be used to efficiently recognize and track the pose, motion and
manufacturing state of objects. To name a few, one can identify
2D/3D vision systems, RF systems, range finder, sonar, mmWave, etc.
A throughout treatment of the problem of object recognition in smart
manufacturing is found in (Riordan et al. 2019).

o Operators motion tracking: due to the stochastic nature of the oper-
ator’s body, head, arms, etc., movements while executing an assembly
task, the problem of monitoring and predicting the operator’s motion
can be considered as a particular instance of a filtering problem (Tan
and Arai 2011). That is, based on a set of past possibly noisy observa-
tions of the operator’s pose determine the best estimate of the current
operator’s motion. Today on research and industry exist a wide range
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of different sensing technologies that can be used to measure the oper-
ator’s pose. The current technological trend points towards multiple
networking range sensing devices or computer vision-based systems
providing analogous measurements (Ferrari et al. 2018; Gkournelos
et al. 2018; Agethen et al. 2016). The use of multiple sensors not
only ensures a better accuracy of the estimation but also accounts for
the decreasing point-density at far distances of a single sensors. More-
over, different view points are required for a reliable identification of
features or markers. However, state-of-the-art deep learning models for
pose estimation in RGB images (Cao et al. 2017) and 2D lidar data
(Weinrich et al. 2014) allows to reach high-levels of accuracy. Indeed,
the larger field of view of lidar sensors allows to track the operator
beyond the field of view of the RGB-D sensor.

Tasks modelling aims to understand what are the current and future
operator’s activities, and the current and future state of the ongoing
assembly cycle. However, considering that only the operator and robot
actions can cause a process state transition, the tasks modelling problem
can be restricted to the recognition and prediction of the actions executed
by the operator.

o Operator’s intentions prediction: in industrial manufacturing scenarios,
the problem of task prediction is greatly simplified by the cyclic nature
of the operator’s work. Any manufacturing cycle is indeed defined
by a finite set of atomic tasks. However, the order in which such
atomic tasks are performed by the operator to conclude the cycle,
in general, is not uniquely defined. Therefore, for a machine to be
aware of the current state of an assembly cycle, it is required to
recognize any atomic task executed by the operator and to model
the transitions between them (Alati et al. 2019b). Identifying a task
implies understanding the actions being performed by the operator,
while understanding the transitions between tasks implies predicting
the operator’s intentions. Based on this idea, the prediction of inten-
tions problem can be analysed in terms of two distinct processes:
(i) action recognition, and (ii) action prediction. Action recognition
refers to the prompt identification of the current task executed by
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the operator. The aim of this process is to continuously monitoring
the operator’s actions on real-time. The action identification can be
driven by different cues, like gestures (Carrasco and Clady 2010),
scene objects being manipulated (Koppula and Saxena 2015) or envi-
ronmental information (Casalino et al. 2018). Action recognition has
been also extensively studied in terms of whole body motion tracking
and segmentation (Natola et al. 2015; Tome et al. 2017). Although
there are no specific manufacturing datasets for the evaluation of
action recognition models, in recent years different deep network
architectures had been demonstrated high levels of accuracy on totally
unrelated but similar manipulation tasks, like the one proposed by
the Epic Kitchens challenge (Damen, et al. 2018; Wang et al. 2018).
Action prediction refers to the total or partial reconstruction of the
possible sequence of actions that the operator would execute just after
concluding the current task. Consequently, this process implies the
generation and constant refinement of an action transition model
(Zanchettin and Rocco 2017; Zanchettin et al. 2018). In general,
it can be also assumed that all operator’s states and actions are fully
observable and that the operator can only execute one action a time.

In general, planning actions in collaborative workstations requires
finding a suitable and safe plan to complete a manipulation or a mobility
task assigned to the CPS. However, we will restrict our attention to
the manipulation case, since in most collaborative workstation the CPS
is defined on top of a robot manipulator with a fixed inertial base.
The objective here is to superimpose the robots state on top of the
assembly process model, such that to allow the real-time analysis and
generation of the robot plan. In other words, the robot’s collaborative
behaviour is achieved by dynamically allocating its tasks, in terms of
the predicted operator’s actions and the relative action transition model
(Alati et al. 2019a). As a result, the objective of the action planning
is to reach a designated assembly process goal state. This implies that
any goal state includes both the operator’s and robot’s states. There-
fore, it is expected that one particular goal can be reached from a
finite set of initial candidate states, each one depending on the partic-
ular sequence of actions performed by the operator. Consequently, in
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human-robot collaborative environments, the action planning process
deals with the robot behaviour adaptation (Mitsunaga et al. 2008) to
the time-varying set of constraints imposed the operators’ actions. In
turns, imposed by the customer requirements, diversity of the avail-
able manufacturing variants and operator’s task execution preferences
(Munzer et al. 2017). Therefore, the robot adaptation should provide
a proactive (anticipatory) collaborative behaviour driven by the different
forms of human-robot interaction associated to each target goal (Mason
and Lopes 2011). In other words, robots working alongside humans
should model how to anticipate a belief about possible future human
actions (Koppula et al. 2016). In complete analogy to the operator’s case,
the cyclic nature of the assembly process implies that there’s a predefined
number of goals that the robot can reach, a finite set of deterministic
actions that it can perform and a finite set of states that it can have.
Moreover, it can be also assumed that the robot can only execute one
action a time. However, in general, the execution time of any planned
cannot be defined in advance since it also depends on the current state
of the assembly process. Specially in the cases when the action execution
requires explicit synchronization with the operator.

We observe that each key enabling technology comprises different
perceptive or cognitive processes that, based on the structured represen-
tation of the SA-CPS, can be mapped to one or more of its building
blocks. In particular, the scene monitoring greatly overlaps with the
safety monitor. However, the scope of the former is not only to evaluate
risks but also to understand the current process state and its evolution in
the near future, which belongs to the normal operations block. Planning
is required for safety reflexes, reactive recovery and normal operations.
Finally, task modelling belongs mainly to the normal operations blocks.
However, understanding the assembly sequence provide useful hints on
the prediction of risky circumstances.
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3.4 Conclusions

Industry 4.0 foresees humans and CPS as cooperative entities. Under
such a perspective, CPS need to aware not of its inner state, but also
of the environmental ones, including any other entity on its surround-
ings. To smartly interact with both humans and other machines, CPS
must be endowed with real-time decision-making capabilities. Although
still today there are many open problems on the field, different Al and
ML techniques can be combined together to provide feasible solutions
to real-world problems, specially on the fields of HRC and automated
adaptation of a multi-variant collaborative manufacturing system.

Within these applicative context, it is required to provide a strong
emphasis on safety, concept that to our knowledge has not being taken
into account on any formalization of the concept of CPS. A safety-aware
CPS is composed at least by four fundamental blocks:

e A constantly running safety monitor system to evaluate the safety
status independently of any other functionalities of the CPS.

e A safety reflexes block to be activated when a risky circumstance has
been detected.

e A reactive recovery unit to restore safe operative conditions just after
the safety has been guarantee by the prompt actions of the safety
reflexes unit.

e A normal operations module, which normally runs unless pre-empted
due to safety issues.

HRC can be effectively implemented through the exploitation of three
key enabling technologies, namely: scene monitoring, task modelling and
planning. Different state-of-the-art AI and ML algorithms can deal with
deferent aspect of one or more of these technologies. The research in this
area is still in an early stage, so this contribution aims to motivate other
researchers to do further research and practitioners to collaborate with
research institutions for conducting tests on practical applications in real
case studies.
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