Skip to main content

Permeability Characterization and Impregnation Strategies with Nanoparticle-Modified Resin Systems

  • Chapter
  • First Online:
Acting Principles of Nano-Scaled Matrix Additives for Composite Structures

Part of the book series: Research Topics in Aerospace ((RTA))

  • 607 Accesses

Abstract

Impregnation processes are dominated by the preform permeability and the resin viscosity. During the impregnation with NP-modified matrices, the NPs may influence not only the resin viscosity, but also the preform permeability significantly due to the increased particle-particle, particle-resin and particle-fiber interactions—in some cases leading even to filtration of the particles and influencing significantly the flow speed and length. The chapter investigates the impregnation characteristic of NP-modified resin systems and provides concepts for impregnation strategies based on experimental and simulation study of the influence of different NP concentration and surface modifications on the impregnation process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abliz D (2017) Functionalization of fiber composites with nanoparticle-modified resin systems. Dissertation, Technische Universität Clausthal

    Google Scholar 

  2. Abliz D, Berg DC, Ziegmann G (2019) Flow of quasi-spherical nanoparticles in liquid composite molding processes. Part II: Modeling and simulation. Comp Part A: Appl Sci Manuf 125:105,562 (2019). https://doi.org/10.1016/j.compositesa.2019.105562

  3. Abliz D, Finke B, Berg DC, Schilde C, Ziegmann G (2019) Flow of quasi-spherical nanoparticles in liquid composite molding processes. part i: Influence of particle size and fiber distance distribution. Comp Part A: Appl Sci Manuf 125:105,563 (2019). https://doi.org/10.1016/j.compositesa.2019.105563

  4. Abliz D, Jürgens T, Artys T, Ziegmann G (2018) Cure kinetics and rheology modelling of boehmite (alooh) nanoparticle modified epoxy resin systems. Thermochimica Acta 669:30–39. https://doi.org/10.1016/j.tca.2018.06.017

    Article  CAS  Google Scholar 

  5. Arbter R, Beraud JM. Binetruy C, Bizet L, Breard J, Comas-Cardona S, Demaria C, Endruweit A, Ermanni P, Gommer F, Hasanovic S, Henrat P, Klunker F, Laine B, Lavanchy S, Lomov SV, Long A, Michaud V, Morren G, Ruiz E, Sol H, Trochu F, Verleye B, Wietgrefe M, Wu W, Ziegmann G (2011) Experimental determination of the permeability of textiles: a benchmark exercise. Comp Part A—Appl Sci Manuf 42(9):1157–1168

    Google Scholar 

  6. Cao G (2004) Nanostructures and nanomaterials: synthesis, properties, and applications. Imperial College Press

    Google Scholar 

  7. Da Costa E, Skordos AA, Partridge IK, Rezai A (2012) RTM processing and electrical performance of carbon nanotube modified epoxy/fibre composites. Comp Part A—Appl Sci Manuf 43(4):593–602

    Article  Google Scholar 

  8. Finke B, Nolte H, Schilde C, Kwade A (2019) Stress mechanisms acting during the dispersing in highly viscous media and their impact on the production of nanoparticle composites. Chem Eng Res Des 141:56–65. https://doi.org/10.1016/j.cherd.2018.10.002

    Article  CAS  Google Scholar 

  9. Ghavami K (2005) Bamboo as reinforcement in structural concrete elements. Cement Concrete Comp 27(6):637–649. https://doi.org/10.1016/j.cemconcomp.2004.06.002

    Article  CAS  Google Scholar 

  10. Ghavami K, de Souza Rodrigues C, Paciornik S (2003) Bamboo: functionally graded composite material. Asian J Civil Eng (Build Housing) 4(1):1–10

    Google Scholar 

  11. Ghidaglia C, De Arcangelis L, Hinch J, Guazzelli E (1996) Hydrodynamic interactions in deep bed filtration. Phys Fluids 8(1):6. https://doi.org/10.1063/1.868810

    Article  CAS  Google Scholar 

  12. Herzig JP, Leclerc DM, Goff PL (1970) Flow of suspensions through porous media—application to deep bed filtration. Indus Eng Chem 5(62):8–35

    Article  Google Scholar 

  13. Lefevre D, Comas-Cardona S, Binétruy C, Krawczak P (2007) Modelling the flow of particle-filled resin through a fibrous preform in liquid composite molding technologies. Comp Part A: Appl Sci Manuf 38(10):2154–2163. https://doi.org/10.1016/j.compositesa.2007.06.008

    Article  CAS  Google Scholar 

  14. Louis BM, Maldonado J, Klunker F, Ermanni P (2014) Measurement of nanoparticle distribution in composite laminates produced by resin transfer molding. In: 16th European conference on composite materials (ECCM), 16th European conference on composite materials (ECCM), Seville, Spain

    Google Scholar 

  15. Louis BM, Maldonado J, Klunker F, Ermanni P (2018) Particle distribution from in-plane resin flow in a resin transfer molding process. Polym Eng Sci. https://doi.org/10.1002/pen.24860

    Article  Google Scholar 

  16. Maroudas A, Eisenkla P (1965) Clarification of suspensions—a study of particle deposition in granular media: Part I—some observations on particle deposition. Chem Eng Sci 20(10):867–873

    Google Scholar 

  17. Maroudas A, Eisenkla P (1965) Clarification of suspensions—a study of particle deposition in granular media: Part II—a theory of clarification. Chem Eng Sci 20(10):875–888

    Google Scholar 

  18. Müller F, Peukert W, Polke R, Stenger F (2004) Dispersing nanoparticles in liquids. Int J Mineral Proces 74:S31–S41. https://doi.org/10.1016/j.minpro.2004.07.023

    Article  CAS  Google Scholar 

  19. Nolte H, Schilde C, Kwade A (2010) Production of highly loaded nanocomposites by dispersing nanoparticles in epoxy resin. Chem Eng Technol 33(9SI):1447–1455. https://doi.org/10.1002/ceat.201000096

  20. Raasch J (1961) Beanspruchung und Verhalten suspendierter Feststoffteilchen in Scherströmungen hoher Zähigkeit. PhD thesis, T.H. Karlsruhe

    Google Scholar 

  21. Ray AK, Mondal S, Das SK, Ramachandrarao P (2005) Bamboo–a functionally graded composite-correlation between microstructure and mechanical strength. J Mater Sci 40(19):5249–5253. https://doi.org/10.1007/s10853-005-4419-9

    Article  CAS  Google Scholar 

  22. Reia Da Costa EF, Skordos AA (2012) Modelling flow and filtration in liquid composite moulding of nanoparticle loaded thermosets. Comp Sci Technol 72(7):799–805. https://doi.org/10.1016/j.compscitech.2012.02.007

  23. Sakthivadivel R (1969) Clogging of a granular porous medium by sediment. Hydraulic Engineering Laboratory, College of Engineering, University of California, Berkeley

    Google Scholar 

  24. Sakthivadivel R, University of California B, Hydraulic EL (1969) Clogging of a granular porous medium by sediment. Hydraulic Engineering Laboratory, College of Engineering, University of California, Berkeley

    Google Scholar 

  25. Santos A, Araújo JA (2015) Modeling deep bed filtration considering limited particle retention. Transp Porous Media 108(3):697–712 (2015). https://doi.org/10.1007/s11242-015-0496-7

  26. Sprenger S (2014) Improving mechanical properties of fiber-reinforced composites based on epoxy resins containing industrial surface-modified silica nanoparticles: review and outlook. J Comp Mater 49(1):53–63. https://doi.org/10.1177/0021998313514260

    Article  CAS  Google Scholar 

  27. Tan T, Rahbar N, Allameh SM, Kwofie S, Dissmore D, Ghavami K, Soboyejo WO (2011) Mechanical properties of functionally graded hierarchical bamboo structures. Acta Biomaterialia 7(10):3796–3803. https://doi.org/10.1016/j.actbio.2011.06.008

    Article  CAS  Google Scholar 

  28. Verne N, Ruiz E, Advani S, Alms JB, Aubert M, Barburski M, Barari B, Beraud JM, Berg DC, Correia N, Danzi M, Delaviere T, Dickert, M, Di Fratta C, Endruweit A, Ermanni P, Francucci G, Garcia JA, George A, Hahn C, Klunker F, Lomov SV, Long A, Louis B, Maldonado J, Meier R, Michaud V, Perrin H, Pillai K, Rodriguez E, Trochu F, Verheyden S, Wietgrefe M, Xiong W, Zaremba S, Ziegmann G (2014) Experimental determination of the permeability of engineering textiles: Benchmark II. Comp Part A—App Sci Manuf 61:172–184

    Google Scholar 

  29. Yum SH, Lee WI, Kim SM (2016) Particle filtration and distribution during the liquid composite molding process for manufacturing particles containing composite materials. Comp Part A: Appl Sci Manuf 90:330–339. https://doi.org/10.1016/j.compositesa.2016.07.016

    Article  CAS  Google Scholar 

  30. Zhang H, Liu Y, Huo S, Briscoe J, Tu W, Picot OT, Rezai A, Bilotti E, Peijs T (2017) Filtration effects of graphene nanoplatelets in resin infusion processes: problems and possible solutions. Comp Sci Technol 139:138–145. https://doi.org/10.1016/j.compscitech.2016.12.020

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilmurat Abliz .

Editor information

Editors and Affiliations

Ethics declarations

This chapter is based on Abliz’s Ph.D. thesis [1] and the articles [2, 3].

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abliz, D., Ziegmann, G. (2021). Permeability Characterization and Impregnation Strategies with Nanoparticle-Modified Resin Systems. In: Sinapius, M., Ziegmann, G. (eds) Acting Principles of Nano-Scaled Matrix Additives for Composite Structures. Research Topics in Aerospace. Springer, Cham. https://doi.org/10.1007/978-3-030-68523-2_15

Download citation

Publish with us

Policies and ethics