Skip to main content

Chitosan-Based Nano-Delivery System

Handbook of Nutraceuticals

Abstract

Nutraceuticals has a broad range of explication that refers to any food-derived supplement that offers additional health advantages over and beyond the fundamental nutritional content of food. Chitosan is the one among lead compound from chitin, especially acquired from crustacean shells such as prawns or crabs, as also from some fungus cell walls. Advancement in the field of modern technology has curx toward the development of chitosan microparticles subsequently developing chitosan nanoparticles, ensuring the effective use of chitosan in diligence to varying industries. Chitosan nanoparticles poses a prime role due to their potential advantages, including ease of manipulation owing to functional surface groups, easy to surface functionalization, outstanding physicochemical properties, excellent biocompatibility and biodegradability. This chapter discusses chitosan nanoparticles in detail to its intricate physical, chemical, and biological/green methods for the preparation, physicochemical characteristics, different nano-formulations, mainly focusing its nutraceutical applications. In association with recent implementation of green synthesis of chitosan based nutraceuticals poses nontoxic, eco-friendly, and biosafety in production field.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abazinge M, Jackson T, Yang Q (2000) Comparision of in vitro and in vivo release characteristics of sustained release of loxacin drug delivery. Drug Deliv 7:77–81

    Article  PubMed  CAS  Google Scholar 

  • Acosta LE, Poretti TI, Mascarelli PE (1993) The defensive secretions of pachyloidellus goliath (Opiliones, Laniatores, Gonyleptidae). Bonn zool Beitr 44:19–31

    Google Scholar 

  • Agnihotri SA, Mallikarjuna NN, Aminabhavi TM (2004) Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release 100(1):5–28. https://doi.org/10.1016/j.jconrel.2004.08.010

    Article  PubMed  CAS  Google Scholar 

  • Ahmad Z, Pandey R, Sharma S, Khuller GK (2006) Pharmacokinetic and pharmacodynamic behaviour of antitubercular drugs encapsulated in alginate nanoparticles at two doses. Int J Antimicrob Agents 27:409–416. https://doi.org/10.1016/j.ijantimicag.2005.12.009

    Article  PubMed  CAS  Google Scholar 

  • Ahmad N, Ahmad R, Naqvi AA, Alam MA, Ashafaq M, Samim M, Iqbal Z, Ahmad FJ (2016) Rutin-encapsulated chitosan nanoparticles targeted to the brain in the treatment of cerebral ischemia. Int J Biol Macromol 91:640–655

    Article  PubMed  CAS  Google Scholar 

  • Al-Eisa RA (2018) Synergistic antioxidant capacity of chitosan nanoparticles and lycopene against aging hepatotoxicity induced by D-galactose in male rats. Int J Pharmacol 14(6):811–825

    Article  CAS  Google Scholar 

  • Alishahi A, Mirvaghefi A, Tehrani MR, Farahmand H, Koshio S, Dorkoosh FA, Elsabee MZ (2011) Chitosan nanoparticle to carry vitamin C through the gastrointestinal tract and induce the non-specific immunity system of rainbow trout (Oncorhynchus mykiss). Carbohydr Polym 86:142–146. https://doi.org/10.1016/j.carbpol.2011.04.028

    Article  CAS  Google Scholar 

  • Al-Kassas R, Wen J, Cheng AE, Kim AM, Liu SSM, Yu J (2016) Transdermal delivery of propranolol hydrochloride through chitosan nanoparticles dispersed in mucoadhesive gel. Carbohydr Polym 153:176–186. https://doi.org/10.1016/j.carbpol.2016.06.096

    Article  PubMed  CAS  Google Scholar 

  • Al-Naamani L, Dobretsov S, Dutta J (2016) Chitosan-zinc oxide nanoparticle composite coating for active food packaging applications. Innov Food Sci Emerg Technol 38:231–237. https://doi.org/10.1016/j.ifset.2016.10.010

    Article  CAS  Google Scholar 

  • Amani A, Alizadeh MR, Yaghoubi H, Nohtani M (2021) Novel multi-targeted nanoparticles for targeted co-delivery of nucleic acid and chemotherapeutic agents to breast cancer tissues. Mater Sci Eng C 118:Article 111494

    Article  Google Scholar 

  • Amini A, Kamali M, Amini B, Najafi A, Narmani A, Hasani L et al (2019) Bio-barcode technology for detection of Staphylococcus aureus protein A based on gold and iron nanoparticles. Int J Biol Macromol 124:1256–1263

    Article  PubMed  CAS  Google Scholar 

  • Anissian D, Ghasemi-Kasman M, Khalili-Fomeshi M, Akbari A, Hashemian M, Kazemi S, Moghadamnia AA (2018) Piperine-loaded chitosan-STPP nanoparticles reduce neuronal loss and astrocytes activation in chemical kindling model of epilepsy. Int J Biol Macromol 107:973–983

    Article  PubMed  CAS  Google Scholar 

  • Arya N, Chakraborty S, Dube N, Katti DS (2008. Wiley InterScience) Electrospraying: a facile technique for synthesis of chitosan-based micro/nanospheres for drug delivery applications:17–31. https://doi.org/10.1002/jbm.b.31085

  • Avadi MR, Mir Mohammad Sadeghi S, Mohammadpour N, Abedin S, Atyabi F, Dinarvand R et al (2010) Preparation and characterization of insulin nanoparticles using chitosan and Arabic gum with ionic gelation method. Nanomedicine 6(1):58–63. https://doi.org/10.1016/j.nano.2009.04.007

    Article  PubMed  CAS  Google Scholar 

  • Baer DR (2010) Surface characterization of nanoparticles: challenges and opportunities. http://www.greennano.org/webfm_send/49. Accessed Aug 2012

  • Baksi R, Singh DP, Borse SP, Rana R, Sharma V, Nivsarkar M (2018) In vitro and in vivo anticancer efficacy potential of quercetin loaded polymeric nanoparticles. Biomed Pharmacother 106:1513–1526

    Article  PubMed  CAS  Google Scholar 

  • Banerjee T, Mitra S, Kumar-Singh A, Kumar-Sharma R, Maitra A (2002) Preparation, characterization and biodistribution of ultrafine chitosan nanoparticles. Int J Pharm 243:93–105. https://doi.org/10.1016/S0378-5173(02)00267-3

    Article  PubMed  CAS  Google Scholar 

  • Benybaby N, Harsha NS, Jayaveera KN, Abraham A (2012) Formulation and evaluation of levofloxacin nanoparticles by ionic gelation method. J Pharm Pharm Sci 1:7–9

    Google Scholar 

  • Bhattarai N, Gunn J, Zhang M (2010) Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 62:83–99. https://doi.org/10.1016/j.addr.2009.07.019

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Mohanraj VJ, Wang F, Benson HAE (2007) Designing chitosan–dextran sulfate nanoparticles using charge ratios. AAPS PharmSciTech 8:E98. https://doi.org/10.1208/pt0804098

    Article  PubMed  Google Scholar 

  • Chen Q, Gong S, Moll J, Zhao D, Kumar SK, Colby RH (2015) Mechanical reinforcement of polymer nanocomposites from percolation of a nanoparticle network. ACS Macro Lett 4:398–402

    Article  PubMed  CAS  Google Scholar 

  • Chena MM, Huanga YQ, Caoa H, Liub Y, Guoa H (2015) Collagen/chitosan film containing biotinylated glycol chitosan nanoparticles for localized drug delivery. Colloids Surf B Biointerfaces 128:339–346

    Article  Google Scholar 

  • Clisson ME, Pinto-Alphandary H, Ourevitch M, Andremont A, Couvreur P (1998) Development of ciprofloxacin-loaded nanoparticles: a physicochemical study of the drug carrier. J Control Release 56:23–32

    Article  Google Scholar 

  • Cong Y, Pang CF, Dai L, Banta GT, Selck H, Forbes VE (2011) Importance of characterizing nanoparticles before conducting toxicity tests. Integr Environ Assess Manag 7:502–503

    Article  PubMed  CAS  Google Scholar 

  • Corradini E, De Moura MR, Mattoso LHC (2010) A preliminary study of the incorporation of NPK fertilizer into chitosan nanoparticles. Express Polym Lett 4:509–515

    Article  CAS  Google Scholar 

  • Dhiman A, Bhalla D (2019) Development and evaluation of lycopene loaded chitosan nanoparticles. Curr Nanomed 9(1):61–75

    Article  CAS  Google Scholar 

  • Diop M, Auberval N, Viciglio A, Langlois A, Bietiger W, Mura C, Peronet C, Bekel A, Julien David D, Zhao M, Pinget M, Jeandidier N, Vauthier C, Marchioni E, Frere Y, Sigrist S (2015) Design, characterisation, and bioefficiency of insulin-chitosan nanoparticles after stabilisation by freeze-drying or cross-linking. Int J Pharm 491:402–408

    Article  PubMed  CAS  Google Scholar 

  • Du WL, Niu SS, Xu YL, Xu ZR, Fan CL (2009) Antibacterial activity of chitosan tripolyphosphate nanoparticles loaded with various metal ions. Carbohydr Polym 75:385–389

    Article  CAS  Google Scholar 

  • Dube A, Nicolazzo JA, Larson I (2011) Chitosan nanoparticles enhance the plasma exposure of(−)-epigallocatechin gallate in mice through an enhancement in intestinal stability. Eur J Pharm Sci 44(3):422–426

    Article  PubMed  CAS  Google Scholar 

  • Dudhani AR, Kosaraju SL (2010) Bioadhesive chitosan nanoparticles: preparation and characterization. Carbohydr Polym 81(2):243–251

    Article  CAS  Google Scholar 

  • Elnaggar YS, Etman SM, Abdelmonsif DA, Abdallah OY (2015) Intranasal piperine-loaded chitosan nanoparticles as brain-targeted therapy in Alzheimer’s disease: optimization, biological efficacy, and potential toxicity. J Pharm Sci 104(10):3544–3556

    Article  PubMed  CAS  Google Scholar 

  • El-Naggar NE, Hussein MH, El-Sawah AA (2018) Phycobiliprotein-mediated synthesis of biogenic silver nanoparticles, characterization, in vitro and in vivo assessment of anticancer activities. Sci Rep 8:1–20

    Article  Google Scholar 

  • El-Shabouri MH (2002) Positively charged nanoparticles for improving the oral bioavailability of cyclosporin-A. Int J Pharm 249:101–108. https://doi.org/10.1016/S0378-5173(02)00461-1

    Article  PubMed  CAS  Google Scholar 

  • Fan B, Xing Y, Zheng Y, Sun C, Liang G (2016) PH-responsive thiolated chitosan nanoparticles for oral low-molecular weight heparin delivery: in vitro and in vivo evaluation. Drug Deliv 23:238–247

    Article  PubMed  CAS  Google Scholar 

  • Fonseca-Santos B, Chorilli M (2017) An overview of carboxymethyl derivatives of chitosan: their use as biomaterials and drug delivery systems. Mater Sci Eng C Mater Biol Appl 77:1349–1362. https://doi.org/10.1016/j.msec.2017.03.198

    Article  PubMed  CAS  Google Scholar 

  • Gavhane Y, Gurav A, Yadav A (2013) Chitosan and its applications: a review of literature. Int J Biomed Pharm Sci 4:312

    Google Scholar 

  • Ghadi A, Mahjoub S, Tabandeh F, Talebnia F (2014) Caspian J Intern Med 5(3, Summer):156–161

    PubMed  PubMed Central  Google Scholar 

  • Giovino C, Ayensu I, Tetteh J, Boateng JS (2012) Development and characterisation of chitosan films impregnated with insulin loaded PEG-b-PLA nanoparticles (NPs): a potential approach for buccal delivery of macromolecules. Int J Pharm 428:143–151. https://doi.org/10.1016/j.ijpharm.2012.02.035

    Article  PubMed  CAS  Google Scholar 

  • Gonçalves IC, Henriques PC, Seabra CL, Martins MCL (2014) The potential utility of chitosan micro/nanoparticles in the treatment of gastric infection. Expert Rev Anti-Infect Ther 12:981–992. https://doi.org/10.1586/14787210.2014.930663

    Article  PubMed  CAS  Google Scholar 

  • Guadaño A, Gutiérrez C, De La Peña E, Cortes D, González-Coloma A (2000) Insecticidal and mutagenic evaluation of two annonaceous acetogenins. J Nat Prod 63:773–776. https://doi.org/10.1021/np990328+

    Article  PubMed  CAS  Google Scholar 

  • He C, Hu Y, Yin L, Tang C, Yin C (2010) Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 31:3657–3666. https://doi.org/10.1016/j.biomaterials.2010.01.065

    Article  PubMed  CAS  Google Scholar 

  • Hembram KC, Prabha S, Chandra R, Ahmed B, Nimesh S (2014) Advances in preparation and characterization of chitosan nanoparticles for therapeutics. Artif Cells Nanomed Biotechnol 1401:1–10. https://doi.org/10.3109/21691401.2014.948548

    Article  CAS  Google Scholar 

  • Hong Z, Xu Y, Yin JF, Jin J, Jiang Y, Du Q (2014) Improving the effectiveness of(−)-epigallocatechin gallate (EGCG) against rabbit atherosclerosis by EGCG-loaded nanoparticles prepared from chitosan and polyaspartic acid. J Agric Food Chem 62(52):12603–12609

    Article  PubMed  CAS  Google Scholar 

  • Huang M, Fong C-W, Khor E, Lim L-Y (2005) Transfection efficiency of chitosan vectors: effect of polymer molecular weight and degree of deacetylation. J Control Release 106:391–406. https://doi.org/10.1016/j.jconrel.2005.05.004

    Article  PubMed  CAS  Google Scholar 

  • Huang X et al (2021) Antifungal activity of chitosan against Phytophthora infestans, the pathogen of potato late blight. Int J Biol Macromol 166:1365–1376

    Article  PubMed  CAS  Google Scholar 

  • Ilk S, Sağlam N, Özgen M, Korkusuz F (2017) Chitosan nanoparticles enhances the anti-quorum sensing activity of kaempferol. Int J Biol Macromol 94:653–662

    Article  PubMed  CAS  Google Scholar 

  • Jafarinejad S, Gilani K, Moazeni E, Ghazi-Khansari M, Najafabadi AR, Mohajel N (2012) Development of chitosan-based nanoparticles for pulmonary delivery of itraconazole as dry powder formulation. Powder Technol 222:65–70. https://doi.org/10.1016/j.powtec.2012.01.045

    Article  CAS  Google Scholar 

  • Jain NK (2005) Controlled and novel drug delivery, 1st edn. CBS Publishers, New Delhi, p 452

    Google Scholar 

  • Janes K, Behrens I, Kissel T, Vila A, Sa A, Vila L (2004) Low molecular weight chitosan nanoparticles as new carriers for nasal vaccine delivery in mice. Eur J Pharm Biopharm 57:123–131. https://doi.org/10.1016/j.ejpb.2003.09.006

    Article  PubMed  CAS  Google Scholar 

  • Jianghua L, Chao C, Jiarui L, Jun L, Jia L, Tiantian S, Lihao W, Haotian W, Guangli Y (2018) Chitosan-based nanomaterials for drug delivery. Molecules 23(10):2661. https://doi.org/10.3390/molecules23102661

  • Kain D, Suresh K (2020) Synthesis and characterization of chitosan nanoparticles of Achillea millefolium L. and their activities. F1000Res 9:1297

    Google Scholar 

  • Kim CS, Oh E-T, Lim D-H, Lim D-S, Keum Y-S (2015) Profiles of alkylresorcinols in iris plants. Biochem Syst Ecol 59:190–193. https://doi.org/10.1016/j.bse.2015.01.010

    Article  CAS  Google Scholar 

  • Lee D-W, Shirley SA, Lockey RF, Mohapatra SS (2006) Thiolated chitosan nanoparticles enhance anti-inflammatory effects of intranasally delivered theophylline. Respir Res 7. https://doi.org/10.1186/1465-9921-7-112

  • Leong KW, Mao H-Q, Truong-Le VL, Roy K, Walsh SM, August JT (1998) DNA-polycation nanospheres as non-viral gene delivery vehicles. J Control Release 53:183–193. https://doi.org/10.1016/S0168-3659(97)00252-6

    Article  PubMed  CAS  Google Scholar 

  • Liu C, Tan Y, Liu C, Chen X, Yu L (2007) Preparations, characterizations and applications of chitosan-based nanoparticles. J Ocean Univ China 6:237–243. https://doi.org/10.1007/s11802-007-0237-9

    Article  CAS  Google Scholar 

  • Liu SS, Yang SL, Ho PC (2018) Intranasal administration of carbamazepine-loaded carboxymethyl chitosan nanoparticles for drug delivery to the brain. Asian J Pharm Sci 13:72–81. https://doi.org/10.1016/j.ajps.2017.09.001

    Article  PubMed  Google Scholar 

  • Luque-Alcaraz AG, Lizardi J, Goycoolea FM, Valdez MA, Acosta AL, Iloki-Assanga SB, Higuera-Ciapara I, Argüelles-Monal W (2012) Characterization and antiproliferative activity of nobiletin-loaded chitosan nanoparticles. J Nanomater 2012:100

    Article  Google Scholar 

  • Lytting E, Nguyen J, Wang X, Kissel T (2008) Biodegradable polymeric nanocarriers for pulmonary drug delivery biodegradable polymeric nanocarriers for pulmonary drug delivery. Expert Opin Drug Deliv 56:629–639. https://doi.org/10.1517/17425247.5.6.629

    Article  Google Scholar 

  • Maitra A, Ghosh PK, De TK, Sahoo SK (1999) Process for the preparation of highly monodispersed polymeric hydrophilic nanoparticles. US 5874111 A

    Google Scholar 

  • Malathy S, Iyer PR (2018) Naringin loaded chitosan nanoparticle for bone regeneration: a preliminary in vitro study. J Nanomed Nanotechnol 9:507

    Google Scholar 

  • Malmsten M (2002) Surfactants and polymers in drug delivery. Marcel Dekker, New York

    Book  Google Scholar 

  • Manikkam R, Pitchai D (2013) Catechin loaded chitosan nanoparticles as a novel drug delivery system for cancer–synthesis and in vitro and in vivo characterization. World J Pharm Pharm Sci 3:1553–1577

    Google Scholar 

  • Mariadoss AVA, Vinayagam R, Xu B, Venkatachalam K, Sankaran V, Vijayakumar S, Bakthavatsalam SR, Mohamed AS, David E (2019) Phloretin loaded chitosan nanoparticles enhance the antioxidants and apoptotic mechanisms in DMBA induced experimental carcinogenesis. Chem Biol Interact 308:11–19

    Article  PubMed  Google Scholar 

  • Min JB, Kim ES, Lee JS, Lee HG (2018) Preparation, characterization, and cellular uptake of resveratrol-loaded trimethyl chitosan nanoparticles. Food Sci Biotechnol 27(2):441–450

    PubMed  CAS  Google Scholar 

  • Mirnejad R, Jahromi M, Ali M, Al-Musawi S, Pirestani M, Fasihi Ramandi M, Ahmadi K, Rajayi H, Hassan ZM, Kamali M (2014) Curcumin-loaded chitosan tripolyphosphate nanoparticles as a safe, natural and effective antibiotic inhibits the infection of Staphylococcus aureus and Pseudomonas aeruginosa in vivo. Iran J Biotechnol 12(3):1–8

    Article  Google Scholar 

  • Mujtaba MA, Hassan KA, Imran M (2018) Chitosan-alginate nanoparticles as a novel drug delivery system for rutin. Int J Adv Biotechnol Res 9(1):1895–1903

    CAS  Google Scholar 

  • Muzzarelli RAA, Rocchetti R (1985) Determination of the degree of acetylation of chitosans by first derivative ultraviolet spectrophotometr. Carbohydr Polym 5:461–472

    Article  CAS  Google Scholar 

  • Nagpal K, Singh SK, Mishra DN (2010) Chitosan nanoparticles: a promising system in novel drug delivery. Chem Pharm Bull (Tokyo) 58(11):1423–1430. https://doi.org/10.1248/cpb.58.1423

    Article  PubMed  CAS  Google Scholar 

  • Nallamuthu I, Devi A, Khanum F (2015) Chlorogenic acid loaded chitosan nanoparticles with sustained release property, retained antioxidant activity and enhanced bioavailability. Asian J Pharm Sci 10(3):203–211

    Article  Google Scholar 

  • Nan W, Ding L, Shi X, Sui XB (2018) Topical use of quercetin-loaded chitosan nanoparticles against ultraviolet B radiation. Front Pharmacol 9:826

    Article  PubMed  PubMed Central  Google Scholar 

  • Ni S, Liu Y, Tang Y, Chen J, Li S, Pu J, Han L (2017) GABA B receptor ligand-directed trimethyl chitosan/tripolyphosphate nanoparticles and their pMDI formulation for survivin siRNA pulmonary delivery. Carbohydr Polym 179:135–144. https://doi.org/10.1016/j.carbpol.2017.09.075

    Article  PubMed  CAS  Google Scholar 

  • Niwa T, Takeuchi H, Hino T, Kunou N, Kawashima Y (1993) Preparations of biodegradable nanospheres of water-soluble and insoluble drugs with d,l-lactide/glycolide copolymer by a novel spontaneous emulsification solvent diffusion method and the drug release behavior. J Control Release 25:89–98. https://doi.org/10.1016/0168-3659(93)90097-O

    Article  CAS  Google Scholar 

  • Pangestuti R, Kim SK (2010) Neuroprotective properties of chitosan and its derivatives. Mar Drugs 8(7):2117–2128. https://doi.org/10.3390/md8072117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Panwar R, Sharma AK, Kaloti M, Dutt D, Pruthi V (2016) Characterization and anticancer potential of ferulic acid-loaded chitosan nanoparticles against ME-180 human cervical cancer cell lines. Appl Nanosci 6(6):803–813

    Article  CAS  Google Scholar 

  • Pappas PG, Kauffman CA, Andes D (2009) Clinical practice guidelines for the management of candidiasis: update by the infectious diseases society of America. Clin Infect Dis 48:503–505

    Article  PubMed  CAS  Google Scholar 

  • Patil AG, Jobanputra AH (2015) Rutin-chitosan nanoparticles: fabrication, characterization and application in dental disorders. Polym-Plast Technol Eng 54(2):202–208

    Article  CAS  Google Scholar 

  • Perera UMSP, Rajapakse N (2014) Seafood processing by-products: trends and applications, pp 371–384. https://doi.org/10.1007/978-1-4614-9590-1_18

    Book  Google Scholar 

  • Prabaharan M, Mano JF (2005) Chitosan-based particles as controlled drug delivery systems. Drug Deliv 12(1):41–57. https://doi.org/10.1080/10717540590889781

    Article  PubMed  CAS  Google Scholar 

  • Priya V, Jananie RK, Vijayalaxmi K (2012) GC MS determination of bioactive components in Pleurotus ostreatus. Int Res J Pharm 3:150–151

    CAS  Google Scholar 

  • Rajesh Kumar S, Kannan C, Annadurai G (2012) Synthesis and characterization of antimicrobial silver nanoparticles using marine brown seaweed padina tetrastromatica. Drug Invent Today 4(10):511–513

    Google Scholar 

  • Rawal T, Parmar R, Tyagi RK, Butani S (2017) Rifampicin loaded chitosan nanoparticle dry powder presents an improved therapeutic approach for alveolar tuberculosis. Colloids Surf B Biointerfaces 154:321–330. https://doi.org/10.1016/j.colsurfb.2017.03.044

    Article  PubMed  CAS  Google Scholar 

  • Rupprecht JK, Hui YH, McLaughlin JL (1990) Annonaceous acetogenins: a review. J Nat Prod 53(2):237–278. https://doi.org/10.1021/np50068a001

    Article  PubMed  CAS  Google Scholar 

  • Samrot AV, Burman U, Philip SA, Shobana N, Chandrasekaran K (2018) Synthesis of curcumin loaded polymeric nanoparticles from crab shell derived chitosan for drug delivery. Inf Med Unlocked 10:159–182

    Article  Google Scholar 

  • Sangeetha KS, Umamaheswari S, Reddy CUM, Kalkura SN (2017) Chrysin loaded chitosan nanoparticle: formulation and in-vitro characterization. Int J Pharm Sci Res 8(3):1102–1109

    CAS  Google Scholar 

  • Schaefer S, Baum M, Eisenbrand G, Dietrich H, Will F, Janzowski C (2006) Polyphenolic apple juice extracts and their major constituents reduce oxidative damage in human colon cell lines. Mol Nutr Food Res 50(1):24–33

    Article  PubMed  CAS  Google Scholar 

  • Singh R, Lillard JW (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86:215–223. https://doi.org/10.1016/j.yexmp.2008.12.004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Srinivasan M, Sudheer AR, Menon VP (2007) Ferulic acid: therapeutic potential through its antioxidant property. J Clin Biochem Nutr 40(2):92–100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Syame SM, Mohamed WS, Mahmoud RK, Omara ST (2017) Synthesis of copper-chitosan nanocomposites and its application in treatment of local pathogenic isolates bacteria. Orient J Chem 33:2959–2969. https://doi.org/10.13005/ojc/330632

    Article  CAS  Google Scholar 

  • Tang DW, Yu SH, Ho YC, Huang BQ, Tsai GJ, Hsieh HY, Sung H-W, Mi FL (2013) Characterization of tea catechins-loaded nanoparticles prepared from chitosan and an edible polypeptide. Food Hydrocoll 30(1):33–41

    Article  CAS  Google Scholar 

  • Teng D, Yao K, Li J, Yao F, Yin Y (2012) Chitosan-based hydrogels, functions and applications. CRC Press, New York

    Google Scholar 

  • Tiyaboonchai W (2003) Chitosan nanoparticles: a promising system for drug delivery. Naresuan Univ J 11:51–66. https://doi.org/10.1248/cpb.58.1423

    Article  Google Scholar 

  • Tokumitsu H, Ichikawa H, Fukumori Y (1999) Chitosan-gadopentetic acid complex nanoparticles for gadolinium neutron-capture therapy of cancer: preparation by novel emulsion-droplet coalescence technique and characterization. Pharm Res 16(12):1830–1835

    Google Scholar 

  • Trapani A, Di Gioia S, Ditaranto N, Cioffi N, Goycoolea FM, Carbone A, Garcia-Fuentes M, Conese M, Alonso MJ (2013) Systemic heparin delivery by the pulmonary route using chitosan and glycol chitosan nanoparticles. Int J Pharm 447:115–123. https://doi.org/10.1016/j.ijpharm.2013.02.035

    Article  PubMed  CAS  Google Scholar 

  • Tzankova V, Aluani D, Kondeva-Burdina M, Yordanov Y, Odzhakov F, Apostolov A, Yoncheva K (2017) Hepatoprotective and antioxidant activity of quercetin loaded chitosan/alginate particles in vitro and in vivo in a model of paracetamol-induced toxicity. Biomed Pharmacother 92:569–557

    Article  PubMed  CAS  Google Scholar 

  • Vijayakurup V, Thulasidasan AT, Retnakumari AP, Nandan CD, Somaraj J, Antony J, Alex VV, Vinod BS, Liju VB, Sundaram S, Kumar GV (2019) Chitosan encapsulation enhances the bioavailability and tissue retention of curcumin and improves its efficacy in preventing B [a] P-induced lung carcinogenesis. Cancer Prev Res 12(4):225–236

    Article  CAS  Google Scholar 

  • Vila A, Sanchez A, Tobío M, Calvo P, Alonso MJ (2002) Design of biodegradable partilces for protein delivery. J Control Release 78:15–24. https://doi.org/10.1016/S0168-3659(01)00486-2

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Chi N, Tang X (2008a) Preparation of estradiol chitosan nanoparticles for improving nasal absorption and brain targeting. Eur J Pharm Biopharm 70:735–740. https://doi.org/10.1016/j.ejpb.2008.07.005

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Wang X, Luo G, Dai Y (2008b) Adsorption of bovin serum albumin (BSA) onto the magnetic chitosan nanoparticles prepared by a microemulsion system. Bioresour Technol 99:3881–3884. https://doi.org/10.1016/j.biortech.2007.08.017

    Article  PubMed  CAS  Google Scholar 

  • Winarti L, Sari K, Ruma LO, Nugroho AE (2015) Naringenin-loaded chitosan nanoparticles formulation, and its in vitro evaluation against T47D breast cancer cell line. Indones J Pharm/Majalah Farmasi Indonesia 26(3):147–157

    Google Scholar 

  • Wu J, Wang Y, Yang H, Liu X, Lu Z (2017) Preparation and biological activity studies of resveratrol loaded ionically cross-linked chitosan-TPP nanoparticles. Carbohydr Polym 175:170–177

    Article  PubMed  CAS  Google Scholar 

  • Yin L, Wang Y, Wang C et al (2017) Nano-reservoir bioadhesive tablets enhance protein drug permeability across the small intestine. AAPS PharmSciTech 18:2329–2335

    Article  PubMed  CAS  Google Scholar 

  • Younes I, Rinaudo M (2015) Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs 13(3):1133–1174. https://doi.org/10.3390/md13031133

  • Zeinab SS, Hamed S-K, Mohammad I, Mohammad A, Azizollah N (2017) Exploring the effect of formulation parameters on the particle size of carboxymethyl chitosan nanoparticles prepared via reverse micellar crosslinking. J Microencapsul 34:270–279. https://doi.org/10.1080/02652048.2017.1321047

    Article  CAS  Google Scholar 

  • Zhang H, Jung J, Zhao Y (2016) Preparation, characterization and evaluation of antibacterial activity of catechins and catechins–Zn complex loaded β-chitosan nanoparticles of different particle sizes. Carbohydr Polym 137:82–91

    Article  PubMed  CAS  Google Scholar 

  • Zhao K, Shi X, Zhao Y, Wei H, Sun Q, Huang T, Zhang X, Wang Y (2011) Preparation and immunological effectiveness of a swine influenza DNA vaccine encapsulated in chitosan nanoparticles. Vaccine 29:8549–8556. https://doi.org/10.1016/j.vaccine.2011.09.029

    Article  PubMed  CAS  Google Scholar 

  • Zhuo Y, Han J, Tang L, Liao N, Gui G-F, Chai Y-Q, Yuan R (2014) Quenching of the emission of peroxydisulfate system by ferrocene functionalized chitosan nanoparticles: a sensitive “signal off” electrochemiluminescence immunosensor. Sens Actuators B Chem 192:791–795. https://doi.org/10.1016/j.snb.2013.11.032

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Malathi, T., Sivakkumar, T., Surendra Kumar, M. (2024). Chitosan-Based Nano-Delivery System. In: Rajakumari, R., Thomas, S. (eds) Handbook of Nutraceuticals. Springer, Cham. https://doi.org/10.1007/978-3-030-69677-1_34-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69677-1_34-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69677-1

  • Online ISBN: 978-3-030-69677-1

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Chitosan-Based Nano-Delivery System
    Published:
    26 February 2024

    DOI: https://doi.org/10.1007/978-3-030-69677-1_34-2

  2. Original

    Chitosan-Based Nano-Delivery System
    Published:
    21 November 2023

    DOI: https://doi.org/10.1007/978-3-030-69677-1_34-1