Skip to main content

Designing Novel Synthetic Grafts for Large Bone Defects: Experimental and Numerical Studies

  • Chapter
  • First Online:
Experiments and Simulations in Advanced Manufacturing

Abstract

Large bone defects, usually associated to victims of natural disasters, wars and severe accidents, represent a major clinical problem. The search for an effective and efficient treatment is a key area of research. Our group is exploring a novel and fully automatic approach to produce synthetic grafts anatomically designed to fit on the defect site and able to promote tissue regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haleem A, Javaid M, Khan R, Suman R (2020) 3D printing applications in bone tissue engineering. Journal of Clinical Orthopaedics and Trauma, 11, 118ā€“124 dimensional printed poly(Īµ-caprolactone) scaffolds. Biofabrication 9:2

    Google ScholarĀ 

  2. Gerdes S, Mostafavi A, Ramesh S, Memic A, Rivero I, Rao P, Tamayol A (2020) Processā€“structureā€“quality relationships of three-dimensional printed poly(caprolactone)-hydroxyapatite scaffolds. Tissue Eng Part A 26:271ā€“291

    ArticleĀ  Google ScholarĀ 

  3. Leonchuk SS, Novikov KI, Subramanyam KN, Shikhaleva NG, Pliev MK, Mundargi AV (2020) Management of severe congenital flexion deformity of the knee using Ilizarov method. J Pediatric Orthopaedics B 29:47ā€“52

    ArticleĀ  Google ScholarĀ 

  4. Liu Y, Yushan M, Liu Z, Liu J, Ma C, Yusufu A (2020) Complications of bone transport technique using the Ilizarov method in the lower extremity: a retrospective analysis of 282 consecutive cases over 10 years. BMC Musculoskeletal Disorders 21:354

    ArticleĀ  Google ScholarĀ 

  5. Fragomen TA, Kurtz MA, Barclay RJ, Nguye J, Rozbruch RS (2018) A comparison of femoral lengthening methods favors the magnetic internal lengthening nail when compared with lengthening over a nail. HSS J 14:166ā€“176

    ArticleĀ  Google ScholarĀ 

  6. Al-Tamimi AA, Quental C, Folgado J, Peach C, Bartolo P (2018) Stress analysis in a bone fracture fixed with topology-optimised plates. Biomech Model Mechanobiol 19:693ā€“699

    Google ScholarĀ 

  7. Seebah M, Fritz C, Kerschreiter J, Zah FM (2020) Shape accuracy and surface quality of additively manufactured, optimized, patient-specific bone plates. J Med Dev MED-20ā€“1061

    Google ScholarĀ 

  8. Yang W, Choi SW, Wong CM, Powcharoen W, Zhu W, Tsoi KJ, Chow M, Kwok K, Su Y (2020) Three-dimensionally printed patient-specific surgical plates increase accuracy of oncologic head and neck reconstruction versus conventional surgical plates: a comparative study. Annals Surg Oncol

    Google ScholarĀ 

  9. Huang B, Aslan E, Jiang Z, Daskalakis E, Jiao M, Aldalbahic A, Vyas C, Bartolo P (2020) Engineered dual-scale poly (Īµ-caprolactone) scaffolds using 3D printing and rotational electrospinning for bone tissue regenera-tion. Add Manuf 36:101452

    Google ScholarĀ 

  10. Lin W, Chen M, Qu TLi J, Man Y (2020) Three-dimensional electrospun nanofibrous scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater 108:1311ā€“1321

    Google ScholarĀ 

  11. Susmita B, Naboneeta S (2020) Natural medicinal compounds in bone tissue engineering. Trends Biotechnol 38:404ā€“417

    ArticleĀ  Google ScholarĀ 

  12. Wong MT, Lau WT, Li X, Fang C, Yeung K, Leung F (2014) Masquelet technique for treatment of posttraumatic bone defects. Scientific World J 2014:710302

    Google ScholarĀ 

  13. Giannoudis VP, Faour O, Goff T, Kanakaris N, Dimitriou R (2011) Masquelet technique for the treatment of bone defects: tips-tricks and future directions. Injury 42:591ā€“598

    ArticleĀ  Google ScholarĀ 

  14. Masquelet A, Kanakaris KN, Obert L, Stafford P, Giannoudis VP (2019) Bone repair using the Masquelet technique. J Bone Joint Surg 101:1024ā€“1036

    ArticleĀ  Google ScholarĀ 

  15. Lasanianos GN, Kanakaris KN, Giannoudis VP (2010) Current management of long bone large segmental defects. Orthopaedics Trauma 24:149ā€“163

    ArticleĀ  Google ScholarĀ 

  16. Vidal L, Kampleitner C, Brennan AM, Hoornaert A, Layrolle P (2020) Reconstruction of large skeletal defects: current clinical therapeutic strategies and future directions using 3D printing. Front Bioeng Biotechnol

    Google ScholarĀ 

  17. Zhu G, Mei H, He R, Liu K, Tang J, Wu J (2015) Effect of distraction osteogenesis in patient with tibial shortening after initial union of Congenital Pseudarthrosis of the Tibia (CPT): a preliminary study. BMC Musculoskeletal Disorders 16:216

    ArticleĀ  Google ScholarĀ 

  18. Griffin SK, Davis MK, McKinley OT, Anglen OJ, Chu GT, Boerckel DJ, Kacena AM (2015) Evolution of bone grafting: bone grafts and tissue engineering strategies for vascularized bone regeneration. Clinical Rev Bone Miner Metabolism 13:232ā€“244

    ArticleĀ  Google ScholarĀ 

  19. Pereira RF, Sousa A, Barrias CC, Bayat A, Granja PL, BƔrtolo PJ (2017) Ad-vances in bioprinted cell-laden hydrogels for skin tissue engineering. Biomanuf Rev 2:1

    ArticleĀ  Google ScholarĀ 

  20. Dzobo K, Thomford NE, Senthebane DA, Shipanga H, Rowe A, Dandara C, Pillay M, Motaung KSCM (2018) Advances in Regenerative Medicine and Tissue Engineering: Innovation and Transformation of Medicine Stem Cells International 2018:2495848

    Google ScholarĀ 

  21. Liu F, Vyas C, Poologasundarampillai G, Pape I, Hinduja S, Mirihanage W, Bartolo P (2018) Structural evolution of PCL during melt extrusion 3D printing. Macromol Mater Eng 303:1700494

    ArticleĀ  Google ScholarĀ 

  22. Tang X, Thankappan KS, Lee P, Fard ES, Harmon DM, Tran K, Yu X (2014) Polymeric biomaterials in tissue engineering and regenerative medicine. Nat Synth Biomed Polymers 351ā€“371

    Google ScholarĀ 

  23. Lovez-Alvarez M, RodrĆ­guez-Valencia C, Serra J, GonzĆ”lez P (2013) Bio-inspired ceramics: promising scaffolds for bone tissue engineering. Procedia Eng 59:51ā€“58

    ArticleĀ  Google ScholarĀ 

  24. Vyas C, Pereira R, Huang B, Liu F, Wang W, Bartolo P (2017) Engineering the vasculature with additive manufacturing. Current Opinion Biomed Eng 2:1ā€“13

    ArticleĀ  Google ScholarĀ 

  25. Madrid APM, Vrech SM, Sanchez MA, Rodriguez AP (2019) Advances in additive manufacturing for bone tissue engineering scaffolds. Mater Sci Eng C 100:631ā€“644

    ArticleĀ  Google ScholarĀ 

  26. Hou Y, Wang W, Bartolo P, (2020) Novel poly(ɛ-caprolactone)/graphene scaffolds for bone cancer treatment and bone regeneration. 3D Print Add Manuf 7:222ā€“229

    Google ScholarĀ 

  27. Stevens MM, George JH (2005) Exploring and engineering the cell surface interface. Science 310:1135ā€“1138

    ArticleĀ  Google ScholarĀ 

  28. Hou Y, Wang W, Bartolo P (2020) Investigating the effect of carbon nano-materials reinforcing poly(Īµ-caprolactone) printed scaffolds for bone re-pair applications. Int J Bioprint 6:266

    ArticleĀ  Google ScholarĀ 

  29. Eivazzadeh-Keihan R, Chenab KK, Taheri-Ledari R, Mosafer J, Hashemi MS, Mokhtarzadeh A, Maleki A, Hablin RM (2020) Recent advances in the application of mesoporous silica-based nanomaterials for bone tissue engineerin. Mater Sci Eng C 107:110267

    ArticleĀ  Google ScholarĀ 

  30. Koc B, Acar AA, Weightman A, Cooper G, Blunn G, Bartolo B,v(2019) Bio-manufacturing of customized modular scaffolds for critical bone defects. CIRP Annals 68:209ā€“212

    Google ScholarĀ 

  31. Zhang S, Vijayavenkataraman S, Chong GL, Fuh JYH, Lu WF, (2019) Compu-tational design and optimization of nerve guidance conduits for improved mechanical properties and permeability. J Biomech Eng 141:BIO-18ā€“1350

    Google ScholarĀ 

  32. Almeida HA, Bartolo PJ (2014) Design of tissue engineering scaffolds based on hyperbolic surfaces: structural numerical evaluation. Med Eng Phys 36:1033ā€“1040

    ArticleĀ  Google ScholarĀ 

  33. Lu L, Zhang Q, Wootton DM, Chiou R, Li D, Lu B, Lelkes P, Zhou J (2014) Mechanical study of polycaprolactone-hydroxyapatite porous scaf-folds created by porogen-based solid freeform fabrication method. J Appl Biomater Function Mater 12:145ā€“154

    Google ScholarĀ 

  34. Almeida HA, BĆ”rtolo PJ (2013) Numerical simulations of bioextruded poly-mer scaffolds for tissue engineering applications. Polymer Int 62:1544ā€“1552

    ArticleĀ  Google ScholarĀ 

  35. Misch EC, Qu Z, Bidez WM (1999) Mechanical properties of trabecular bone in the human mandible: implications for dental implant treatment planning and surgical placement. J Oral Maxillofacial Surg 57:700ā€“706

    ArticleĀ  Google ScholarĀ 

  36. Xu Z, Omar MA, Bartolo P (2020) Experimental and numerical simulations of 3D-printed Polycaprolactone scaffolds for bone tissue engineering applications. Biomech Model Mechanobiol

    Google ScholarĀ 

  37. Liu F, Wang W, Mirihanage W, Hinduja S, Bartolo PJ (2018) A plasma-assisted bioextrusion system for tissue engineering. CIRP Annals 67:229ā€“232

    ArticleĀ  Google ScholarĀ 

Download references

Acknowledgements

This project has been supported by the University of Manchester and the Engineering and Physical Sciences Research Council (EPSRC) of the UK, the Global Challenges Research Fund (CRF), grant number EP/R01513/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Bartolo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Daskalakis, E. et al. (2021). Designing Novel Synthetic Grafts for Large Bone Defects: Experimental and Numerical Studies. In: Kyratsis, P., Davim, J.P. (eds) Experiments and Simulations in Advanced Manufacturing. Materials Forming, Machining and Tribology. Springer, Cham. https://doi.org/10.1007/978-3-030-69472-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69472-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69471-5

  • Online ISBN: 978-3-030-69472-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics