Skip to main content

3D Printing and Engineering Tools Relevant to Plan a Transcatheter Procedure

  • Chapter
  • First Online:
Cardiac Catheterization for Congenital Heart Disease

Abstract

Advance cardiac imaging techniques such as three-dimensional (3D) printing technology and engineering tools have experienced a rapid development over the last decade in many surgical and interventional settings. In presence of complex cardiac and extra-cardiac anatomies, the creation of a physical, patient-specific model is useful to better understand the anatomical spatial relationships and formulate the best surgical or interventional plan. Although many case reports and small series have been published over this topic, at the present time, there is still a lack of strong scientific evidence of the benefit of 3D models and advance engineering tools, including virtual and augmented reality, in clinical practice and only qualitative evaluation of the models has been used to investigate their clinical use.

Patient-specific 3D models can be printed in many different materials including rigid, flexible and transparent materials, depending on their application. To plan interventional procedure, transparent materials may be preferred in order to better evaluate the device or stent landing zone. 3D models can also be used as an input for augmented and virtual reality application and advance fluido-dynamic simulation, which aim to support the interventional cardiologist before entering the cath lab.

The aim of this chapter is to present an overview on how 3D printing, extended reality platforms and the most common computational engineering methodologies—finite element and computational fluid dynamics—are currently used to support percutaneous procedures in congenital heart disease (CHD), with examples from the scientific literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Milano EG, Capelli C, Wray J, Biffi B, Layton S, Lee M, et al. Current and future applications of 3D printing in congenital cardiology and cardiac surgery. Br J Radiol. 2019;92(1094):20180389.

    Article  Google Scholar 

  2. Cruz-González I, Barreiro-Pérez M, Valverde I. 3D-printing in preprocedural planning of paravalvular leak closure: feasibility/proof-of-concept. Rev Esp Cardiol (Engl Ed). 2019;72(4):342.

    Article  Google Scholar 

  3. Valverde I, Gomez-Ciriza G, Hussain T, Suarez-Mejias C, Velasco-Forte MN, Byrne N, et al. Three-dimensional printed models for surgical planning of complex congenital heart defects: an international multicentre study. Eur J Cardiothorac Surg. 2017;52(6):1139–48.

    Article  Google Scholar 

  4. Shearn AIU, Yeong M, Richard M, Ordoñez MV, Pinchbeck H, Milano EG, et al. Use of 3D models in the surgical decision-making process in a case of double-outlet right ventricle with multiple ventricular septal defects. Front Pediatr. 2019;7:330.

    Article  Google Scholar 

  5. Pluchinotta FR, Giugno L, Carminati M. Stenting complex aortic coarctation: simulation in a 3D printed model. EuroIntervention. 2017;13(4):490.

    Article  Google Scholar 

  6. Pluchinotta FR, Sturla F, Caimi A, Giugno L, Chessa M, Giamberti A, et al. 3-Dimensional personalized planning for transcatheter pulmonary valve implantation in a dysfunctional right ventricular outflow tract. Int J Cardiol. 2020;309:33–9.

    Article  Google Scholar 

  7. Schievano S, Migliavacca F, Coats L, Khambadkone S, Carminati M, Wilson N, et al. Percutaneous pulmonary valve implantation based on rapid prototyping of right ventricular outflow tract and pulmonary trunk from MR data. Radiology. 2007;242(2):490–7.

    Article  Google Scholar 

  8. Schievano S, Taylor AM, Capelli C, Coats L, Walker F, Lurz P, et al. First-in-man implantation of a novel percutaneous valve: a new approach to medical device development. EuroIntervention. 2010;5(6):745–50.

    Article  Google Scholar 

  9. Knoops PGM, Biglino G, Hughes AD, Parker KH, Xu L, Schievano S, et al. A mock circulatory system incorporating a compliant 3D-printed anatomical model to investigate pulmonary hemodynamics. Artif Organs. 2017;41(7):637–46.

    Article  CAS  Google Scholar 

  10. Witowski J, Darocha S, Kownacki Ł, Pietrasik A, Pietura R, Banaszkiewicz M, et al. Augmented reality and three-dimensional printing in percutaneous interventions on pulmonary arteries. Quant Imaging Med Surg. 2019;9(1):23–9.

    Article  Google Scholar 

  11. Olivieri L, Krieger A, Chen MY, Kim P, Kanter JP. 3D heart model guides complex stent angioplasty of pulmonary venous baffle obstruction in a mustard repair of D-TGA. Int J Cardiol. 2014;172(2):e297–8.

    Article  Google Scholar 

  12. Anwar S, Singh GK, Miller J, Sharma M, Manning P, Billadello JJ, et al. 3D printing is a transformative technology in congenital heart disease. JACC Basic Transl Sci. 2018;3(2):294–312.

    Article  Google Scholar 

  13. Anwar S, Rockefeller T, Raptis DA, Woodard PK, Eghtesady P. 3D printing provides a precise approach in the treatment of tetralogy of fallot, pulmonary atresia with major aortopulmonary collateral arteries. Curr Treat Options Cardiovasc Med. 2018;20(1):5.

    Article  Google Scholar 

  14. Li P, Fang F, Qiu X, et al. Personalized three-dimensional printing and echoguided procedure facilitate single device closure for multiple atrial septal defects. J Interv Cardiol. 2020;2020:1751025.

    Article  Google Scholar 

  15. Butera G, Sturla F, Pluchinotta FR, Caimi A, Carminati M. Holographic augmented reality and 3D printing for advanced planning of sinus venosus asd/partial anomalous pulmonary venous return percutaneous management. JACC Cardiovasc Interv. 2019;12(14):1389–91.

    Article  Google Scholar 

  16. Thakkar AN, Chinnadurai P, Breinholt JP, Lin CH. Transcatheter closure of a sinus venosus atrial septal defect using 3D printing and image fusion guidance. Catheter Cardiovasc Interv. 2018;92(2):353–7.

    Article  Google Scholar 

  17. Giannopoulos AA, Mitsouras D, Yoo SJ, Liu PP, Chatzizisis YS, Rybicki FJ. Applications of 3D printing in cardiovascular diseases. Nat Rev Cardiol. 2016;13(12):701–18.

    Article  CAS  Google Scholar 

  18. Matsubara D, Kataoka K, Takahashi H, Minami T, Yamagata T. A patient-specific hollow three-dimensional model for simulating percutaneous occlusion of patent ductus arteriosus. Int Heart J. 2019;60(1):100–7.

    Article  Google Scholar 

  19. Shijo T, Shirakawa T, Yoshitatsu M, Iwata K. Stent grafting simulation using a three-dimensional printed model for extensive aortic arch repair combined with coarctation. Eur J Cardiothorac Surg. 2018;54(3):593–5.

    Article  Google Scholar 

  20. Milano EG, Pajaziti E, Sauvage E, Cook A, Schievano S, Mortensen KH, et al. Taking Surgery Out of Reality. Circ Cardiovasc Imaging. 2019;12(7):e009297.

    Article  Google Scholar 

  21. Currie ME, McLeod AJ, Moore JT, Chu MW, Patel R, Kiaii B, Peters TM. Augmented reality system for ultrasound guidance of transcatheter aortic valve implantation. Innovations (Phila). 2016;11(1):31–9.

    Google Scholar 

  22. Bruckheimer E, Rotschild C, Dagan T, Amir G, Kaufman A, Gelman S, Birk E. Computer-generated real-time digital holography: first time use in clinical medical imaging. Eur Heart J Cardiovasc Imaging. 2016;17(8):845–9.

    Google Scholar 

  23. Bruckheimer E, Rotschild C. Holography for imaging in structural heart disease. EuroIntervention. 2016;17;12 Suppl X:X81–X84.

    Google Scholar 

  24. Capelli C, Sauvage E, Giusti G, Bosi GM, Ntsinjana H, Carminati M, Derrick G, Marek J, Khambadkone S, Taylor AM, Schievano S. Patient-specific simulations for planning treatment in congenital heart disease. Interface Focus. 2018;6;8(1):20170021.

    Google Scholar 

  25. Marsden AL, Feinstein JA. Computational modeling and engineering in pediatric and congenital heart disease. Curr Opin Pediatr. 2015;27(5):587–96.

    Google Scholar 

  26. Taylor CA, Figueroa CA. Patient-specific modeling of cardiovascular mechanics. Annu Rev Biomed Eng. 2009;11:109–34.

    Google Scholar 

  27. Heethaar RM, Pao YC, Ritman EL. Computer aspects of three-dimensional finite element analysis of stresses and strains in the intact heart. Comput Biomed Res. 1977;10(3):271–85.

    Google Scholar 

  28. Pao YC, Ritman EL, Wood EH. Finite-element analysis of left ventricular myocardial stresses. J Biomech. 1974;7(6):469–77.

    Google Scholar 

  29. Janz RF, Grimm AF. Deformation of the diastolic left ventricle. Nonlinear elastic effects. Biophys J. 1973;13(7):689–704.

    Google Scholar 

  30. Bhatla P, Chakravarti S, Ludomirsky A, Argilla M, Berman P, McElhinney D, et al. Patient-specific simulation of right ventricle outflow tract conduit baloon angioplasty using cardiac MRI-derived 3D virtual model to assess the risk of coronary artery compression during transcathter pulmonary valve replacement. J Am Coll Cardiol. 2015;65(10 Suppl):A572.

    Article  Google Scholar 

  31. Caimi A, Sturla F, Pluchinotta FR, Giugno L, Secchi F, Votta E, et al. Prediction of stenting related adverse events through patient-specific finite element modelling. J Biomech. 2018;79:135–46.

    Article  Google Scholar 

  32. Schievano S, Petrini L, Migliavacca F, Coats L, Nordmeyer J, Lurz P, Khambadkone S, Taylor AM, Dubini G, Bonhoeffer P. Finite element analysis of stent deployment: understanding stent fracture in percutaneous pulmonary valve implantation. J Interv Cardiol. 2007;20(6):546–54.

    Google Scholar 

  33. Bosi GM, Capelli C, Khambadkone S, Taylor AM, Schievano S. Patient-specific finite element models to support clinical decisions: A lesson learnt from a case study of percutaneous pulmonary valve implantation. Catheter Cardiovasc Interv. 2015;86(6):1120–30.

    Google Scholar 

  34. Caiazzo A, Guibert R, Boudjemline Y, Vignon-Clementel IE. Blood Flow Simulations for the Design of Stented Valve Reducer in Enlarged Ventricular Outflow Tracts. Cardiovasc Eng Technol. 2015;6(4):485–500.

    Google Scholar 

  35. Cosentino D, Capelli C, Derrick G, Khambadkone S, Muthurangu V, Taylor AM, Schievano S. Patient-specific computational models to support interventional procedures: a case study of complex aortic re-coarctation. EuroIntervention. 2015;11(6):669–72.

    Google Scholar 

  36. Goubergrits L, Riesenkampff E, Yevtushenko P, Schaller J, Kertzscher U, Hennemuth A, Berger F, Schubert S, Kuehne T. MRI-based computational fluid dynamics for diagnosis and treatment prediction: clinical validation study in patients with coarctation of aorta. J Magn Reson Imaging. 2015;41(4):909–16.

    Google Scholar 

  37. Caimi A, Pasquali M, Sturla F, Pluchinotta FR, Giugno L, Carminati M, Redaelli A, Votta E. Prediction of post-stenting biomechanics in coarcted aortas: A pilot finite element study. J Biomech. 2020;105:109796.

    Google Scholar 

  38. Taylor CA, Fonte TA, Min JK. Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis. J Am Coll Cardiol. 2013;61(22):2233–41.

    Google Scholar 

  39. Leipsic J, Weir-McCall J, Blanke P. FFRCT for Complex Coronary Artery Disease Treatment Planning: New Opportunities. Interv Cardiol. 2018;13(3):126–28.

    Google Scholar 

  40. Fairbairn TA, Nieman K, Akasaka T, Nørgaard BL, Berman DS, Raff G, Hurwitz-Koweek LM, Pontone G, Kawasaki T, Sand NP, Jensen JM, Amano T, Poon M, Øvrehus K, Sonck J, Rabbat M, Mullen S, De Bruyne B, Rogers C, Matsuo H, Bax JJ, Leipsic J, Patel MR. Real-world clinical utility and impact on clinical decision-making of coronary computed tomography angiography-derived fractional flow reserve: lessons from the ADVANCE Registry. Eur Heart J. 2018;39(41):3701–11.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Schievano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Milano, E.G., Popa, T., Iacob, AM., Schievano, S. (2021). 3D Printing and Engineering Tools Relevant to Plan a Transcatheter Procedure. In: Butera, G., Chessa, M., Eicken, A., Thomson, J. (eds) Cardiac Catheterization for Congenital Heart Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-69856-0_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69856-0_62

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69855-3

  • Online ISBN: 978-3-030-69856-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics