Skip to main content

Cross Border Service Continuity with 5G Mobile Edge

  • Chapter
  • First Online:
Mobile Edge Computing

Abstract

One of the core elements for the upcoming generation of wireless cellular networks is the availability of network service access continuity in addition to high-speed internet and low latency. The forthcoming fifth generation (5G) greatly improves users’ demand in terms of faster download rates, exceptional system availability, superb end to end coverage with exceptionally low latency and ultra reliability. One of the solutions to provide end to end low latency is the utilization of Mobile Edge Computing (MEC) in the network. MEC provides cloud advantages to users by setting up a small cloud server in the edge node (i.e. close to the end-user), which decreases the amount of latency in network connections, in this regard, service migration has required as users migrate to the new location. Optimal migration decisions are challenging because they depend on the cloud environment, or edge nodes belong to different orchestrators, and security issues in the migration process must also be resolved in order to prevent unreliable requests. This study provides different approaches to address these challenges by identifying the security implications of migration methods based on the blockchain integration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://ec.europa.eu/transport/themes/its/c-its_en.

  2. 2.

    https://5gcarmen.eu/.

  3. 3.

    https://5gcroco.eu/.

  4. 4.

    https://www.5g-mobix.com/.

  5. 5.

    https://omnetpp.org/.

  6. 6.

    https://simulte.com/.

  7. 7.

    https://www.nsnam.org/.

  8. 8.

    https://www.raspberrypi.org/.

  9. 9.

    https://nodejs.org.

  10. 10.

    https://www.eclipse.org/sumo/.

  11. 11.

    https://veins.car2x.org/.

  12. 12.

    https://inet.omnetpp.org/.

  13. 13.

    https://hub.docker.com/repository/docker/levanthanh3005/ns3.

  14. 14.

    www.cellmapper.net.

  15. 15.

    https://www.cisco.com/c/dam/global/en_ae/assets/expo2011/saudiarabia/pdfs/lte-design-and-deployment-strategies-zeljko-savic.pdf.

  16. 16.

    https://www.mistserver.org.

References

  1. Hamid R Barzegar, Nabil El Ioini, Van Thanh Le, and Claus Pahl. 5g-carmen: Service continuity in 5g-enabled edge clouds. In 8th European Conference On Service-Oriented And Cloud Computing, 2020.

    Google Scholar 

  2. H. Assasa, S. V. Yadhav, and L. Westberg. Service mobility in mobile networks. In 2015 IEEE 8th International Conference on Cloud Computing, pages 397–404, 2015.

    Google Scholar 

  3. Raheleh Kooshesh, Mahdi Mollahasani, and Hamid Reza Barzegar. Implement e-government based approach on cloud computing. Journal of Basic and Applied Scientific Research, 3(11):488–493, 2013.

    Google Scholar 

  4. Peter Mell, Tim Grance, et al. The nist definition of cloud computing. 2011.

    Google Scholar 

  5. Alessio Botta, Walter De Donato, Valerio Persico, and Antonio Pescapé. Integration of cloud computing and internet of things: a survey. Future generation computer systems, 56:684–700, 2016.

    Article  Google Scholar 

  6. Jude Okwuibe, Juuso Haavisto, Erkki Harjula, Ijaz Ahmad, and Mika Ylianttila. Orchestrating service migration for low power mec-enabled iot devices. arXiv preprint arXiv:1905.12959, 2019.

    Google Scholar 

  7. Remo Scolati, Ilenia Fronza, Nabil El Ioini, Areeg Samir, and Claus Pahl. A containerized big data streaming architecture for edge cloud computing on clustered single-board devices. 05 2019.

    Google Scholar 

  8. Remo Scolati, Ilenia Fronza, Nabil El Ioini, Areeg Samir, Hamid R. Barzegar, and Claus Pahl. A Containerized Edge Cloud Architecture for Data Stream Processing. 05 2020.

    Google Scholar 

  9. Claus Pahl, Ilenia Fronza, Nabil El Ioini, and Hamid R. Barzegar. A review of architectural principles and patterns for distributed mobile information systems. In 15th International Conference on Web Information Systems and Technologies - WEBIST, 09 2019.

    Google Scholar 

  10. C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow, and P. A. Polakos. A comprehensive survey on fog computing: State-of-the-art and research challenges. IEEE Communications Surveys Tutorials, 20(1):416–464, 2018.

    Article  Google Scholar 

  11. Fabian Gand, Ilenia Fronza, Nabil El Ioini, Hamid R. Barzegar, and Claus Pahl. Serverless container cluster management for lightweight edge clouds. In The 10th International Conference on Cloud Computing and Services Science, CLOSER 2020, 02 2020.

    Google Scholar 

  12. Fabian Gand, Ilenia Fronza, Nabil El Ioini, Hamid R. Barzegar, and Claus Pahl. A lightweight virtualisation platform for cooperative, connected and automated mobility. In 6th International Conference on Vehicle Technology and Intelligent Transport Systems (VEHITS), 02 2020.

    Google Scholar 

  13. Claus Pahl and Brian Lee. Containers and clusters for edge cloud architectures–a technology review. In 2015 3rd international conference on future internet of things and cloud, pages 379–386. IEEE, 2015.

    Google Scholar 

  14. Florin Sultan, Kiran Srinivasan, Deepa Iyer, and Liviu Iftode. Migratory tcp: Connection migration for service continuity in the internet. pages 469–470, 01 2002.

    Google Scholar 

  15. I. Jorstad, Do Van Thanh, and S. Dustdar. An analysis of service continuity in mobile services. In 13th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises, pages 121–126, 2004.

    Google Scholar 

  16. H. Abdah, J. P. Barraca, and R. L. Aguiar. Qos-aware service continuity in the virtualized edge. IEEE Access, 7:51570–51588, 2019.

    Article  Google Scholar 

  17. T. Taleb, P. Hasselmeyer, and F. G. Mir. Follow-me cloud: An openflow-based implementation. In 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing, pages 240–245, 2013.

    Google Scholar 

  18. A. Ksentini, T. Taleb, and M. Chen. A Markov decision process-based service migration procedure for follow me cloud. In 2014 IEEE International Conference on Communications (ICC), pages 1350–1354, 2014.

    Google Scholar 

  19. Shiqiang Wang, Rahul Urgaonkar, Ting He, Kevin Chan, Murtaza Zafer, and Kin K. Leung. Dynamic Service Placement for Mobile Micro-Clouds with Predicted Future Costs. IEEE Transactions on Parallel and Distributed Systems, 28(4):1002–1016, 2017.

    Article  Google Scholar 

  20. Peppino Fazio, Mauro Tropea, Floriano De Rango, and Miroslav Voznak. Pattern prediction and passive bandwidth management for hand-over optimization in qos cellular networks with vehicular mobility. IEEE Transactions on Mobile Computing, 15(11):2809–2824, 2016.

    Article  Google Scholar 

  21. Xiaorong Zhu, Mengrong Li, Wenchao Xia, and Hongbo Zhu. A novel handoff algorithm for hierarchical cellular networks. China Communications, 13(8):136–147, 2016.

    Article  Google Scholar 

  22. Josef Noll and Mohammad MR Chowdhury. 5g: Service continuity in heterogeneous environments. Wireless Personal Communications, 57(3):413–429, 2011.

    Google Scholar 

  23. Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief. A survey on mobile edge computing: The communication perspective. IEEE Communications Surveys Tutorials, 19(4):2322–2358, 2017.

    Article  Google Scholar 

  24. Peppino Fazio, Floriano De Rango, and Mauro Tropea. Prediction and qos enhancement in new generation cellular networks with mobile hosts: A survey on different protocols and conventional/unconventional approaches. IEEE Communications Surveys & Tutorials, 19(3):1822–1841, 2017.

    Article  Google Scholar 

  25. Tarik Taleb, Adlen Ksentini, and Pantelis Frangoudis. Follow-me cloud: When cloud services follow mobile users. IEEE Transactions on Cloud Computing, 2016.

    Google Scholar 

  26. S. Wang, J. Xu, N. Zhang, and Y. Liu. A survey on service migration in mobile edge computing. IEEE Access, 6:23511–23528, 2018.

    Article  Google Scholar 

  27. Abdelkader Aissioui, Adlen Ksentini, Abdelhak Mourad Gueroui, and Tarik Taleb. On enabling 5g automotive systems using follow me edge-cloud concept. IEEE Transactions on Vehicular Technology, 67(6):5302–5316, 2018.

    Google Scholar 

  28. Ivan Farris, Tarik Taleb, Antonio Iera, and Hannu Flinck. Lightweight service replication for ultra-short latency applications in mobile edge networks. In 2017 IEEE International Conference on Communications (ICC), pages 1–6. IEEE, 2017.

    Google Scholar 

  29. Ivan Farris, Tarik Taleb, Miloud Bagaa, and Hannu Flick. Optimizing service replication for mobile delay-sensitive applications in 5g edge network. In 2017 IEEE International Conference on Communications (ICC), pages 1–6. IEEE, 2017.

    Google Scholar 

  30. D. Luong, H. Thieu, A. Outtagarts, and Y. Ghamri-Doudane. Cloudification and autoscaling orchestration for container-based mobile networks toward 5g: Experimentation, challenges and perspectives. In 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), pages 1–7, 2018.

    Google Scholar 

  31. H.R. Barzegar, V.T. Le, C. Pahl, and N. E. Ioini. Wireless network evolution towards service continuity in 5g enabled mobile edge computing. In International Conference on Fog and Mobile Edge Computing (FMEC), 2020.

    Google Scholar 

  32. 3GPP_TR_38.913. Study on scenarios and requirements for next generation access technologies. 2016.

    Google Scholar 

  33. Oumer Teyeb, Gustav Wikstrom, Magnus Stattin, Thomas Cheng, Sebastian Faxer, and Hieu Do. Evolving lte to fit the 5g future, ericsson technology review, 2017.

    Google Scholar 

  34. F. Z. Yousaf, V. Sciancalepore, M. Liebsch, and X. Costa-Perez. Manoaas: A multi-tenant nfv mano for 5g network slices. IEEE Communications Magazine, 57(5):103–109, 2019.

    Article  Google Scholar 

  35. N. Slamnik, H. C. Carvalho, C. Donato, S. Latré, R. Riggio, and J. Marquez. Leveraging mobile edge computing to improve vehicular communications. In 2020 IEEE 17th Annual Consumer Communications Networking Conference (CCNC), pages 1–4, 2020.

    Google Scholar 

  36. G. Elia, M. Bargis, M. P. Galante, N. P. Magnani, L. Santilli, G. Romano, and G. Zaffiro. Connected transports, v2x and 5g: Standard, services and the tim - telecom Italia experiences. In 2019 AEIT International Conference of Electrical and Electronic Technologies for Automotive (AEIT AUTOMOTIVE), pages 1–6, 2019.

    Google Scholar 

  37. Mauro Femminella and Gianluca Reali. Gossip-based monitoring of virtualized resources in 5g networks. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pages 378–384. IEEE, 2019.

    Google Scholar 

  38. Estefanía Coronado, Gabriel Cebrián-Márquez, Giovanni Baggio, and Roberto Riggio. Addressing bitrate and latency requirements for connected and autonomous vehicles. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pages 961–962. IEEE, 2019.

    Google Scholar 

  39. Gianluca Reali, Mauro Femminella, Luca Felicetti, and Matteo Pergolesi. Orchestration of cloud genomic services. In 2019 Eleventh International Conference on Ubiquitous and Future Networks (ICUFN), pages 494–499. IEEE, 2019.

    Google Scholar 

  40. Christian Sciancalepore, Vincenzo and, Faqir Zarrar Yousaf, Pablo Serrano, Marco Gramaglia, Julie Bradford, and Ignacio Labrador Pavón. A future-proof architecture for management and orchestration of multi-domain nextgen networks. IEEE Access, 7:79216–79232, 2019.

    Google Scholar 

  41. Marco Malinverno, Giuseppe Avino, Claudio Casetti, Carla Fabiana Chiasserini, Francesco Malandrino, and Salvatore Scarpina. Mec-based collision avoidance for vehicles and vulnerable users. arXiv preprint arXiv:1911.05299, 2019.

    Google Scholar 

  42. Nabil El Ioini and Claus Pahl. A review of distributed ledger technologies. In OTM 2018 Conferences - Cloud and Trusted Computing (C&TC 2018), 10 2018.

    Google Scholar 

  43. Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller, and Steven Goldfeder. Bitcoin and cryptocurrency technologies: a comprehensive introduction. Princeton University Press, 2016.

    MATH  Google Scholar 

  44. V.T. Le, C. Pahl, and N. E. Ioini. Blockchain based service continuity in mobile edge computing. In 2019 Sixth International Conference on Internet of Things: Systems, Management and Security (IOTSMS), pages 136–141, 2019.

    Google Scholar 

  45. H.R. Barzegar, V.T. Le, C. Pahl, and N. E. Ioini. Service continuity for ccam platform in 5g-carmen,. In 16th international wireless communications and mobile computing conference (iwcmc 2020), 2020.

    Google Scholar 

  46. Patrick Pirri, Claus Pahl, Nabil El Ioini, and Hamid R. Barzegar. Towards cooperative maneuvering simulation: Tools and architecture. In IEEE Consumer Communications & Networking Conference (CCNC), 2021.

    Google Scholar 

  47. Van Thanh Le, Nabil El Ioini, Hamid R. Barzegar, and Claus Pahl. A multi-domain network simulator based on ns-3. In 10th International Conference on Simulation and Modeling Methodologies, Technologies and Applications, 2020.

    Google Scholar 

  48. Marco Pomalo, Van Thanh Le, Nabil El Ioini, Claus Pahl, and Hamid R. Barzegar. A data generator for cloud-edge vehicle communication in multi domain cellular networks. In 7th International Conference on Internet of Things: Systems, Management and Security (IOTSMS), 2020.

    Google Scholar 

  49. Marco Pomalo, Van Thanh Le, Nabil El Ioini, Claus Pahl, and Hamid R. Barzegar. Service migration in multi-domain cellular networks based on machine learning approaches. In 7th International Conference on Internet of Things: Systems, Management and Security (IOTSMS), 2020.

    Google Scholar 

  50. Marco Schito, Hamid R Barzegar, and Luca Reggiani. Resource allocation with interference information sharing in multi-carrier networks. In 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pages 1–6. IEEE, 2016.

    Google Scholar 

  51. Research department. Free speed survey, 2012. URL: https://www.rsa.ie/Documents/Road%20Safety/Speed/Speed_survey_2011.pdf [accessed: 2020-25-04].

  52. T. Ouyang, Z. Zhou, and X. Chen. Follow me at the edge: Mobility-aware dynamic service placement for mobile edge computing. IEEE Journal on Selected Areas in Communications, 36(10):2333–2345, 2018.

    Article  Google Scholar 

Download references

Acknowledgements

The study was carried out within the scope of the EU Horizon 2020 initiative 5G-CARMEN co-funded by the EU under grant agreement No. 825012. The viewpoints expressed are those of the authors and do not necessarily represent the project. The Commission shall not be responsible for any usage that may be made of any of the information contained therein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid R. Barzegar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barzegar, H.R., Ioini, N.E., Le, V.T., Pahl, C. (2021). Cross Border Service Continuity with 5G Mobile Edge. In: Mukherjee, A., De, D., Ghosh, S.K., Buyya, R. (eds) Mobile Edge Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-69893-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69893-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69892-8

  • Online ISBN: 978-3-030-69893-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics