Skip to main content

Metal Oxide-Based Nanocomposites for Elimination of Hazardous Pesticides

  • Living reference work entry
  • First Online:
Handbook of Green and Sustainable Nanotechnology
  • 46 Accesses

Abstract

Pesticides are industrial organic chemicals that are being continuously employed in agriculture to boost their productions and protect ornamental plants. Their excessive use and inherited toxicity are affecting the environment (adulteration of air, water, food, and soil) and health of exposed human beings. Organochlorines (OCs), the old class of pesticides, are banned credited to their longer lives, bioaccumulation, and carcinogenic nature. To replace them, organophosphorus (OPs), carbamates, and new pesticides with different chemical composition are full in the market. Bioenrichment of large-volume pesticides along with toxicity to nontargets demand their removal from the environment via advanced technology-based nanomaterials. Due to unique properties like precise morphology, texture, abundance, crystallinity, surface area of metal oxides, and composites, their potential use in degradation of pesticides via adsorption and photocatalytic mechanism has been extensively reported. Titanium oxides, zinc oxide, copper oxides, noble metals (Ag, Au, Pt), and iron-based nanomaterials are highly used for treatment of various pollutants. Modified forms have better properties because of synergism of surface properties and insertion of extra energy levels that help in prevention of charge recombination. Different types of metal oxides employed for the degradation of various pesticides have been comprehensively presented in this chapter. In addition, present scenario of pesticides including their consumption, classification, environmental concern, fate in environment, and necessity for elimination have also been presented. Moreover, comprehensive information on recently attracting green fabricated nanomaterials has also been offered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abbas H, Nadeem K, Hassan A, Rahman S, Krenn H (2020) Enhanced photocatalytic activity of ferromagnetic Fe-doped NiO nanoparticles. Optik 202:163637

    Google Scholar 

  • Abd El-Aziz AR, Al-Othman MR, Mahmoud MA (2018) Degradation of DDT by gold nanoparticles synthesised using Lawsonia inermis for environmental safety. Biotechnol Biotechnol Equip 32(5):1174–1182

    Article  CAS  Google Scholar 

  • Abdullah AH, Mun LK, Zainal Z, Hussein Z (2013) Photodegradation of chlorophenoxyacetic acids by ZnO/c-Fe2O3 nanocatalysts: a comparative study. Int J Chem 5:56–65

    Article  CAS  Google Scholar 

  • Ahmad A, Rafatullah M, Ghazali A, Sulaiman O, Hashim R, Ahmad A (2010) Removal of pesticides from water and wastewater by different adsorbents: a review. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 28(4):231–271

    Article  CAS  Google Scholar 

  • Ahmed M, Zhou J, Ngo H, Guo W, Thomaidis N, Xu J (2017) Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: a critical review. J Hard Mater 323:274–298

    Article  CAS  Google Scholar 

  • Akpan UG, Hameed BH (2009) Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J Hazard Mater 170:520–529

    Article  CAS  Google Scholar 

  • Arias-Estevez M, Lopez-Periago E, Martinez-Carballo M, Simal-Gandara J, Mejuto JC, Garcia-Rio L (2008) The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agric Ecosyst Environ 123(4):247–260

    Article  CAS  Google Scholar 

  • Bandala ER, Gelover S, Leal MT, Arancibia-Bulnes C, Jimenez A, Estrada CA (2002) Solar photocatalytic degradation of Aldrin. Catal Today 76:189–199

    Article  CAS  Google Scholar 

  • Bootharaju M, Pradeep T (2012) Understanding the degradation pathway of the pesticide, chlorpyrifos by noble metal nanoparticles. Langmuir 28:2671–2679

    Article  CAS  Google Scholar 

  • Bouman MS, Clune TS, Sutton BG (2002) Sustainable management of landfill leachate by irrigation. Water Air Soil Pollut 134(1–4):81–96

    Article  Google Scholar 

  • Coppock RW, Dziwenka MM (2020) Chapter 63 – Threats to wildlife by chemical and warfare agents. In: Gupta RC (ed) Handbook of toxicology of chemical warfare agents. Academic Press, Boston, pp 1077–1087

    Chapter  Google Scholar 

  • Demirezen DA, Yıldız YŞ, Yılmaz DD (2019) Amoxicillin degradation using green synthesized iron oxide nanoparticles: Kinetics and mechanism analysis. Environ Nanotechnol Monit Manag 11:100219

    Google Scholar 

  • De Lasa H, Serrano-Rosales B (2009) Advances in chemical engineering: photocatalytic technologies. Academic Press, San Diego, Calif, London 

    Google Scholar 

  • de Souza RM, Seibert D, Quesada HB, de Jesus Bassetti F, Fagundes-Klen MR, Bergamasco R (2020) Occurrence, impacts and general aspects of pesticides in surface water: A review. Process Saf Environ Prot 135:22–37

    Google Scholar 

  • Dinesh GK, Pramod M, Chakma S (2020) Sonochemical synthesis of amphoteric Cu0-Nanoparticles using Hibiscus rosa-sinensis extract and their applications for degradation of 5-fluorouracil and lovastatin drugs. J Hazard Mater 399:123035

    Google Scholar 

  • Dubas ST, Pimpan V (2008) Green synthesis of silver nanoparticles for ammonia sensing. Talanta 76:29–33

    Article  CAS  Google Scholar 

  • Elliott DW, Lien HL, Zhang WX (2009) Degradation of lindane by zero-valent iron nanoparticles. J Environ Eng 135(5):317–324

    Google Scholar 

  • El-Said WA, Fouad DM, Ali MH, El-Gahami MA (2018) Green synthesis of magnetic mesoporous silica nanocomposite and its adsorptive performance against organochlorine pesticides. Int J Environ Sci Technol 15(8):1731–1744

    Article  CAS  Google Scholar 

  • El-Temsah YS, Joner EJ (2012) Ecotoxicological effects on earthworms of fresh and aged nano-sized zero-valent iron (nZVI) in soil. Chemosphere 89:76–82

    Article  CAS  Google Scholar 

  • Ericksen PJ (2008) Conceptualizing food systems for global environmental change research. Glob Environ Change 18(1):234–245

    Google Scholar 

  • Erickson A, Gulliver J, Weiss P (2012) Capturing dissolved phosphorus with iron enhanced sand filtration. Water Res 46(9):6601–6608

    Article  CAS  Google Scholar 

  • Etefagh R, Azhir E, Shahtahmasebi N (2013) Synthesis of CuO nanoparticles and fabrication of nanostructural layer biosensors for detecting Aspergillus niger fungi. Scientia Iranica 20(3):1055–1058

    Google Scholar 

  • Fatima F, Verma SR, Pathak N, Bajpai P (2016) Extracellular mycosynthesis of silver nanoparticles and their microbicidal activity. J Glob Antimicrob Resist 7:88–92

    Article  Google Scholar 

  • Follut F, Vel Leitner NK (2007) Radiolysis of aqueous 4-nitrophenol solution with Al2O3 or TiO2 nanoparticles. Chemosphere 66:2114–2119. https://doi.org/10.1016/j.chemosphere.2006.09.031

    Article  CAS  Google Scholar 

  • Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156(1):2–10

    Article  CAS  Google Scholar 

  • Gomez S, Philippot K, Collière, V., Chaudret B, Senocq F, Lecante P (2000) Gold nanoparticles from self-assembled gold (i) amine precursors electronic supplementary information (ESI) available: experimental details and full characterization of complexes 2–4, powder XRD spectra of 2 and TEM micrographs of 2 and gold nanoparticles. See Chemical Commun (19):1945–1946

    Google Scholar 

  • Harekrushna S, Kumar DC (2012) A review on: bioremediation. Int J Res Chem Environ 2:13–21

    Google Scholar 

  • Isherwood PJM (2017) Copper zinc oxide: investigation into a p-type mixed metal oxide system. Vacuum 139:173–177

    Article  CAS  Google Scholar 

  • Jiang JQ, Wang S, Panagoulopoulos A (2006) The exploration of potassium ferrate (VI) as a disinfectant/coagulant in water and wastewater treatment. Chemosphere 63:212–219

    Article  CAS  Google Scholar 

  • Jing L, Yang C, Zongshan Z (2013) Effective organochlorine pesticides removal from aqueous systems by magnetic nanospheres coated with polystyrene. J Wuhan Univ Technol 29:168–173

    Google Scholar 

  • Joo SH, Zhao D (2008) Destruction of lindane and atrazine using stabilized iron nanoparticles under aerobic and anaerobic conditions: effects of catalyst and stabilizer. Chemosphere 70:418–425

    Article  CAS  Google Scholar 

  • Kamarudin NS, Jusoh R, Jalil AA, Setiabudi HD, Sukor NF (2020) Synthesis of silver nanoparticles in green binary solvent for degradation of 2, 4-D herbicide: optimization and kinetic studies. Chem Eng Res Des 159:300–314

    Article  CAS  Google Scholar 

  • Kaur P, Bansal P, Sud D (2013) Heterostructured nanophotocatalysts for degradation of organophosphate pesticides from aqueous streams. J Korean Chem Soc 57(3):382–388

    Article  CAS  Google Scholar 

  • Ke FS, Mishra K, Jamison L, Peng XX, Ma SG, Huang L, Zhou XD (2014) Tailoring nanostructures in micrometer size germanium particles to improve their performance as an anode for lithium ion batteries. Chem Com 50(28):3713–3715

    Google Scholar 

  • Khan Z, Talib A (2010) Growth of different morphologies (quantum dots to nanorod) of Ag-nanoparticles: role of cysteine concentrations. Colloids Surf B: Biointerf 76(1):164–169

    Google Scholar 

  • Khan Z, Hussain JI, Hashmi AA (2012) Shape-directing role of cetyltrimethylammonium bromide in the green synthesis of Ag-nanoparticles using neem (Azadirachta indica) leaf extract. Colloids Surf B: Biointerfaces 95:229–234

    Article  CAS  Google Scholar 

  • Kralj MB, Cernigoj U, ranko, M. (2007) Comparison of Photocatalysis and photolysis of malathion, isomalathion, malaoxon, and commercial malathion: products and toxicity studies. Water Res 41:4504–4514

    Article  CAS  Google Scholar 

  • Lavand AB, Malghe YS (2015) Visible light photocatalytic degradation of 4-chlorophenol using C/ZnO/CdS nanocomposites. J Saudi Chem Soc 19(5):471–478

    Article  Google Scholar 

  • Li M, Noriega-Trevino ME, Nino-Martinez N, Marambio-Jones C, Wang J (2011) Synergistic bactericidal activity of Ag-TiO2 nanoparticles in both light and dark conditions. Environ Sci Technol 45(8989–95):35

    Google Scholar 

  • Luo LB, Chen LM, Zhang ML, He ZB, Zhang WF, Yuan GD, Lee ST (2009) Surface-enhanced Raman scattering from uniform gold and silver nanoparticle-coated substrates. J Phys Chem C 113(21):9191–9196

    Article  CAS  Google Scholar 

  • Mahalakshmi M, Arabindoo B, Palanichamy M, Murugesan V (2007) Photocatalytic degradation of carbofuran using semiconductor oxides. J Hard Mater 143(1):240–245

    Article  CAS  Google Scholar 

  • Mahantesh N, dan A. Singh. (2009) A study on farmers’ knowledge, perception and intensity of pesticide use in vegetables cultivation in western Uttar Pradesh. Pusa Agri Sci 32:63–69

    Google Scholar 

  • Manav ÖG, Dinç-Zor Ş, Alpdoğan G (2018) Optimization of a modified QuEChERS method by means of experimental design for multi residue determination of pesticides in milk and dairy products by GC–MS. Microchem J 144:124–129

    Article  CAS  Google Scholar 

  • Mangalampalli V, Sharma P, Sadanandam G, Ratnamala A, Kumari VD, Subrahmanyam M (2009) An efficient and novel porous nanosilica supported TiO2 photocatalyst for pesticide degradation using solar light. J Hazard Mater 171:626–633

    Article  CAS  Google Scholar 

  • Meng HL, Cui C, Shen HL, Liang DY, Xue YZ, Li PG, Tang WH (2012) Synthesis and photocatalytic activity of TiO2@ CdS and CdS@ TiO2 double-shelled hollow spheres. J Alloys Com 527:30–35

    Google Scholar 

  • Mitra D, Varshney L (2013) Remediation of pesticide endosulfan in solution by ionizing radiation, advanced oxidation process and copper nano particle interaction a comparative studies using GC–MS analysis. IOSR-JESTFT 7:8–11

    Article  Google Scholar 

  • Mohamed AS, Abukkhadra MR, Abdallah EA, El-Sherbeeny AM, Mahmoud RK (2020) The photocatalytic performance of silica fume based Co3O4/MCM-41 green nanocomposite for instantaneous degradation of Omethoate pesticide under visible light. J Photochem Photobiol A Chem 392:112434

    Article  CAS  Google Scholar 

  • Noriega-Ortega BR, Armienta-Aldana E, Cervantes-Pompa JÁ, Armienta-Aldana E, Hernández-Ruíz E, Chaparro-Huerta V, Beas-Zárate C (2011) GABA and dopamine release from different brain regions in mice with chronic exposure to organophosphate methamidophos. J Toxicol Pathol 24(3):163–168

    Google Scholar 

  • Paknikar KM, Nagpal V, Pethkar AV, Rajwade JM (2005) Degradation of lindane from aqueous solutions using iron sulfide nanoparticles stabilized by biopolymers. Sci Technol Adv Mater 6:370–374

    Article  CAS  Google Scholar 

  • Pal T, Sau TK, Jana NR (1998) Silver hydrosol, organosol, and reverse micelle- stabilized sol – a comparative study. J Colloid Interface Sci 202:30–36

    Article  CAS  Google Scholar 

  • Park J, Risch M, Nam G, Park M, Shin TJ, Park S, Cho J (2017) Single crystalline pyrochlore nanoparticles with metallic conduction as efficient bi-functional oxygen electrocatalysts for Zn–air batteries. Energy Environ Sci 10(1):129–136

    Google Scholar 

  • Peng F, Wang H, Yu H, Chen S (2006) Preparation of aluminum foil-supported nano-sized ZnO thin films and its photocatalytic degradation to phenol under visible light irradiation. Mater Res Bull 41:2123–2129

    Article  CAS  Google Scholar 

  • Pillai HPS, Kottekottil J (2016) Nano-phytotechnological remediation of endosulfan using zero valent iron nanoparticles. J Environ Prot 7:1–11

    Article  CAS  Google Scholar 

  • Pimentel D (1995) Amounts of pesticides reaching target pests: environmental impacts and ethics. J. Agri. & Environ. Ethics 8(1):17–29.

    Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014

    Article  Google Scholar 

  • Premalatha N, Miranda LR (2019) Surfactant modified ZnO–Bi2O3 nanocomposite for degradation of lambda-cyhalothrin pesticide in visible light: a study of reaction kinetics and intermediates. J Environ Manag 15(246):259–266

    Article  CAS  Google Scholar 

  • Rachna, Rani M, Shanker U (2019) Degradation of tricyclic polyaromatic hydrocarbons in water, soil and river sediment with a novel TiO2 based heterogeneous nanocomposite. J Environmental Management 248:109340

    Google Scholar 

  • Rahmat M, Rehman A, Rahmat S, Bhatti HN, Iqbal M, Khan WS, Nazir A (2019) Highly efficient removal of crystal violet dye from water by MnO2 based nanofibrous mesh/photocatalytic process. J Mater Res Technol 8(6):5149–5159

    Article  CAS  Google Scholar 

  • Ramos-Delgadoa NA, Gracia-Pinilla MA, Maya-Trevinoa L, Hinojosa-Reyesa L, Guzman-Mara JL, Hernandez-Ramirez A (2013) Solar photocatalytic activity of TiO2 modified with WO3 on the degradation of an organophosphorus pesticide. J Hazard Mater 263P:36–44

    Article  CAS  Google Scholar 

  • Rani M, Shanker U (2018) Removal of chlorpyrifos, thiamethoxam, and tebuconazole from water using green synthesized metal hexacyanoferrate nanoparticles. Environ Sci Pollut Res Int 25(11):10878–10893

    Article  CAS  Google Scholar 

  • Rani M, Shanker U, Jassal V (2017) Recent strategies for removal and degradation of persistent & toxic organochlorine pesticides using nanoparticles: a review. J Environ Manag 190(208–2):22

    Google Scholar 

  • Raul PK, Senapati S, Sahoo AK, Umlong IM, Devi RR, Thakur AJ, Veer V (2014) CuO nanorods: a potential and efficient adsorbent in water purification. Rsc Advances 4(76):40580–40587

    Google Scholar 

  • Rauwel P, Küünal S, Ferdov S, Rauwel E (2015) A review on the green synthesis of silver nanoparticles and their morphologies studied via TEM. Adv Mater Sci Eng 2015:1–9

    Google Scholar 

  • Reddy PVL, Kim K-H, Song H (2013) Emerging green chemical technologies for the conversion of CH4 to value added products. Renew Sust Energ Rev 24:578–585

    Article  CAS  Google Scholar 

  • Ricart M, Guasch H, Barceló D, Brix R, Conceição MH, Geiszinger A, Sabater S (2010) Primary and complex stressors in polluted Mediterranean rivers: pesticide effects on biological communities. J Hydrol 383(1–2):52–61

    Article  CAS  Google Scholar 

  • Saljooqi A, Shamspur T, Mostafavi A (2020) Synthesis of titanium nanoplate decorated by Pd and Fe3O4 nanoparticles immobilized on graphene oxide as a novel photocatalyst for degradation of parathion pesticide. Polyhedron 179:114371

    Google Scholar 

  • Sen Gupta S, Chakraborty I, Maliyekkal SM, Adit Mark T, Pandey DK, Das SK, Pradeep T (2015) Simultaneous dehalogenation and removal of persistent halocarbon pesticides from water using graphene nanocomposites: a case study of lindane. ACS Sustain Chem Eng 3(6):1155–1163

    Google Scholar 

  • Senthilnathan J, Philip L (2010) Removal of mixed pesticides from drinking water system using surfactant-assisted nano-TiO2. Water Air Soil Pollut 210:143–154

    Article  CAS  Google Scholar 

  • Shanker U, Jassal V, Rani M, Kaith BS (2016) Towards green synthesis of nanoparticles: from bio-assisted sources to benign solvents. A review. Int J Environ Anal Chem 96(9):801–835

    CAS  Google Scholar 

  • Shoiful A, Ueda Y, Nugroho R, Honda K (2016) Degradation of organochlorine pesticides (OCPs) in water by iron (Fe)-based materials. J Water Proc Eng 11:110–117

    Article  Google Scholar 

  • Singh B, Kaur J, Singh K (2014) Microbial degradation of an organophosphate pesticide, malathion. Crit Rev Microbiol 40(2):146–154

    Article  CAS  Google Scholar 

  • Thomaidis N, Asimakopoulos A, Bletsou A (2012) Emerging contaminants: a tutorial mini-review. Glob NEST J 14:72–79

    Google Scholar 

  • Tian H, Li J, Mu Z, Li L, Hao Z (2009) Effect of pH on DDT degradation in aqueous solution using bimetallic Ni/Fe nanoparticles. Sep Purif Technol 66:84–89

    Article  CAS  Google Scholar 

  • Tian F, Liu W, Fang H, An M, Duan S (2014) Determination of six organophosphorus pesticides in water by single-drop microextraction coupled with GC-NPD. Chromatographia 77(5):487–492

    Google Scholar 

  • Tyagi N, Thangadurai P, Suresh S (2020) Application of bacterial cellulose–silver nanoprism composite for detoxification of endosulfan and inactivation of Escherichia coli cells. Int J Environ Sci Technol 17(3):1713–1726

    Article  CAS  Google Scholar 

  • Van Der Hoek W, Ekanayake L, Rajasooriyar L, Karunaratne R (2003) Source of drinking water and other risk factors for dental fluorosis in Sri Lanka. Int J Environ Health Res 13(3):285–293

    Article  CAS  Google Scholar 

  • Van Toan P, Sebesvari Z, Bläsing M, Rosendahl I, Renaud FG (2013) Pesticide management and their residues in sediments and surface and drinking water in the Mekong Delta. Vietnam Sci Total Environ 452:28–39

    Article  CAS  Google Scholar 

  • Wang YS, Chen WC, Lin LC, Yen JH (2010) Dissipation of herbicides chlorsulfuron and imazosulfuron in the soil and the effects on the soil bacterial community. J Environ Sci Health, Part B 45:449–455

    Article  CAS  Google Scholar 

  • Won HI, Nersisyan H, Won CW, Lee JM, Hwang JS (2010) Preparation of porous silver particles using ammonium formate and its formation mechanism. Chem Eng J 156:459–464

    Google Scholar 

  • Wu Z, Dong F, Zhao W, Wang H, Liu Y, Guan B (2009) The fabrication and characterization of novel carbon doped TiO2 nanotubes, nanowires and nanorods with high visible light photocatalytic activity. Nanotechnology 20(23):235701

    Google Scholar 

  • Wu S, He H, Li X, Yang C, Zeng G, Wu B, Lu L (2018) Insights into atrazine degradation by persulfate activation using composite of nanoscale zero-valent iron and graphene: performances and mechanisms. Chem Eng J 341:126–136

    Google Scholar 

  • Yan W, Wang R, Xu Z, Xu J, Lin L et al (2006) A novel, practical and green synthesis of Ag nanoparticles catalyst and its application in three-component coupling of aldehyde, alkyne, and amine. J Mol Catal A Chem 255:81–85

    Article  CAS  Google Scholar 

  • Yu B, Zeng J, Gong L, Zhang M, Zhang L, Chen X (2007) Investigation of the photocatalytic degradation of organochlorine pesticides on a nano-TiO2 coated film. Talanta 72:1667–1674

    Google Scholar 

  • Yu B, Zeng J, Gong L, Yang XQ, Zhang L, Chen X (2008) Photocatalytic degradation investigation of dicofol. Chin Sci Bull 53:27–32

    Google Scholar 

  • Zhang L, Yan F, Wang Y (2006) Photocatalytic degradation of methamidophos by UV irradiation in the presence of nano-TiO2. J Inorg Mater 42:1379–1387

    Google Scholar 

  • Zhang L, Dong L, Shi S, Zhou L, Zhang T, Huang Y (2009) Organochlorine pesticides contamination in surface soils from two pesticide factories in Southeast China. Chemosphere 77(5):628–633

    Google Scholar 

Download references

Acknowledgments

One of the authors Dr. Manviri Rani is grateful for the funding from DST-SERB, New Delhi (Sanction order no. SRG/2019/000114), and TEQIP-III MNIT Jaipur, India. Dr. Uma Shanker wishes to thank TEQIP-III, NIT Jalandhar, for partial funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uma Shanker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rani, M., Choudhary, S., Yadav, J., Keshu, Shanker, U. (2022). Metal Oxide-Based Nanocomposites for Elimination of Hazardous Pesticides. In: Shanker, U., Hussain, C.M., Rani, M. (eds) Handbook of Green and Sustainable Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-69023-6_40-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69023-6_40-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69023-6

  • Online ISBN: 978-3-030-69023-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics