Skip to main content

Generation, Transportation and Utilization of Indian Coal Ash

  • Chapter
  • First Online:
Clean Coal Technologies

Abstract

This chapter describes the generation of coal ash from Indian thermal power plants, its stabilization for pipeline transportation and its utilization as fly ash bricks. For the disposal of coal/fly ash (high concentration) a detail investigation of rheological behaviour is required. The rheological characteristics of fly ash (FA) samples are studied with some natural and synthetic surfactant systems. Presence of surfactant reduces viscosity of the slurry and also increases the wetting properties of solid particles. Moreover, the surfactant role of bottom ash as a viscosity reducing agent is also discussed herewith. Furthermore, the detailed characterization and its utilization as fly ash bricks (FAB) have also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Assefa, K. M., & Kaushal, D. R. (2015). Experimental study on the rheological behaviour of coal ash slurries. Journal of Hydrology and Hydromechanics, 63(4), 303–310.

    Article  Google Scholar 

  • Bhatt, A., Priyadarshini, S., Mohanakrishnan, A. A., Abri, A., Sattler, M., & Techapaphawit, S. (2019). Physical, chemical, and geotechnical properties of coal fly ash: A global review. Case Studies in Construction Materials, 11, e00263.

    Article  Google Scholar 

  • Chandel, S., Seshadri, V., & Singh, S. N. (2009). Effect of additive on pressure drop and rheological characteristics of fly ash slurry at high concentration. Particulate Science and Technology, 27, 271–284.

    Article  Google Scholar 

  • Chandel, S., Singh, S. N., & Seshadri, V. (2010). Transportation of high concentration coal ash slurries through pipelines. International Archive of Applied Sciences and Technology, 1(1), 1–9.

    Google Scholar 

  • Chen, T., Gao, X., & Ren, M. (2018). Effects of autoclave curing and fly ash on mechanical properties of ultra-high performance concrete. Construction and Building Materials, 158, 864–872.

    Article  Google Scholar 

  • Chouhan, D., Upadhayay, V., & Ladhe, Y. (2018). A study of potential application for coal ash production as a raw material., 1(9), 438–446.

    Google Scholar 

  • Cultrone, G., & Sebastián, E. (2009). Fly ash addition in clayey materials to improve the quality of solid bricks. Construction and Building Materials, 23, 1178–1184.

    Article  Google Scholar 

  • Das, D., Dash, U., Meher, J., & Misra, P. K. (2013). Improving stability of concentrated coal-water slurry using mixture of a natural and synthetic surfactants. Fuel Processing Technology, 113, 41–51.

    Article  Google Scholar 

  • Das, D., Dash, U., Nayak, A., & Misra, P. K. (2010). Surface engineering of low rank Indian coals by starch-based additives for the formulation of concentrated coal−water slurry. Energy & Fuels, 24, 1260–1268.

    Article  Google Scholar 

  • Das, D., Mohapatra, R. K., Belbsir, H., Routray, A., Parhi, P. K., & El-Hami, K. (2020a). Combined effect of natural dispersant and a stabilizer in formulation of high concentration coal water slurry: Experimental and rheological modeling. Journal of Molecular Liquids. https://doi.org/10.1016/j.molliq.2020.114441.

  • Das, D., Panigrahi, S., Misra, P. K., & Nayak, A. (2008). Effect of organized assemblies. Part 4: Formulation of highly concentrated coal-water slurry using a natural surfactant. Energy & Fuel, 22, 1865–1872.

    Article  Google Scholar 

  • Das, D., Pattanaik, S., Parhi, P. K., Mohapatra, R. K., Jyothi, R. K., Lee, J. Y., & Kim, H. I. (2019). Stabilization and rheological characteristics of fly ash–water slurry using a naturaldispersant. ACS Omega. https://doi.org/10.1021/acsomega.9b03477.

  • Das, S. N., Biswal, S. K., & Mohapatra, R. K., (2020b). Recent advances on stabilization and rheological behaviour of iron ore slurry for economic pipeline transportation, Materials Today: Proceedings, https://doi.org/10.1016/j.matpr.2020.02.851.

  • Fuller, A., Maier, J., Karampinis, E., Kalivodova, J., Grammelis, P., Kakaras, E., & Scheffknecht, G. (2018). Fly ash formation and characteristics from(co-)combustion of an herbaceous biomass Anda Greek Lignite (low-rank coal) in a PulverizedFuel pilot-scale test facility. Energies, 11, 1581. -(1-38).

    Article  Google Scholar 

  • Ghazali, M., & Kaushal, O. P. (2015). Characteristics of fly ash from thermal power plants and I ts management along with settling pond design. International Journal of Engineering Research & Science, 1(4), 24–32.

    Google Scholar 

  • Gollakota, A. R. K., Volli, V., & Shu, C.-M. (2019). Progressive utilisation prospects of coal fly ash: A review. Science of the Total Environment, 672, 951–989.

    Article  Google Scholar 

  • Hasezaki, K., Nakashita, A., Kaneko, G., & Kakuda, H. (2007). Unburned carbon behavior in sintered coal fly-ash bulk material by spark plasma sintering. Materials Transactions, 48, 3062–3065.

    Article  Google Scholar 

  • Headwaters, I. (2005). Proportioning fly ash concrete mixes. Retrieved from http://www.flyash.com/

  • Ismail, K. N., Hussin, K., & Idris, M. S. (2007). Physical, chemical & mineralogical properties of fly ash, journal of nuclear and related technology. Special Edition, 4, 47–51.

    Google Scholar 

  • Iyer, R. (2002). The surface chemistry of leaching coal fly ash. Journal of Hazardous Materials, B93, 321–329.

    Article  Google Scholar 

  • Karampinis, E., Nikolopoulos, N., Nikolopoulos, A., & Kakaras, E. (2011). Numerical investigation Greek lignite/cardoon co-firing in a tangentially fired furnace. Applied Energy, 97, 514–524.

    Article  Google Scholar 

  • Karolina, R., & Sianipar, Y. G. C. (2018). The utilization of stone ash on cellular lightweight concrete. IOP Conference Series: Materials Science and Engineering, 309, 1–5.

    Article  Google Scholar 

  • Kayali, O., & Sharfuddin, M. (2013). Assessment of high volume replacement fly ash concrete-concept of performance index. Construction and Building Materials, 39, 71–76.

    Article  Google Scholar 

  • Kishor, M. S. V. R., Behera, A., Rajak, D. K., Menezes, P. L., & Catalin, P. I. (2020b). Manufacturing and mechanical characterization of Fly-ash-reinforced materials for furnace lining applications. Journal of Material Engineering and Performance. https://doi.org/10.1007/s11665-020-05121-0.

  • Kishor, M. S. V. R., Sahoo, D. P., Sahoo, D. K., Behera, A., & Sarkar, S. (2020a). Nano-scale analysis on spark plasma sintered fly-ash bricks and their comparative study with SiN-Zr refractory bricks. Micro and Nanosystems, 12, 122–128.

    Article  Google Scholar 

  • Knezevic, D., & Kolonja, B. (2008). The influence of ash concentration on change of flow and pressure in slurry transportation. International Journal of Mining and Mineral Engineering, 1(1), 104–112.

    Article  Google Scholar 

  • KolÓ‘Ñ“, V., Pollert, J., Sellin, R. H. J., & Vlasak, P. (1988). Experiments with a drag reducing polymer in an ash-slag hydro transport pipeline. Journal of Hydraulic Research, 26(2), 143–158.

    Article  Google Scholar 

  • Koukouzas, Ketikidis, C., Itskos, G., Spiliotis, X., Karayannis, V., & Papapolymerou, G. (2011). Synthesis of CFB-Coal fly ash clay bricks and their characterisation, Nikolaos. Waste Biomass Valor, 2, 87–94.

    Article  Google Scholar 

  • Kumar, K., Kumar, S., Gupta, M., & Garg, H. C., (2016). Effect of addition of bottom ash on the rheological properties of fly ash slurry at varying temperature, Material Science and Engineering, 149, IOP Conf. Series, Department of Mechanical Engineering, Guru Jambheswar University of Science & Technology, Hisar, India.

    Google Scholar 

  • Kumar, U., Mishra, R., Singh, S. N., & Seshadri, V. (2003). Effect of particle gradation on flow characteristics of ash disposal pipelines. Powder Technology, 132, 39–51.

    Article  Google Scholar 

  • Leiva, C., Arenas, C., Alonso-farinas, B., Vilches, L. F., Peceño, B., Rodriguez-galán, M., & Baena, F. (2016). Characteristics of fired bricks with co-combustion fly ashes. Journal of Building Engineering, 5, 114–118.

    Article  Google Scholar 

  • Li, J., Cao, W., & Chen, G. (2015). The heat transfer coefficient of new construction—Brick masonry with fly ash blocks. Energy, 86, 240–246.

    Article  Google Scholar 

  • Li, L., Usui, H., & Suzuki, H. (2002). Study of pipeline transportation of dense fly ash water slurry. Coal Preparation, 22, 65–80.

    Article  Google Scholar 

  • Liyanage, M., Jayaranjan, D., Hullebusch, E. D. V., & Annachhatre, A. P. (2014). Reuse options for coal fired power plant bottomash and fly ash. Reviews in Environmental Science and Biotechnology, 13, 467–486.

    Article  Google Scholar 

  • Mahudeswaran, N., Mahudeswaran, N., Aruna, R., & Saraswathi, M. (2014). Strengthening of Fly ash bricks by Ironite. IOSR Journal of Mechanical and Civil Engineering, 11, 21–26.

    Article  Google Scholar 

  • Mann, H. S., Brar, G. S., Mann, K. S., & Mudahar, G. S. (2016). Experimental investigation of clay Fly ash bricks for gamma-ray shielding. Nuclear Engineering and Technology, 48, 1230–1236.

    Article  Google Scholar 

  • Mishra, B., & Gupta, M. K. (2017). Use of fly ash plastic waste composite in bituminous concrete mixes of flexible pavement. American Journal of Engineering Research, 6(9), 253–262.

    Google Scholar 

  • Mohapatra, R. K., Das, P. K., Pintilie, L., & Dhama, K. (2021). Infection capability of SARS-CoV-2 on different surfaces, Egyptian Journal of Basic and Applied Sciences, https://doi.org/10.1080/2314808X.2021.1907915.

  • Naganathan, S., Mohamed, A. Y. O., & Mustapha, K. N. (2015). Performance of bricks made using fly ash and bottom ash. Construction and Building Materials, 96, 576–580.

    Article  Google Scholar 

  • Naik, H. K., Mishra, M. K., & Rao, K. U. M. (2011). Influence of chemical reagents on rheological properties of fly ash water slurry at varying temperature environment. Coal Combustion and Gasification Products, 3, 83–93.

    Article  Google Scholar 

  • Naik, T. R., & Singh, S. S., (1993). Fly ash generation and utilization-an overview, Recent Trends in Fly Ash Utilization. Society of Forest & Environmental Managers (SOFEM). India, 1–25.

    Google Scholar 

  • Narmatha, M., Aruna, R., & Saraswathi, M. (2014). Strengthening of Fly ash bricks. IOSR Journal of Mechanical and Civil Engineering, 11, 21–26.

    Article  Google Scholar 

  • Pani, G. K., Rath, P., Barik, R., & Senapati, P. K. (2015). The effect of selective additives on the rheological behaviour of power plant ash slurry. Particulate Science and Technology, 33, 418–422.

    Article  Google Scholar 

  • Pattanaik, S., Parhi, P. K., Das, D., & Samal, A. K. (2019). Acacia concinna: A natural dispersant for stabilization and transportation of fly ash-water slurry. Journal of Taiwan Institute of Chemical Engineers, 99, 193–200.

    Article  Google Scholar 

  • Pradhan, M., & Bhargava, P. (2008). Tailoring porosity and pore characteristics in oxide ceramic foams through controlled processing. Transactions of the Indian Ceramic Society, 67, 101–117.

    Article  Google Scholar 

  • Rani, R., & Jain, M. K. (2017). Effect of bottom ash at different ratios of hydraulic transportation of fly ash during mine fill. Powder Technology, 315, 309–317.

    Article  Google Scholar 

  • Safiuddin, M., Raman, S. N., Salam, M. A., & Jumaat, M. Z. (2016). Modeling of compressive strength for self-consolidating high-strength concrete incorporating palm oil fuel ash. Materials, 9, 1–13.

    Article  Google Scholar 

  • Senapati, P. K., Mohapatra, R., Pani, G. K., & Mishra, B. K. (2012). Studies on rheological and leaching characteristics of heavy metals through selective additive in high concentration ash slurry. Journal of Hazardous Materials, 229-230, 390–397.

    Article  Google Scholar 

  • Shaikh, F. U. A., & Aditya, P. (2018). Flexural behavior of hybrid PVA Fiber and AR-glass textile reinforced Geopolymer composites. Fibers, 6, 1–10.

    Article  Google Scholar 

  • Singh, H., Brar, G., & Mudahar, G. (2017a). Evaluation of characteristics of fly ash-reinforced clay bricks as building material. Journal of Building Physics., 40, 530–543.

    Article  Google Scholar 

  • Singh, K., & Lal, K. (2012). Effect of Cetylpyridinium chloride, Triton x-100 and sodium dodecyl Sulfate on rheology of fly ash slurry. International Journal of Scientific and Research Publications, 2(8), 1–5.

    Google Scholar 

  • Singh, M. K., Kumar, S., Ratha, D., & Kaur, H. (2017b). Design of slurry transportation pipeline for the flow of multi-particulate coal ash suspension. International Journal of Hydrogen Energy, 42, 19135–19138.

    Article  Google Scholar 

  • Singh, N. B. (2018). Fly ash-based Geopolymer binder: A future construction material. Minerals, 8, 1–21.

    Article  Google Scholar 

  • Singh, V. P., & Badiger, N. M. (2013). The gamma-ray and neutron shielding factors of fly-ash brick materials. Journal of Radiological Protection, 34, 89–101.

    Article  Google Scholar 

  • Sivalingam, N., (2011). Project profile on fly ash bricks, Guindy, Chennai.

    Google Scholar 

  • Strabala, W. M., & Colo, A., (1996) Structural products manufactured from fly ash, United States Patent, Patent no.-5, 534, 058, July 9.

    Google Scholar 

  • Tiwari, V., & Choubey, U. B. (2014). Experimental study of fly-ash brick masonry under subjected to cyclic loading. International Journal of Science Technology & Engineering, 1, 1–7.

    Google Scholar 

  • Wang, L., Sun, H., Sun, Z., & Ma, E. (2015). New technology and application of brick making with coal fly ash. Journal of Material Cycles and Waste Management. https://doi.org/10.1007/s10163-015-0368-9.

  • Yang, T., Zhu, H., Zhang, Z., Gao, X., Zhang, C., & Wu, Q. (2018). Effect of fly ash microsphere on the rheology and microstructure of alkali-activated fly ash/slag pastes. Cement and Concrete Research, 109, 198–207.

    Article  Google Scholar 

  • Yao, Z. T., Ji, X. S., Sarker, P. K., Tang, J. H., Ge, L. Q., Xia, M. S., & Xi, Y. Q. (2015). A comprehensive review on the applications of coal fly ash. Earth-Science Reviews, 141, 105–121.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohapatra, R.K., Das, P.K., Kabiraz, D.C., Das, D., Behera, A., Kudrat-E-Zahan, M. (2021). Generation, Transportation and Utilization of Indian Coal Ash. In: Jyothi, R.K., Parhi, P.K. (eds) Clean Coal Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-68502-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68502-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68501-0

  • Online ISBN: 978-3-030-68502-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics