Skip to main content

Prospective Utilization of Coal Fly Ash for Making Advanced Materials

  • Chapter
  • First Online:
Clean Coal Technologies

Abstract

Coal waste is a fine glass-like solid residue or by-product of the thermal power plant generally collected from the electrostatic precipitator (ESP-2) before flue gas reach out chimneys. As a consequence of time, the overall generation of coal fly ash (CFA) from different domains is being increased worldwide and becomes a very serious environmental issue on its disposal which creates direct effects on soil, air, and water. Though in most of all cases the coal waste (FA) is being used as a land filler for road making, which also causes a substantial threat for the environment owing to bearing toxic metals and other inorganic minerals in it. Therefore, researchers attempted to develop many methodologies for major utilization of these coal wastes after recovering metal values through a suitable leaching processing approach. The CFA resulted from thermal power plant act as the effective product and get attention as the potential raw materials having less harmful, less toxicity afterconverting it to valuable products or substitute raw materials to manufacture valuable products. Presently over 300 Million Tons of FA is being generated worldwide from the thermal plant sectors, but that accounts only about 10–30% of overall FA production is being used worldwide for developing valuable products. Due to the impactful conversion of coal waste to valuable products, environmental pollution is decreasing day-by-day. The various types of useful products from CFA have already been existed in global markets (like Cement, Bricks, and Tiles), and some are under developmental and experimental stages (Matrix membrane, Biodiesel production, lightweight wall element, and lathy tobermorite fiber).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alami, J., & Akhtar, M. N. (2011). Fly ash utilisation in different sectors in Indian scenario. International Journal of Emerging Trends in Engineering and Development, 1(1), 1–14.

    Google Scholar 

  • Asl, S. M. H., Javadian, H., Khavarpour, M., Belviso, C., Taghavi, M., & Maghsudi, M. (2019). Porous adsorbents derived from coal fly ash as cost-effective and environmentally-friendly sources of aluminosilicate for sequestration of aqueous and gaseous pollutants: A review. Journal of Cleaner Production, 208, 1131–1147.

    Article  Google Scholar 

  • Azhar, N. S. D. M., Zainal, F. F., & Abdullah, M. M. A. B. (2019). Effect of different ratio of geopolymer paste based fly ash-metakaolin on compressive strength and water absorption. IOP Science, Materials Science and Engineering, 701, 012010.

    Google Scholar 

  • Bajpai, R., Choudhary, K., Srivastava, A., Sangwan, K. S., & Singh, M. (2020). Environmental impact assessment of fly ash and silica fume based geopolymer concrete. Journal of Cleaner Production, 254, 120147.

    Article  Google Scholar 

  • Belviso, C., Giannossa, L. C., Huertas, F. J., Lettino, A., Mangone, A., & Fiore, S. (2015). Synthesis of zeolites at low temperatures in fly ash-kaolinite mixtures. Microporous and Mesoporous Materials, 212, 35–47.

    Article  Google Scholar 

  • Bharathi, V., Ramachandra, M., & Srinivas, S. (2017). Influence of fly ash content in aluminium matrix composite produced by stir-squeeze casting on the scratching abrasion resistance, hardness and density levels. Materials Today: Proceedings, 4, 7397–7405.

    Google Scholar 

  • Bilir, T., Gencel, O., & Topcu, I. B. (2015). Properties of mortars with fly ash as fine aggregate. Construction and Building Materials, 93, 782–789.

    Article  Google Scholar 

  • Blissett, R. S., & Rowson, N. A. (2012). A review of the multi-component utilisation of coal fly ash. Fuel, 97, 1–23.

    Article  Google Scholar 

  • Cao, P., Li, G., Luo, J., Rao, M., Jiang, H., Peng, Z., & Jiang, T. (2020). Alkali-reinforced hydrothermal synthesis of lathy tobermorite fibers using mixture of coal fly ash and lime. Construction and Building Materials, 238, 117655.

    Article  Google Scholar 

  • Changa, C. Y., Wangb, C. F., Muib, D. T., & Chiangc, H. L. (2009). Application of methods (sequential extraction procedures and high-pressure digestion method) to fly ash particles to determine the element constituents: A case study for BCR 176. Journal of Hazardous Materials, 163, 578–587.

    Article  Google Scholar 

  • Chen, F., Zhang, Y., Liu, J., Wang, X., Chu, P. K., Chu, B., & Zhang, N. (2020). Fly ash based lightweight wall materials incorporating expanded perlite/SiO2 aerogel composite: Towards low thermal conductivity. Construction and Building Materials, 249, 118728.

    Article  Google Scholar 

  • Chen, X., Wang, H., Najm, H., Venkiteela, G., & Hencken, J. (2019). Evaluating engineering properties and environmental impact of pervious concrete with fly ash and slag. Journal of Cleaner Production, 237, 117714.

    Article  Google Scholar 

  • Chousidis, N., Ioannou, I., Rakanta, E., Koutsodontis, C., & Batis, G. (2016). Effect of fly ash chemical composition on the reinforcement corrosion, thermal diffusion and strength of blended cement concretes. Construction and Building Materials, 126, 86–97.

    Article  Google Scholar 

  • Chousidis, N., Rakanta, E., Ioannou, I., & Batis, G. (2015). Mechanical properties and durability performance of reinforced concrete containing fly ash. Construction and Building Materials, 101, 810–817.

    Article  Google Scholar 

  • Çiçek, T., & Çinçin, Y. (2015). Use of fly ash in production of light-weight building bricks. Construction and Building Materials, 94, 521–527.

    Article  Google Scholar 

  • De Rossi, A., Ribeiro, M. J., Labrincha, J. A., Novais, R. M., Hotza, D., & Moreira, R. F. P. M. (2019). Effect of the particle size range of construction and demolition waste on the fresh and hardened-state properties of fly ash-based geopolymer mortars with total replacement of sand. Process Safety and Environmental Protection, 129, 130–137.

    Article  Google Scholar 

  • De Rossia, A., Simãob, L., Ribeiroc, M. J., Hotza, D., & Moreira, R. D. F. P. M. (2020). Study of cure conditions effect on the properties of wood biomass fly ash geopolymers. Journal of Materials Research and Technology, 09, 7518–7528.

    Article  Google Scholar 

  • Dindi, A., Quang, D. V., Vega, L. F., Nashef, E., & Abu-Zahra, M. R. M. (2019). Applications of fly ash for CO2 capture, utilization, and storage. Journal of CO2 Utilization, 29, 82–102.

    Article  Google Scholar 

  • Duan, P., Yan, C., Zhou, W., & Ren, D. (2016). Fresh properties, compressive strength and microstructure of fly ash geopolymer paste blended with iron ore tailing under thermal cycle. Construction and Building Materials, 118, 76–88.

    Article  Google Scholar 

  • Dutta, S., Nadaf, M. B., & Mandal, J. N. (2016). An overview on the use of waste plastic bottles and fly ash in civil engineering applications. Procedia Environmental Sciences, 35, 681–691.

    Article  Google Scholar 

  • Dwivedi, A., & Jain, M. K. (2014). Fly ash – waste management and overview: A Review. Recent Research in Science and Technology, 6, 30–35.

    Google Scholar 

  • Fang, G., & Zhang, M. (2020). The evolution of interfacial transition zone in alkali-activated fly ash-slag concrete. Cement and Concrete Research, 129, 105963.

    Article  Google Scholar 

  • Fannghui, H., Qiang, W., & Jingjing, F. (2015). The differences among the roles of ground fly ash in the paste, mortar and concrete. Construction and Building Materials, 93, 172–179.

    Article  Google Scholar 

  • Gianoncelli, A., Zacco, A., Struis, R. P. W. J., Borgese, L., Depero, L. E., & Bontempi, E. (2013). Fly ash pollutants, treatment and recycling. In E. Lichtfouse, J. Schwarzbauer, & D. Robert (Eds.), Pollutant diseases, remediation and recycling. Environmental chemistry for a sustainable world (Vol. 04, pp. 103–213). Cham: Springer.

    Chapter  Google Scholar 

  • Gokulraj, S., Shakthivel, T. K., Thirunavukarasu, S., & Myilnagaraja, B. (2019). brication of composite material using fly ash and plastic powder. International Journal of Innovative Research in Advanced Engineering, 06, 45–48.

    Google Scholar 

  • Haleem, A., Luthra, S., Mannan, B., Khurana, S., Kumar, S., & Ahmad, S. (2016). Critical ctors for the successful usage of fly ash in roads & bridges and embankments: Analyzing indian perspective. Resources Policy, 49, 334–348.

    Article  Google Scholar 

  • Hermassi, M., Valderrama, C., Font, O., Moreno, N., Querol, X., Batis, N. H., & Cortina, J. L. (2020). Phosphate recovery from aqueous solution by K-zeolite synthesized from fly ash for subsequent valorisation as slow release fertilizer. Science of the Total Environment, 731, 139002.

    Article  Google Scholar 

  • Hu, Y., Tang, Z., Li, W., Li, Y., & Tam, V. W. Y. (2019). Physical-mechanical properties of fly ash/GGBFS geopolymer composites with recycled aggregates. Construction and Building Materials, 226, 139–151.

    Article  Google Scholar 

  • Kassa, R. B., Kanali, C., & Ambassah, N. (2019a). Engineering properties of polyethylene terephthalate fibre reinforced concrete with fly ash as a partial cement replacement. IISTE Civil and Environmental Research, 11, 25–34.

    Google Scholar 

  • Kassa, R. B., Kanali, C., & Ambassah, N. (2019b). Flexural performance evaluation of polyethylene terephthalate fibre reinforced concrete with fly ash as a partial cement replacement. International Journal of Engineering Research and Technology, 12, 1417–1422.

    Google Scholar 

  • Kim, M., Ko, H., Kwonb, T., Bae, H. C., Jang, C. H., Heo, B. U., & Parka, S. M. (2020a). Development of novel refractory ceramic continuous fibers of fly ash and comparison of mechanical properties with those of E-glass fibers using the Weibull distribution. Ceramics International, 46, 13255–13262.

    Article  Google Scholar 

  • Kim, T., Ley, M. T., Kang, S., Davis, J. M., Kim, S., & Amrollahi, P. (2020b). Using particle composition of fly ash to predict concrete strength and electrical resistivity. Cement and Concrete Composites, 107, 103493.

    Article  Google Scholar 

  • Kirankumar, G., Saboor, S., & Babu, T. P. A. (2016). Investigation of different window and wall materials for solar passive building design. Procedia Technology, 24, 523–530.

    Article  Google Scholar 

  • Komonweeraket, K., Cetin, B., Benson, C. H., Aydilek, A. H., & Edil, T. B. (2015). Leaching characteristics of toxic constituents from coal fly ash mixed soils under the influence of pH. Waste Management, 38, 174–184.

    Article  Google Scholar 

  • Kua, T. A., Imteaz, M. A., Arulrajah, A., & Horpibulsuk, S. (2018). Environmental and economic viability of Alkali Activated Material (AAM) comprising slag, fly ash and spent coffee ground. International Journal of Sustainable Engineering, 12, 223–232.

    Article  Google Scholar 

  • Lee, H., Vimonsatit, V., & Chindaprasirt, P. (2016). Mechanical and micromechanical properties of alkali activated fly-ash cement based on nano-indentation. Construction and Building Materials, 107, 95–102.

    Article  Google Scholar 

  • Lieberman, R. N., Green, U., Segev, G., Polat, M., Mastai, Y., & Cohen, H. (2015). Coal fly ash as a potential fixation reagent for radioactive wastes. Fuel, 153, 437–444.

    Article  Google Scholar 

  • Liu, L., Peng, B., Yue, C., Guo, M., & Zhang, M. (2019). Low-cost, shape-stabilized fly ash composite phase change material synthesized by using a cile process for building energy efficiency. Materials Chemistry and Physics, 222, 87–95.

    Article  Google Scholar 

  • Lokeshappa, B., & Dikshit, A. K. (2011). Disposal and management of coal fly ash. IPCBEE, 03, 11–14.

    Google Scholar 

  • Mármol, G., Savastano, H., Jr., Monzó, J. M., Borrachero, M. V., Soriano, L., & Payá, J. (2016). Portland cement, gypsum and fly ash binder systems characterization for lignocellulosic fiber-cement. Construction and Building Materials, 124, 208–218.

    Article  Google Scholar 

  • Ming, L. Y., Sandu, A. V., Yong, H. C., Tajunnisa, Y., Azzahran, S. F., Bayuji, R., Abdullah, M. M. A. B., Vizureanu, P., Hussin, K., Jin, T. S., & Loong, F. K. (2019). Compressive strength and thermal conductivity of fly ash geopolymer concrete incorporated with lightweight aggregate, expanded clay aggregate and foaming agent. Revista de Chimie, 70, 4021–4028.

    Article  Google Scholar 

  • Moftt, E. G., Thomas, M. D. A., & Him, A. (2017). Performance of high-volume fly ash concrete in marine environment. Cement and Concrete Research, 102, 127–135.

    Article  Google Scholar 

  • Mohamad, M., Noor, M. M., & Key, T. P. (2019). Compressive strength of foamed cement composites with the addition of fly ash and polystyrene beads. Advanced Journal of Technical and Vocational Education, 03, 01–06.

    Google Scholar 

  • Moyo, V., Mguni, N. G., Hlabangana, N., & Danha, G. (2019). Use of coal fly ash to manufacture a corrosion resistant brick. Procedia Manufacturing, 35, 500–512.

    Article  Google Scholar 

  • Musyoka, N. M., Ren, J., Langmi, H. W., North, B. C., & Mathe, M. (2015). A comparison of hydrogen storage capacity of commercial and fly ash-derived zeolite X together with their respective templated carbon derivatives. International Journal of Hydrogen Energy, 40, 12705–12712.

    Article  Google Scholar 

  • Natha, P., Sarkera, P. K., & Rangan, V. B. (2015). Early age properties of low-calcium fly ash geopolymer concrete suitable for ambient curing. Procedia Engineering, 125, 601–607.

    Article  Google Scholar 

  • Ngernkham, T. P., Phiangphimai, C., Intarabut, D., Hanjitsuwan, S., Damrongwiriyanupap, N., Li, L. Y., & Chindaprasirt, P. (2020). Low cost and sustainable repair material made from alkali-activated high-calcium fly ash with calcium carbide residue. Construction and Building Materials, 247, 118543.

    Article  Google Scholar 

  • Nguyen, H. A., Chang, T. P., Shih, J. Y., Chen, C. T., & Nguyen, T. D. (2015). Influence of circulating fluidized bed combustion (CFBC) fly ash on properties of modified high volume low calcium fly ash (HV) cement paste. Construction and Building Materials, 91, 208–215.

    Article  Google Scholar 

  • Nie, Q., Zhou, C., Li, H., Shu, X., Gong, H., & Huang, B. (2015). Numerical simulation of fly ash concrete under sulfate attack. Construction and Building Materials, 84, 261–268.

    Article  Google Scholar 

  • Pavlović, S. M., Marinković, D. M., Kostić, M. D., Častvan, I. M. J., Mojović, L. V., Stanković, M. V., & Veljković, V. B. (2020). A CaO/zeolite-based catalyst obtained from waste chicken eggshell and coal fly ash for biodiesel production. Fuel, 267, 117171.

    Article  Google Scholar 

  • Pedrazaa, S. P., Pinedaa, Y., & Gutiérrez, O. (2015). Influence of the unburned residues in fly ash additives on the mechanical properties of cement mortars. Procedia Materials Science, 09, 496–503.

    Article  Google Scholar 

  • Ramanathan, S., Gopinath, S. C. B., Arshad, M. K. M., & Poopalan, P. (2020). Nanostructured aluminosilicate from fly ash: Potential approach in waste utilization for industrial and medical applications. Journal of Cleaner Production, 253, 119923.

    Article  Google Scholar 

  • Ren, X., Liu, S., Qu, R., Xiao, L., Hu, P., Song, H., Wu, W., Zheng, C., Wu, X., & Gao, X. (2020). Synthesis and characterization of single-phase submicron zeolite Y from coal fly ash and its potential application for acetone adsorption. Microporous and Mesoporous Materials, 295, 109940.

    Article  Google Scholar 

  • Ridtirud, C., & Chindaprasirt, P. (2019). Properties of light weight aerated geopolymer synthesis from high-calcium fly ash and aluminium powder. International Journal of Geomate, 16, 67–75.

    Article  Google Scholar 

  • Rivera, F., Martínez, P., Castro, J., & López, M. (2015). Massive volume fly-ash concrete: A more sustainable material with fly ash replacing cement and aggregates. Cement and Concrete Composites, 63, 104–112.

    Article  Google Scholar 

  • Roviello, G., Ricciotti, L., Molino, A. J., Menna, C., Ferone, C., Cio, R., & Tarallo, O. (2019). Hybrid geopolymers from fly ash and polysiloxanes. Molecules, 24, 3510.

    Article  Google Scholar 

  • Sahu, S., Sarkar, P., & Davis, R. (2019). Quantification of uncertainty in compressive strength of fly ash brick masonry. Journal of Building Engineering, 26, 100843.

    Article  Google Scholar 

  • Santamaría, A., Rojí, E., Skaf, M., Marcos, I., & González, J. J. (2016). The use of steelmaking slags and fly ash in structural mortars. Construction and Building Materials, 106, 364–373.

    Article  Google Scholar 

  • Senapati, M. R. (2011). Fly ash from thermal power plants waste management and overview. Current Science, 100, 1791–1794.

    Google Scholar 

  • Senthil, K. M., Vanmathi, M., Senguttuvan, G., Mangalaraja, R. V., & Sakthivel, G. (2019). Fly ash constituent-silica and alumina role in the synthesis and characterization of cordierite based ceramics. SILICON, 11, 2599–2611.

    Article  Google Scholar 

  • Seto, K. E., Churchill, C. J., & Panesar, D. K. (2017). Influence of fly ash allocation approaches on the life cycle assessment of cement-based materials. Journal of Cleaner Production, 157, 65–75.

    Article  Google Scholar 

  • Shaikh, F. U. A., & Supit, S. W. M. (2015). Chloride induced corrosion durability of high volume fly ash concretes containing nano particles. Construction and Building Materials, 99, 208–225.

    Article  Google Scholar 

  • Sharma, V., & Akhai, S. (2019). Trends in utilization of coal fly ash in India: A review. Journal of Engineering Design and Analysis, 02, 12–16.

    Google Scholar 

  • Silva, S. R. D., & Andrade, J. J. D. O. (2017). Investigation of mechanical properties and carbonation of concretes with construction and demolition waste and fly ash. Construction and Building Materials, 153, 704–715.

    Article  Google Scholar 

  • Supit, S. W. M., Shaikh, F. U. A., & Sarker, P. K. (2014). Effect of ultrafine fly ash on mechanical properties of high volume fly ash mortar. Construction and Building Materials, 51, 278–286.

    Article  Google Scholar 

  • Suresh, K., Pugazhenthi, G., & Uppaluri, R. (2016). Fly ash based ceramic microfiltration membranes for oil-water emulsion treatment: Parametric optimization using response surcemethodology. Journal of Water Process Engineering, 13, 27–43.

    Article  Google Scholar 

  • Tennakoon, C., Crentsil, K. S., Nicolas, R. S., & Sanjayan, J. G. (2015). Characteristics of Australian brown coal fly ash blended geopolymers. Construction and Building Materials, 101, 396–409.

    Article  Google Scholar 

  • Tennakoon, C., Nazari, A., Sanjayan, J. G., & Crentsil, K. S. (2014). Distribution of oxides in fly ash controls strength evolution of geopolymers. Construction and Building Materials, 71, 72–82.

    Article  Google Scholar 

  • Tiwari, M. K., Bajpai, S., & Dewangan, U. K. (2016). Fly ash utilization: A brief review in Indian context. International Research Journal of Engineering and Technology (IRJET), 03, 949–956.

    Google Scholar 

  • Trisnaliani, L., Purnamasari, I., & Ahmadan, F. (2019). Performance of silica membranes from fly ash coal of PT semen baturaja in reducing metal content in mine acid water. Indonesian Journal of Fundamental and Applied Chemistry, 04, 9–14.

    Article  Google Scholar 

  • Tudjonoa, S., Purwanto, X. X. X., & Apsari, K. T. (2014). Study the effect of adding nano fly ash and nano lime to compressive strength of mortar. Procedia Engineering, 95, 426–432.

    Article  Google Scholar 

  • Velandia, D. F., Lynsdale, C. J., Provis, J. L., Ramirez, F., & Gomez, A. C. (2016). Evaluation of activated high volume fly ash systems using Na2SO4, lime and quicklime in mortars with high loss on ignition fly ashes. Construction and Building Materials, 128, 248–255.

    Article  Google Scholar 

  • Wongsa, A., Wongkvanklom, A., Tanangteerapong, D., & Chindaprasirt, P. (2020). Comparative study of fire-resistant behaviors of high-calcium fly ash geopolymer mortar containing zeolite and mullite. Journal of Sustainable Cement-Based Materials, 9(5), 307–321.

    Article  Google Scholar 

  • Wu, T., Chi, M., & Huang, R. (2014). Characteristics of CFBC fly ash and properties of cement-based composites with CFBC fly ash and coal-fired fly ash. Construction and Building Materials, 66, 172–180.

    Article  Google Scholar 

  • Zhang, Z., Wang, H., Zhu, Y., Reid, A., Provis, J. L., & Bullen, F. (2014). Using fly ash to partially substitute metakaolin in geopolymer synthesis. Applied Clay Science, 88–89, 194–201.

    Article  Google Scholar 

  • Zhipeng, T., Bingru, Z., Chengjun, H., Rongzhi, T., Huangpu, Z., & Fengting, L. (2015). The physiochemical properties and heavy metal pollution of fly ash from municipal solid waste incineration. Process Safety and Environmental Protection, 98, 333–341.

    Article  Google Scholar 

  • Zhuang, X. Y., Chen, L., Komarneni, S., Zhou, C. H., Tong, D. S., Yang, H. M., Yu, W. H., & Wang, H. (2016). Fly ash-based geopolymer: Clean production, properties and applications. Journal of Cleaner Production, 125, 253–267.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dan, A.K. et al. (2021). Prospective Utilization of Coal Fly Ash for Making Advanced Materials. In: Jyothi, R.K., Parhi, P.K. (eds) Clean Coal Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-68502-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68502-7_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68501-0

  • Online ISBN: 978-3-030-68502-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics