Skip to main content

Emerging Technologies in Markets for the Early Detection of Head and Neck Cancer

  • Chapter
  • First Online:
Early Detection and Treatment of Head & Neck Cancers

Abstract

Head and neck cancer (HNC) is one of the most common types of cancers accounting for 5% of total cancer cases worldwide. The proportion of HNC among malignancies is of much higher prominence in some world regions (e.g., up to 30% in Indo-Asia) as 70% of these cancers are induced by lifestyle habits. Risk factors have been identified such as alcohol, tobacco, smoking, and viral infections (e.g., HPV and EBV). While HNC is often curable when detected early, most patients present with late-stage cancer with regional nodal metastases, and up to 10% of them have distal metastases at the time of the first diagnosis. To date, no national screening programs for HNC have been implemented in the general population nor in high-risk groups. Timely and ultra-sensitive detection is also essential in patients with late-stage HNC to monitor disease recurrence and to assure locoregional control with an overall survival benefit. This chapter provides an overview of technologies that, along with appropriate biomarkers, are poised to revolutionize the early detection of HNC in the coming years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Döbróssy L. Epidemiology of head and neck cancer: magnitude of the problem. Cancer Metastasis Rev. 2005;24:9–17.

    Article  PubMed  Google Scholar 

  2. Leemans CR, Braakhuis BJ, Brakenhoff RH. The molecular biology of head and neck cancer. Nat Rev Cancer. 2011;11(1):9–22.

    Article  CAS  PubMed  Google Scholar 

  3. Spector ME, Farlow JL, Haring CT, Brenner JC, Birkeland AC. The potential for liquid biopsies in head and neck cancer. Discov Med. 2018;25(139):251–7.

    PubMed  PubMed Central  Google Scholar 

  4. Sorbara L, Srivastava S. Liquid biopsy: a holy grail for cancer detection. Biomark Med. 2019;13(12):991–4.

    Article  CAS  PubMed  Google Scholar 

  5. Liu MC, Oxnardy GR, Klein EA, Swanton C, Seiden MV. & on behalf of the CCGA consortium. Sensitive and specific multi-cancer detection and localization using methylation signatures in cell-free DNA. Ann Oncol. 2020;06(31):745–59.

    Article  Google Scholar 

  6. Lennon AM, Buchanan AH, Kinde I, Warren A, Honushefsky A, Cohain AT, Ledbetter DH, Sanfilippo F, Sheridan K, Rosica D, Adonizio CS, Hwang HJ, Lahouel K, Cohen JD, Douville C, Patel AA, Hagmann LN, Rolston DD, Malani N, Zhou S, Bettegowda C, Diehl DL, Urban B, Still CD, Kann L, Woods JI, Salvati ZM, Vadakara J, Leeming R, Bhattacharya P, Walter C, Parker A, Lengauer C, Klein A, Tomasetti C, Fishman EK, Hruban RH, Kinzler KW, Vogelstein B, Papadopoulos N. Feasibility of blood testing combined with PET-CT to screen for cancer and guide intervention. Science. 2020;369:eabb9601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Parsons HA, Rhoades J, Reed SC, Gydush G, Ram P, Exman P, Xiong K, Lo CC, Li T, Fleharty M, Kirkner GJ, Rotem D, Cohen O, Yu F, Fitarelli-Kiehl M, Leong KW, Hughes ME, Rosenberg SM, Collins LC, Miller KD, Blumenstiel B, Trippa L, Cibulskis C, Neuberg DS, De Felice M, Freeman SS, Lennon NJ, Wagle N, Ha G, Stover DG, Choudhury AD, Getz G, Winer EP, Meyerson M, Lin NU, Krop I, Love JC, Makrigiorgos GM, Partridge AH, Mayer EL, Golub TR, Adalsteinsson VA. Sensitive detection of minimal residual disease in patients treated for early-stage breast cancer. Clin Cancer Res. 2020;26:2556–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Diamandis EP. Cancer biomarkers: can we turn recent failures into success? J Natl Cancer Inst. 2010;102(19):1462–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Risberg B, Tsui DWY, Biggs H, Ruiz-Valdepenas Martin de Almagro A, Dawson SJ, Hodgkin C, Jones L, Parkinson C, Piskorz A, Marass F, Chandrananda D, Moore E, Morris J, Plagnol V, Rosenfeld N, Caldas C, Brenton JD, Gale D. Effects of collection and processing procedures on plasma circulating cell-free DNA from cancer patients. J Mol Diagn. 2018;20(6):883–92.

    Article  CAS  PubMed  Google Scholar 

  10. Venturella M, Carpi FM, Zocco D. Standardization of blood collection and processing for the diagnostic use of extracellular vesicles. Current Pathobiol Rep. 2019;7:1–8.

    Article  CAS  Google Scholar 

  11. Kuan DH, Wu CC, Su WY, Huang NT. A microfluidic device for simultaneous extraction of plasma, red blood cells, and on-chip white blood cell trapping. Sci Rep. 2018;8(1):15345.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Rikkert LG, van der Pol E, van Leeuwen TG, Nieuwland R, Coumans FAW. Centrifugation affects the purity of liquid biopsy-based tumor biomarkers. Cytometry A. 2018;93(12):1207–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wu M, Ozcelik A, Rufo J, Wang Z, Fang R, Jun HT. Acoustofluidic separation of cells and particles. Microsyst Nanoeng. 2019;5:32.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Magnusson C, Augustsson P, Lenshof A, Ceder Y, Laurell T, Lilja H. Clinical-scale cell-surface-marker independent acoustic microfluidic enrichment of tumor cells from blood. Anal Chem. 2017;89(22):11954–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Slowey PD. Salivary diagnostics using purified nucleic acids. Methods Mol Biol. 2017;1537:3–15.

    Article  CAS  PubMed  Google Scholar 

  16. Bouza M, Gonzalez-Soto J, Pereiro R, de Vicente JC, Sanz-Medel A. Exhaled breath and oral cavity VOCs as potential biomarkers in oral cancer patients. J Breath Res. 2017;11(1):016015.

    Article  CAS  PubMed  Google Scholar 

  17. https://www.owlstonemedical.com/products/reciva/.

  18. Miller MC, Doyle GV, Terstappen LW. Significance of circulating tumor cells detected by the cell search system in patients with metastatic breast colorectal and prostate cancer. J Oncol. 2010;2010:617421.

    Article  PubMed  Google Scholar 

  19. Brock G, Castellanos-Rizaldos E, Hu L, Coticchia C, Skog J Liquid biopsy for cancer screening, patient stratification and monitoring. Transl Cancer Res. 2015.

    Google Scholar 

  20. Li M, Diehl F, Dressman D, Vogelstein B, Kinzler KW. BEAMing up for detection and quantification of rare sequence variants. Nat Methods. 2006;3(2):95–7.

    Article  CAS  PubMed  Google Scholar 

  21. Diaz LA Jr, Bardelli A. Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol. 2014;32(6):579–86.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y, Agrawal N, Bartlett BR, Wang H, Luber B, Alani RM, Antonarakis ES, Azad NS, Bardelli A, Brem H, Cameron JL, Lee CC, Fecher LA, Gallia GL, Gibbs P, Le D, Giuntoli RL, Goggins M, Hogarty MD, Holdhoff M, Hong SM, Jiao Y, Juhl HH, Kim JJ, Siravegna G, Laheru DA, Lauricella C, Lim M, Lipson EJ, Marie SK, Netto GJ, Oliner KS, Olivi A, Olsson L, Riggins GJ, Sartore-Bianchi A, Schmidt K, Shih LM, Oba-Shinjo SM, Siena S, Theodorescu D, Tie J, Harkins TT, Veronese S, Wang TL, Weingart JD, Wolfgang CL, Wood LD, Xing D, Hruban RH, Wu J, Allen PJ, Schmidt CM, Choti MA, Velculescu VE, Kinzler KW, Vogelstein B, Papadopoulos N, Diaz LA Jr. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014;6(224):224ra24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Sódar BW, Kittel Á, Pálóczi K, Vukman KV, Osteikoetxea X, Szabó-Taylor K, Németh A, Sperlágh B, Baranyai T, Giricz Z, Wiener Z, Turiák L, Drahos L, Pállinger É, Vékey K, Ferdinandy P, Falus A, Buzás EI. Low-density lipoprotein mimics blood plasma-derived exosomes and microvesicles during isolation and detection. Sci Rep. 2016;6:24316.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Zlotogorski-Hurvitz A, Dayan D, Chaushu G, Salo T, Vered M. Morphological and molecular features of oral fluid-derived exosomes: oral cancer patients versus healthy individuals. J Cancer Res Clin Oncol. 2016;142(1):101–10.

    Article  CAS  PubMed  Google Scholar 

  25. Winck FV, Prado Ribeiro AC, Ramos Domingues R, Ling LY, Riaño-Pachón DM, Rivera C, Brandão TB, Gouvea AF, Santos-Silva AR, Coletta RD, Paes Leme AF. Insights into immune responses in oral cancer through proteomic analysis of saliva and salivary extracellular vesicles. Sci Rep. 2015;5:16305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Foroni C, Zarovni N, Bianciardi L, et al. When Less Is More: Specific Capture and Analysis of Tumor Exosomes in Plasma Increases the Sensitivity of Liquid Biopsy for Comprehensive Detection of Multiple Androgen Receptor Phenotypes in Advanced Prostate Cancer Patients. Biomedicines. 2020;8(5):E131. Published 2020 May 22. https://doi.org/10.3390/biomedicines8050131.

    Article  CAS  PubMed  Google Scholar 

  27. Warburg O. On the origin of cancer. Science. 1956;123(3191):309–14.

    Article  CAS  PubMed  Google Scholar 

  28. https://www.exosomics.eu/products/.

  29. McKiernan J, Donovan MJ, O’Neill V, Bentink S, Noerholm M, Belzer S, Skog J, Kattan MW, Partin A, Andriole G, Brown G, Wei JT, Thompson IM Jr, Carroll P. A novel urine exosome gene expression assay to predict high-grade prostate cancer at initial biopsy. JAMA Oncol. 2016;2(7):882–9.

    Article  PubMed  Google Scholar 

  30. Stone RL, Nick AM, McNeish IA, Balkwill F, Han HD, Bottsford-Miller J, Rupairmoole R, Armaiz-Pena GN, Pecot CV, Coward J, Deavers MT, Vasquez HG, Urbauer D, Landen CN, Hu W, Gershenson H, Matsuo K, Shahzad MM, King ER, Tekedereli I, Ozpolat B, Ahn EH, Bond VK, Wang R, Drew AF, Gushiken F, Lamkin D, Collins K, DeGeest K, Lutgendorf SK, Chiu W, Lopez-Berestein G, Afshar-Kharghan V, Sood AK. Paraneoplastic thrombocytosis in ovarian cancer. N Engl J Med. 2012;366(7):610–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nilsson RJ, Balaj L, Hulleman E, van Rijn S, Pegtel DM, Walraven M, Widmark A, Gerritsen WR, Verheul HM, Vandertop WP, Noske DP, Skog J, Würdinger T. Blood platelets contain tumor-derived RNA biomarkers. Blood. 2011;118(13):3680–3.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Klement GL, Yip TT, Cassiola F, Kikuchi L, Cervi D, Podust V, Italiano JE, Wheatley E, Abou-Slaybi A, Bender E, Almog N, Kieran MW, Folkman J. Platelets actively sequester angiogenesis regulators. Blood. 2009;113(12):2835–42.

    Article  CAS  PubMed  Google Scholar 

  33. Nichols AC, Lowes LE, Szeto CC, Basmaji J, Dhaliwal S, Chapeskie C, Todorovic B, Read N, Venkatesan V, Hammond A, Palma DA, Winquist E, Ernst S, Fung K, Franklin JH, Yoo J, Koropatnick J, Mymryk JS, Barrett JW, Allan AL. Detection of circulating tumor cells in advanced head and neck cancer using the CellSearch system. Head Neck. 2012;34(10):1440–4.

    Article  PubMed  Google Scholar 

  34. Giuliano M, Giordano A, Jackson S, De Giorgi U, Mego M, Cohen EN, Gao H, Anfossi S, Handy BC, Ueno NT, Alvarez RH, De Placido S, Valero V, Hortobagyi GN, Reuben JM, Cristofanilli M. Circulating tumor cells as early predictors of metastatic spread in breast cancer patients with limited metastatic dissemination. Breast Cancer Res. 2014;16(5):440.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Bastos DA, Antonarakis. ES.CTC-derived AR-V7 detection as a prognostic and predictive biomarker in advanced prostate cancer. Expert Rev Mol Diagn. 2018;18(2):155–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gorges TM, Tinhofer I, Drosch M, Röse L, Zollner TM, Krahn T, von Ahsen O. Circulating tumour cells escape from EpCAM-based detection due to epithelial-to-mesenchymal transition. BMC Cancer. 2012;12:178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. https://biofluidica.com/te_technology.html.

  38. Zhang Y, Koneva LA, Virani S, Arthur AE, Virani A, Hall PB, Warden CD, Carey TE, Chepeha DB, Prince ME, McHugh JB, Wolf GT, Rozek LS, Sartor MA. Subtypes of HPV-positive head and neck cancers are associated with HPV characteristics, copy number alterations, PIK3CA mutation, and pathway signatures. Clin Cancer Res. 2016;22(18):4735–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Oreskovic A, Brault ND, Panpradist N, Lai JJ, Lutz BR. Analytical comparison of methods for extraction of short cell-free DNA from urine. J Mol Diagn. 2019;21(6):1067–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang Y, Springer S, Mulvey CL, Silliman N, Schaefer J, Sausen M, James N, Rettig EM, Guo T, Pickering CR, Bishop JA, Chung CH, Califano JA, Eisele DW, Fakhry C, Gourin CG, Ha PK, Kang H, Kiess A, Koch WM, Myers JN, Quon H, Richmon JD, Sidransky D, Tufano RP, Westra WH, Bettegowda C, Diaz LA Jr, Papadopoulos N, Kinzler KW, Vogelstein B, Agrawal N. Detection of somatic mutations and HPV in the saliva and plasma of patients with head and neck squamous cell carcinomas. Sci Transl Med. 2015;7(293):293ra104.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Franzmann EJ, Reategui EP, Pereira LH, Pedroso F, Joseph D, Allen GO, Hamilton K, Reis I, Duncan R, Goodwin WJ, Hu JJ, Lokeshwar VB. Salivary protein and solCD44 levels as a potential screening tool for early detection of head and neck squamous cell carcinoma. Head Neck. 2012;34(5):687–95.

    Article  PubMed  Google Scholar 

  42. Nagler R, Bahar G, Shpitzer T, Feinmesser R. Concomitant analysis of salivary tumor markers--a new diagnostic tool for oral cancer. Clin Cancer Res. 2006;12(13):3979–84.

    Article  CAS  PubMed  Google Scholar 

  43. Sridharan G, Ramani P, Patankar S, Vijayaraghavan R. Evaluation of salivary metabolomics in oral leukoplakia and oral squamous cell carcinoma. J Oral Pathol Med. 2019;48(4):299–306.

    Article  CAS  PubMed  Google Scholar 

  44. Cohen JD, Javed AA, Thoburn C, Wong F, Tie J, Gibbs P, Schmidt CM, Yip-Schneider MT, Allen PJ, Schattner M, Brand RE, Singhi AD, Petersen GM, Hong SM, Kim SC, Falconi M, Doglioni C, Weiss MJ, Ahuja N, He J, Makary MA, Maitra A, Hanash SM, Dal Molin M, Wang Y, Li L, Ptak J, Dobbyn L, Schaefer J, Silliman N, Popoli M, Goggins MG, Hruban RH, Wolfgang CL, Klein AP, Tomasetti C, Papadopoulos N, Kinzler KW, Vogelstein B, Lennon AM. Combined circulating tumor DNA and protein biomarker-based liquid biopsy for the earlier detection of pancreatic cancers. Proc Natl Acad Sci U S A. 2017;114(38):10202–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Arya M, Shergill IS, Williamson M, Gommersall L, Arya N, Patel HR. Basic principles of real-time quantitative PCR. Expert Rev Mol Diagn. 2005;5(2):209–19.

    Article  CAS  PubMed  Google Scholar 

  46. Bustin SA, Benes V, Garson JA, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55(4):611–22.

    Article  CAS  PubMed  Google Scholar 

  47. Chan KCA, Woo JKS, King A, et al. Analysis of plasma epstein-barr virus DNA to screen for nasopharyngeal cancer [published correction appears in N Engl J Med. 2018 Mar 8;378(10):973]. N Engl J Med 2017;377(6):513–522.

    Google Scholar 

  48. Park NJ, Zhou H, Elashoff D, et al. Salivary microRNA: discovery, characterization, and clinical utility for oral cancer detection. Clin Cancer Res. 2009;15(17):5473–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Duz MB, Karatas OF, Guzel E, et al. Identification of miR-139-5p as a saliva biomarker for tongue squamous cell carcinoma: a pilot study. Cell Oncol (Dordr). 2016;39(2):187–93. https://doi.org/10.1007/s13402-015-0259-z.

    Article  CAS  Google Scholar 

  50. Fadhil RS, Wei MQ, Nikolarakos D, Good D, Nair RG. Salivary microRNA miR-let-7a-5p and miR-3928 could be used as potential diagnostic bio-markers for head and neck squamous cell carcinoma. PLoS One. 2020;15(3):e0221779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu CJ, Lin SC, Yang CC, Cheng HW, Chang KW. Exploiting salivary miR-31 as a clinical biomarker of oral squamous cell carcinoma. Head Neck. 2012;34(2):219–24.

    Article  PubMed  Google Scholar 

  52. Kanagal-Shamanna R. Digital PCR: principles and applications. Methods Mol Biol. 2016;1392:43–50.

    Article  CAS  PubMed  Google Scholar 

  53. Ahn SM, Chan JY, Zhang Z, et al. Saliva and plasma quantitative polymerase chain reaction-based detection and surveillance of human papillomavirus-related head and neck cancer. JAMA Otolaryngol Head Neck Surg. 2014;140(9):846–54.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kinde I, Wu J, Papadopoulos N, Kinzler KW, Vogelstein B. Detection and quantification of rare mutations with massively parallel sequencing. Proc Natl Acad Sci U S A. 2011;108(23):9530–5.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Reslova N, Michna V, Kasny M, Mikel P, Kralik P. xMAP technology: applications in detection of pathogens. Front Microbiol. 2017;8:55. Published 2017 Jan 25.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Arellano-Garcia ME, Hu S, Wang J, et al. Multiplexed immunobead-based assay for detection of oral cancer protein biomarkers in saliva. Oral Dis. 2008;14(8):705–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Anderson KS, Wong J, D'Souza G, et al. Serum antibodies to the HPV16 proteome as biomarkers for head and neck cancer. Br J Cancer. 2011;104(12):1896–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Linkov F, Lisovich A, Yurkovetsky Z, et al. Early detection of head and neck cancer: development of a novel screening tool using multiplexed immunobead-based biomarker profiling. Cancer Epidemiol Biomark Prev. 2007;16(1):102–7.

    Article  CAS  Google Scholar 

  59. Wei F, Yang J, Wong DT. Detection of exosomal biomarker by electric field-induced release and measurement (EFIRM). Biosens Bioelectron. 2013;44:115–21.

    Article  CAS  PubMed  Google Scholar 

  60. Wei F, Lin CC, Joon A, Feng Z, Troche G, Lira ME, Chia D, Mao M, Ho CL, Su WC, Wong DT. Noninvasive saliva-based EGFR gene mutation detection in patients with lung cancer. Am J Respir Crit Care Med. 2014;190(10):1117–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tu M, Wong MY, Sun X, Dai M, Huang R, Chen Y, Lin X, Yang A, Zheng Q, Liao W. Rapid PCR-free meat species mitochondrial DNA identification using Electric Field Induced Release and Measurement (EFIRM®). Anal Chim Acta. 2020;1099:68–74.

    Article  CAS  PubMed  Google Scholar 

  62. Pu D, Liang H, Wei F, Akin D, Feng Z, Yan Q, Li Y, Zhen Y, Xu L, Dong G, Wan H, Dong J, Qiu X, Qin C, Zhu D, Wang X, Sun T, Zhang W, Li C, Tang X, Qiao Y, Wong DT, Zhou Q. Evaluation of a novel saliva-based epidermal growth factor receptor mutation detection for lung cancer: a pilot study. Thorac Cancer. 2016;7(4):428–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wei F, Strom CM, Cheng J, Lin CC, Hsu CY, Soo Hoo GW, Chia D, Kim Y, Li F, Elashoff D, Grognan T, Tu M, Liao W, Xian R, Grody WW, Su WC, Wong DTW. Electric field-induced release and measurement liquid biopsy for noninvasive early lung Cancer assessment. J Mol Diagn. 2018;20(6):738–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Issa IA, Noureddine M. Colorectal cancer screening: an updated review of the available options. World J Gastroenterol. 2017;23(28):5086–96.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Wright CL, Pan Q, Knopp MV, Tweedle MF. Advancing theranostics with tumor-targeting peptides for precision otolaryngology. World J Otorhinolaryngol Head Neck Surg. 2016;2(2):98–108.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Mayerhoefer ME, Prosch H, Beer L, et al. PET/MRI versus PET/CT in oncology: a prospective single-center study of 330 examinations focusing on implications for patient management and cost considerations. Eur J Nucl Med Mol Imaging. 2020;47:51–60.

    Article  CAS  PubMed  Google Scholar 

  67. Frangioni JV. New technologies for human cancer imaging. J Clin Oncol. 2008;26(24):4012–21.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Economopoulou P, de Bree R, Kotsantis I, Psyrri A. Diagnostic tumor markers in head and neck squamous cell carcinoma (HNSCC) in the clinical setting. Front Oncol. 2019;9:827.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Higgins LJ, Pomper MG. The evolution of imaging in cancer: current state and future challenges. Semin Oncol. 2011;38(1):3–15.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Warram JM, de Boer E, Sorace AG, Chung TK, Kim H, Pleijhuis RG, van Dam GM, Rosenthal EL. Antibody-based imaging strategies for cancer. Cancer Metastasis Rev. 2014;33(2–3):809–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Spiegelberg D, Nilvebrant J. CD44v6 targeted imaging of head and Neck squamous cell carcinoma: antibody-based approaches. Contrast Media Mol Imaging. 2017;2017:2709547.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Huizing FJ, Garousi J, Lok J, Franssen G, Hoeben BAW, Frejd FY, Boerman OC, Bussink J, Tolmachev V, Heskamp S. CAIX targeting radiotracers for hypoxia imaging in head and neck cancer models. Sci Rep. 2019;9(1):18898. https://doi.org/10.1038/s41598-019-54824-5. PMID: 31827111; PMCID: PMC6906415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lu M, Kang N, Chen C, Yang L, Li Y, Hong M, Luo X, Ren L, Wang X. Plasmonic enhancement of cyanine dyes for near-infrared light-triggered photodynamic/photothermal therapy and fluorescent imaging. Nanotechnology. 2017;28(44):445710.

    Article  PubMed  CAS  Google Scholar 

  74. Madamsetty VS, Mukherjee A, Mukherjee S. Recent trends of the bio-inspired nanoparticles in cancer theranostics. Front Pharmacol. 2019;10:1264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kooijmans SAA, Schiffelers RM, Zarovni N, Vago R. Modulation of tissue tropism and biological activity of exosomes and other extracellular vesicles: new nanotools for cancer treatment. Pharmacol Res. 2016;111:487–500.

    Article  CAS  PubMed  Google Scholar 

  76. Moor J. The Dartmouth College artificial intelligence conference: the next fifty years. AI Mag. 2006;27(4):87–91.

    Google Scholar 

  77. Jiang F, Jiang Y, Li H, et al. Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol. 2017;2(4):230–43.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Borkowski AA, Wilson CP, Borkowski SA, Thomas LB, Deland LA, Grewe SJ, Mastorides SM. Comparing artificial intelligence platforms for histopathologic Cancer diagnosis. Fed Pract. 2019;36(10):456–63.

    PubMed  PubMed Central  Google Scholar 

  79. Chishti S, Jaggi KR, Saini A, Agarwal G, Ranjan A. Artificial intelligence-based differential diagnosis: development and validation of a probabilistic model to address lack of large-scale clinical datasets. J Med Internet Res. 2020;22(4):e17550.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Samuel AL. Some studies in machine learning using the game of checkers. IBM J Res Dev. 1959;3(3):210–29.

    Article  Google Scholar 

  81. Schmidhuber J. Deep learning in neural networks: an overview. Neural Netw. 2015;61:85–117.

    Article  PubMed  Google Scholar 

  82. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.

    Article  CAS  PubMed  Google Scholar 

  83. Deo RC. Machine learning in medicine. Circulation. 2015;132(20):1920–30.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Bi WL, Hosny A, Schabath MB, Giger ML, Birkbak NJ, Mehrtash A, Allison T, Arnaout O, Abbosh C, Dunn IF, Mak RH, Tamimi RM, Tempany CM, Swanton C, Hoffmann U, Schwartz LH, Gillies RJ, Huang RY, Aerts HJWL. Artificial intelligence in cancer imaging: clinical challenges and applications. CA Cancer J Clin. 2019;69(2):127–57.

    PubMed  PubMed Central  Google Scholar 

  85. Summerton N, Cansdale M. Artificial intelligence and diagnosis in general practice. Br J Gen Pract. 2019;69(684):324–5.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Seeburg DP, Baer AH, Aygun N. Imaging of patients with head and neck cancer: from staging to surveillance. Oral Maxillofac Surg Clin North Am. 2018;30(4):421–33.

    Article  PubMed  Google Scholar 

  87. Mehanna H, Wong WL, McConkey CC, Rahman JK, Robinson M, Hartley AG, Nutting C, Powell N, Al-Booz H, Robinson M, Junor E, Rizwanullah M, von Zeidler SV, Wieshmann H, Hulme C, Smith AF, Hall P. Dunn J; PET-NECK trial management group. PET-CT surveillance versus neck dissection in advanced head and neck cancer. N Engl J Med. 2016;374(15):1444–54.

    Article  CAS  PubMed  Google Scholar 

  88. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66:7–30.

    Article  PubMed  Google Scholar 

  89. Goel R, Moore W, Sumer B, Khan S, Sher D, Subramaniam RM. Clinical practice in PET/CT for the management of head and neck squamous cell cancer. AJR Am J Roentgenol. 2017;209(2):289–303.

    Article  PubMed  Google Scholar 

  90. Forghani R. An update on advanced dual-energy CT for head and neck cancer imaging. Expert Rev Anticancer Ther. 2019;19(7):633–44.

    Article  CAS  PubMed  Google Scholar 

  91. Lee B, Choi YJ, Kim SO, Lee YS, Hong JY, Baek JH, Lee JH. Prognostic value of radiologic extranodal extension in human papillomavirus-related oropharyngeal squamous cell carcinoma. Korean J Radiol. 2019;20(8):1266–74.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Maxwell JH, Rath TJ, Byrd JK, Albergotti WG, Wang H, Duvvuri U, Kim S, Johnson JT, Branstetter BF 4th, Ferris RL. Accuracy of computed tomography to predict extracapsular spread in p16-positive squamous cell carcinoma. Laryngoscope. 2015;125:1613–8.

    Article  PubMed  Google Scholar 

  93. Carlton JA, Maxwell AW, Bauer LB, McElroy SM, Layfield LJ, Ahsan H, Agarwal A. Computed tomography detection of extracapsular spread of squamous cell carcinoma of the head and neck in metastatic cervical lymph nodes. Neuroradiol J. 2017;30:222–9.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Ando T, Kato H, Kawaguchi M, Tanahashi Y, Aoki M, Kuze B, Matsuo M. Diagnostic ability of contrast-enhanced computed tomography for metastatic cervical nodes in head and neck squamous cell carcinomas: significance of additional coronal reconstruction images. Pol J Radiol. 2020;85:e1–7.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Kann BH, Aneja S, Loganadane GV, Kelly JR, Smith SM, Decker RH, Yu JB, Park HS, Yarbrough WG, Malhotra A, Burtness BA, Husain ZA. Pretreatment identification of head and neck cancer nodal metastasis and extranodal extension using deep learning neural networks. Sci Rep. 2018;8(1):14036.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Balachandar N, Chang K, Kalpathy-Cramer J, Rubin DL. Accounting for data variability in multi-institutional distributed deep learning for medical imaging. J Am Med Inform Assoc. 2020;pii:ocaa017.

    Google Scholar 

  97. Kar A, Wreesmann VB, Shwetha V, Thakur S, Rao VUS, Arakeri G, Brennan PA. Improvement of oral cancer screening quality and reach: the promise of artificial intelligence. J Oral Pathol Med 2020. https://doi.org/10.1111/jop.13013.

  98. Tax CL, Haslam SK, Brillant M, Doucette HJ, Cameron JE, Wade SE. Oral cancer screening: knowledge is not enough. Int J Dent Hyg. 2017;15(3):179–86.

    Article  CAS  PubMed  Google Scholar 

  99. Sharma G. Diagnostic aids in detection of oral cancer: an update. World J Stomatol. 2015;4(3):115–20.

    Article  Google Scholar 

  100. Ilhan B, Lin K, Guneri P, Wilder-Smith P. Improving Oral Cancer outcomes with imaging and artificial intelligence. J Dent Res. 2020;99(3):241–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Jeyaraj PR, Samuel Nadar ER. Computer-assisted medical image classification for early diagnosis of oral cancer employing deep learning algorithm. J Cancer Res Clin Oncol. 2019;145(4):829–37.

    Article  PubMed  Google Scholar 

  102. Fei B, Lu G, Wang X, Zhang H, Little JV, Patel MR, Griffith CC, El-Diery MW, Chen AY. Label-free reflectance hyperspectral imaging for tumor margin assessment: a pilot study on surgical specimens of cancer patients. J Biomed Opt. 2017;22(8):1–7.

    Article  PubMed  Google Scholar 

  103. Aubreville M, Knipfer C, Oetter N, Jaremenko C, Rodner E, Denzler J, Bohr C, Neumann H, Stelzle F, Maier A. Automatic classification of cancerous tissue in laserendomicroscopy images of the oral cavity using deep learning. Sci Rep. 2017;7(1):11979.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Song S, Sunny S, Uthoff RD, Patrick S, Suresh A, Kolur T, Keerthi G, Anbarani A, Wilder-Smith P, Kuriakose MA, et al. Automatic classification of dual-modality, smartphone-based oral dysplasia and malignancy images using deep learning. Biomed Opt Express. 2018;9(11):5318–29.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Coppola F, Faggioni L, Regge D, Giovagnoni A, Golfieri R, Bibbolino C, Miele V, Neri E, Grassi R. Artificial intelligence: radiologists’ expectations and opinions gleaned from a nationwide online survey. Radiol Med. 2020. https://doi.org/10.1007/s11547-020-01205-y.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Zocco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bianciardi, L., Corallo, C., Criscuoli, M., Fortunato, D., Zarovni, N., Zocco, D. (2021). Emerging Technologies in Markets for the Early Detection of Head and Neck Cancer. In: El Assal, R., Gaudilliere, D., Connelly, S.T. (eds) Early Detection and Treatment of Head & Neck Cancers. Springer, Cham. https://doi.org/10.1007/978-3-030-69859-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69859-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69858-4

  • Online ISBN: 978-3-030-69859-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics