Skip to main content

Mineral Beneficiation and Processing of Coal

  • Chapter
  • First Online:

Abstract

Coal plays a vital role in steel production and electricity generation. In recent times, coal production has been increased multiple times as the demand for steel and energy increased. Presently, about 41% of the world’s electricity requirements are met by thermal coals. Increased utilization of coal doubled carbon dioxide emission to the atmosphere, which necessitates the development of green methods for coal utilization. The coal preparation techniques are eco-friendly and are advantageous in mitigating the release of harmful toxic gases into the atmosphere. In this chapter, coal preparation techniques employed in the generation of clean coal for various applications are briefly discussed. Present-day coal washeries are equipped with various advanced equipment related to the sizing, concentration, clarification, and drying. The prime objective of the coal preparation is to separate the clean coal at the coarsest possible size. Conventional gravity separators, such as Jigs and dense media cyclones, are very common for treating coarse particles. Whereas, processing of fine particles could be achieved following advanced gravity concentrators and froth flotation techniques. Processing fine particles is a challenging task, which adds to the operating cost and increases associated handling problems. The chapter also sheds light on the plant practices adopted to treat different coals and modular plants.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbas, N., & Muhammad, K. (2016). Optimisation of operating and design parameters of Water-Only Cyclone using Cherat coal in Pakistan. Journal of Nuclear Energy Science & Power Generation Technology, 5, 2. https://doi.org/10.4172/2325-9809.100049.

    Article  Google Scholar 

  • Ahmed, N., & Jameson, G. J. (1983). The effect of bubble size on the rate of flotation of fine particles. International Journal of Mineral Processing, 14, 195–215.

    Article  Google Scholar 

  • Angadi, S. I., Jeon, H.-S., & Nikkam, S. (2012). Experimental analysis of solids and water flow to the coal flotation froths. International Journal of Mineral Processing, 110–111, 62–70.

    Article  Google Scholar 

  • Angadi, S. I., Sreenivas, T., Jeon, H. S., Baek, S. H., & Mishra, B. K. (2015). A review of cassiterite beneficiation fundamentals and plant practices. Minerals Engineering, 70(2015), 178–200. https://doi.org/10.1016/j.mineng.2014.09.009.

    Article  Google Scholar 

  • Angadi, S. I., & Suresh, N. (2005). A kinetic model for the prediction of water reporting to the froth products in batch flotation. Transactions of the Institution of Mining and Metallurgy, Sect. C, 114, 225–232.

    Google Scholar 

  • Aplan, F. F. (1989). Coal flotation—the promise and the problems. In S. Chander & R. R. Klimpel (Eds.), Advances in Coal and Mineral Processing Using Flotation (pp. 95–104). Littleton, CO: SME.

    Google Scholar 

  • Arnold, B. J., & Aplan, F. F. (1989). The hydrophobicity of coal macerals. Fuel, 68, 651–658.

    Article  Google Scholar 

  • Aston, J. R., Drummond, C. J., Scales, F. J., & Healy, T. W. (1983). Frother chemistry in fine coal processing. In R. I. Whitmore (Ed.), Proc. 2nd Aust. Coal Prep. Congress (pp. 148–160). Brisbane: Westminster Press.

    Google Scholar 

  • Benusa, M. D., & Klima, M. S. (2008). An evaluation of a two-stage spiral processing ultrafine bituminous coal. International Journal of Coal Preparation and Utilization, 28(4), 237–260. https://doi.org/10.1080/19392690802402978.

    Article  Google Scholar 

  • Benusa, M. D., & Klima, M. S. (2009). An evaluation of a two-stage spiral processing fine anthracite refuse. International Journal of Coal Preparation and Utilization, 29, 49–67. https://doi.org/10.1080/19392690902784804.

    Article  Google Scholar 

  • Bickert, G. (2007). Solid–liquid separation technologies for coal, Chapter 13. In D. Osborne (Ed.), The coal handbook: towards cleaner production (part II: Coal extraction and preparation). Woodhead Publishing Limited. https://doi.org/10.1533/9780857097309.2.422.

  • Bickert, G., Joyce, J., Munro, M., Starr, D., & Firth, B. (2007). Dewatering of product coal, chapter 15. In G. J. Sanders (Ed.), The principles of coal preparation (4th ed., pp. 1–20) Australian Coal Preparation Society, ISBN: 978-0-9750337-4-6.

    Google Scholar 

  • Bonsu, A.K. (1983). Influence of pulp density and particle size on spiral concentration efficiency, M.Phil.Thesis, Camborne School of Mines.

    Google Scholar 

  • Chander, S., Polat, H., & Mohal, B. R. (1994). Flotation and wettability of a low-rank coal in the presence of surfactants. Journal of Minerals Metallurgy, 55–61.

    Google Scholar 

  • Cicek, T., Cocen, I., & Engin. and V. T., Cengizler, H. (2008). An efficient process for recovery of fine coal from tailings of coal washing plants. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 30, 1716–1728. https://doi.org/10.1080/15567030701443533.

    Article  Google Scholar 

  • Coal Grades, Ministry of Coal (2019). Retrieved September 30, 2020, https://coal.nic.in/content/coal-grades.

  • Colman, K. G., & Tyler, W. S. (1980). Selection guidelines for size and type of vibrating screens in ore crushing plants, Chapter 15. In A. L. Mular & R. B. Bhappu (Eds.), Mineral processing plant design (2nd ed., pp. 341–361). Society of Mining Engineers of the American Institute of Mining, Metallurgical and Petroleum Engineers, Inc.

    Google Scholar 

  • Corriveau, M. P., & Schapiro, N. (1979). Projecting data from samples, Chapter 4. In J. W. Leonard (Ed.), Coal preparation (4th ed., pp. 4–3. – 1-55). New York: The American Institute of Mining, Metallurgical and Petroleum Engineers.

    Google Scholar 

  • Doroodchi, E., Fletcher, D. F., & Galvin, K. P. (2004). Influence of inclined plates on the expansion behaviour of particulate suspensions in a liquid fluidized bed. Chemical Engineering Science, 59, 3559–3567.

    Article  Google Scholar 

  • Fuerstenau, D. W., & Pradip. (1982). Adsorption of frothers at coal/water interface. Colloids and Surfaces, 4, 229–243.

    Article  Google Scholar 

  • Galvin, K. P., Doroodchi, E., Callen, A. M., Lambert, N., & Pratten, S. J. (2002). Pilot plant trial of the reflux classifier. Minerals Engineering, 15, 19–25. https://doi.org/10.1016/S0892-6875(01)00193-5.

    Article  Google Scholar 

  • Galvin, K. P., Pratten, S. J., & Nicol, S. K. (1999). Dense medium separation using a teetered bed separator. Minerals Engineering, 12(9), 1059–1081. https://doi.org/10.1016/S0892-6875(99)00092-8.

    Article  Google Scholar 

  • Gouricharan, T., Chattopadhyay, U. S., Singh, K. M. P., Kabiraj, S., & Haldar, D. D. (2009). Pilot-Scale Baum Jig Washing for beneficiation of a high-ash Indian noncoking coal. International Journal of Coal Preparation and Utilization. https://doi.org/10.1080/19392690902936396.

  • Gupta, A., & Yan, D. S. (2006a). Screening, chapter 11. In Mineral processing design and operation, An introduction (pp. 293–353). Elsevier B. V.. https://doi.org/10.1016/B978-044451636-7/50012-7.

  • Gupta, A., & Yan, D. S. (2006b). Gravity separation, chapter 15. In Mineral processing design and operation, An introduction, 494–554. Elsevier B. V. https://doi.org/10.1016/B978-044451636-7/50012-7.

  • Hacifazlioglu, H. (2012). Application of the modified water-only cyclone for cleaning fine coals in a Turkish washery, and comparison of its performance results with those of spiral and flotation. Fuel Processing Technology, 102, 11–17.

    Article  Google Scholar 

  • Hearn, S. (2002). Mineral processing plant design, practice and control proc., 1 (p. 929). USA: SME.

    Google Scholar 

  • Hilden, M. and David, D. (2006). Industrial screening, chapter 8, In B. A. Wills and T. Napier-Munn, Mineral processing technology, An introduction to the practical aspects ore treatment and mineral recovery (7th ed., pp. 186–202), Elsevier Science and Technology Books., ISBN: 0750644508.

    Google Scholar 

  • Holtham, P. (2006). Gravity concentration, chapter 10. In B. A. Wills & T. Napier-Munn (Eds.), Mineral processing technology, An introduction to the practical aspects ore treatment and mineral recovery (7th ed., pp. 225–245). Elsevier Science and Technology Books. ISBN: 0750644508.

    Google Scholar 

  • Hore, S., Das, S. K. R., Singh, R., & Bhattacharya, K. K. R. (2012). Efficiency study of a water only cyclone by experimental and data modelling techniques when cleaning Indian coal fines. International Journal of Coal Preparation and Utilization, 32(4), 193–209.

    Article  Google Scholar 

  • Horsley, R. M., & Smith, H. G. (1951). Principles of coal flotation. Fuel, 30, 54.

    Google Scholar 

  • Kalyani, V. K., Gouricharan, T., Halder, D. D., Sinha, A., & Suresh, N. (2008). Coal-fine beneficiation studies of a bench-scale water-only cyclone using artificial neural network. International Journal of Coal Preparation and Utilization, 28(2), 94–114. https://doi.org/10.1080/19392690802069918.

    Article  Google Scholar 

  • Kopparthi, P., Sachinraj, D., & Awasthi, A. (2019). Intermediate size fine coal beneficiation by reflux classifier using statistical approach. Powder Technology. https://doi.org/10.1016/j.powtec.2019.11.078.

  • Kumar, C. R., Tripathy, S. K., & Rao, D. S. (2009). Characterisation and pre-concentration ofchromite values from plant tailings using floatex density separator. Journal of Minerals & Materials Characterization & Engineering, 8, 367–378.

    Article  Google Scholar 

  • Kumar, S., & Venugopal, R. (2017). Performance analysis of jig for coal cleaning using 3D response surface Methodology. International Journal of Mining Science & Technology, 27, 333–337. https://doi.org/10.1016/j.ijmst.2017.01.002.

    Article  Google Scholar 

  • List of Countries by Coal Production (2018). Retrieved October 19, 2020, from https://en.wikipedia.org/wiki/List_of_countries_by_coal_production.

  • List of Countries by Coal Reserves (2018). Retrieved October 19, 2020, https://en.wikipedia.org/wiki/List_of_countries_by_coal_reserves.

  • Littler, A. (1986). Automatic hindered-settling classifier for hydraulic sizing and mineral beneficiation. Mineral Processing and Extractive Metallurgy, 95, 133–138.

    Google Scholar 

  • Liu, A., Gao, J., & Fan, M. (2013). Performance of an air-injected water-only cyclone for theseparation of fine coal. International Journal of Coal Preparation and Utilization, 33(5), 218–224.

    Article  Google Scholar 

  • Lockwood, G., Lumsden, D., & Dauncey, N. T. (2007). Crushing and screening, chapter 8. In G. J. Sanders (Ed.), The principles of coal preparation (4th ed., pp. 149–192) Australian Coal Preparation Society, ISBN: 978-0-9750337-4-6.

    Google Scholar 

  • Luttrell, G. H., & Honaker, R. Q. (2012). Coal preparation. In R. A. Meyers (Ed.), Encyclopedia of sustainability science and technology. New York, NY: Springer. https://doi.org/10.1007/978-1-4419-0851-3_431.

    Chapter  Google Scholar 

  • Luttrell, G. H., Westerfield, T. C., Kohmuench, J. N., Mankosa, M. J., Mikkola, K. A., & Oswald, G. (2006). Development of high-efficiency hydraulic separators. Minerals and Metallurgical Processing, 23, 33–39.

    Google Scholar 

  • Majumder, A. K., & Barnwal, J. P. (2011). Processing of coal fines in a water-only cyclone. Fuel, 90(2), 834–837.

    Article  Google Scholar 

  • Maynard, B., Smith, C., & Preston, K. (2007). Coal in the ground, chapter 1. In G. J. Sanders (Ed.), The principles of coal preparation (4th ed., pp. 1–20) Australian Coal Preparation Society ISBN: 978-0-9750337-4-6.

    Google Scholar 

  • Mills, C. (1978). Process design, scale-up and plant design for gravity concentration. In A. L. Mular & R. B. Bhappu (Eds.), Mineral processing plant design. New York: AIMME.

    Google Scholar 

  • Napier-Munn, T. (2006). Dense medium separation (DMS), chapter 11. In B. A. Wills & T. Napier-Munn (Eds.), Mineral processing technology, An introduction to the practical aspects ore treatment and mineral recovery (7th ed., pp. 246–266) Elsevier Science and Technology Books, ISBN: 0750644508.

    Google Scholar 

  • Rao, T. C., Govindarajan, B., & Vanangamudi, M. (1989). A kinetic model for batch coal flotation. Minerals Engineering, 2(3), 403–414. https://doi.org/10.1016/0892-6875(89)90009-5.

    Article  Google Scholar 

  • Richards, R. G., Hunter, J. L., & Holland-Bhatt, A. B. (2007). Spiral concentrators for fine coal treatment. Coal Preparation, 1(2), 207–229. https://doi.org/10.1080/07349348508945549.

    Article  Google Scholar 

  • Sarkar, B., Das, A., & Mehrotra, S. P. (2008). Study of separation features in floatex density separator for cleaning fine coal. International Journal of Mineral Processing, 86, 40–49.

    Article  Google Scholar 

  • Sripriya, R., Banerjee, P. K., Soni, B., & A. D. (2007). Dense-medium cyclone: Plant experience with high near-gravity material Indian coals. Coal Preparation, 27, 78–106. https://doi.org/10.1080/07349340701249729.

    Article  Google Scholar 

  • Stopes, M. C. (1935). On the petrology of banded Bituminous coal. Fuel, 14(1), 4–13.

    Google Scholar 

  • Sun, M., Wei, L., & Cui, G. (2016). Studies of a water-only cyclone with a three-stage cone for fine coal beneficiation. International Journal of Coal Preparation and Utilization. https://doi.org/10.1080/19392699.2016.1138943.

  • Suresh, N., Vanangamudi, M., & Rao, T. C. (1995). A performance model for water-only gravity separators treating coal. Fuel, 75(7), 851–854., 1996. https://doi.org/10.1016/0016-2361(96)00020-8.

    Article  Google Scholar 

  • The Coal Resource-A Comprehensive Overview of coal, World Coal Institute (2009). Retrieved September 30, 2020, from https://www.worldcoal.org.

  • Tiernon, C. H. (1980). Concentrating tables for fine coal cleaning. Minerals Engineering, 32, 1228–1230.

    Google Scholar 

  • Tripathy, A., Panda, L., Sahoo, A. K., Biswal, S. K., Dwari, R. K., & Sahu, A. K. (2016). Statistical optimization study of jigging process on beneficiation of fine size high ash Indian non-coking coal. Advanced Powder Technology. https://doi.org/10.1016/j.apt.2016.04.006.

  • Tripathy, S. K., Mallick, M. K., Singh, V., & Rama Murthy, Y. (2013). Preliminary studies on teeter bed separator for separation of manganese fines. Powder Technology, 239, 284–289. https://doi.org/10.1016/j.powtec.2013.02.015.

    Article  Google Scholar 

  • Type and category-wise Coal Resources of India, Ministry of Coal (2018). Retrieved September 30, 2020, from https://coal.nic.in/content/coal-reserves.

  • Vanangamudi, M., & Rao, T. C. (1986). Modelling of batch coal flotation operation. International Journal of Mineral Processing, 16, 231–243. https://doi.org/10.1016/0301-7516(86)90033-5.

    Article  Google Scholar 

  • Venugopal, R., Patel, J. P., & Bhar, C. (2016). Coal washing scenario in India and future prospects. International Journal of Coal Science & Technology, 3(2), 191–197. https://doi.org/10.1007/s40789-016-0133-2.

    Article  Google Scholar 

  • Zimmels, Y. (1985). Theory of density separation of particulate system. Powder Technology, 43, 127–139.

    Article  Google Scholar 

  • Zimmerman, R. E. (1950). The cleaning of fine sizes of bituminous coals by concentrating tables. Minerals Engineering, 187, 956–966.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank M/s. FLSmidth India Limited, M/s. Tenova India Private Limited, and M/s. CDE Asia Limited for furnishing the figures of various equipment and modular plants included in this manuscript. The authors would like to thank the Director, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, India, for permitting to publish this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivakumar I. Angadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kundu, T., Das, S.K., Biswal, D.K., Angadi, S.I. (2021). Mineral Beneficiation and Processing of Coal. In: Jyothi, R.K., Parhi, P.K. (eds) Clean Coal Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-68502-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68502-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68501-0

  • Online ISBN: 978-3-030-68502-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics