Skip to main content

Preservative Efficacy of Essential Oils Against Postharvested Fungi and Insects of Food Commodities – A Prospect to Go Green

  • Chapter
  • First Online:
Recent Trends in Mycological Research

Part of the book series: Fungal Biology ((FUNGBIO))

  • 550 Accesses

Abstract

Essential oils are complex mixture of compounds that formed by aromatic plants as secondary metabolites. Its inimitable composition plays as multicomponent systems in plant defense with antimicrobial and insecticidal properties. Except these, essential oils bear other key properties like antioxidant, insecticidal, antiphlogistic, spasmolytic, antiparasitic, and antiviral. Insect infestations and fungal infections are the chief cause of postharvest damage of fresh fruits, vegetables, and cereals throughout storage and transportation. The biodeterioration of harvested and stored products is also directly influenced by hot and humid climate. Utilization of essential oils can replace synthetic fungicides and insecticides in management of such issues. Currently, essential oils are utilized as preservatives in many food and flavor industry, perfumery, and pharmaceutical industries. This chapter aimed to provide the current scenario about the antifungal and insecticidal potential of essential oils and their constituents to identify research avenues that can facilitate its implementation as natural food preservatives in food commodities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboua LRN, Seri-Kouassi BP, Koua HK (2010) Insecticidal activity of essential oils from three aromatic plants on Callosobruchus maculatus F. in Cote Divoire. Eur J Sci Res 39:243–250

    Google Scholar 

  • Ahmad A, Khan A, Manzoor N (2013) Reversal of efflux-medicated antifungal resistance underlies synergistic activity of two monoterpenes with fluconazole. Eur J Pharm Sci 48(1–2):80–86. https://doi.org/10.1016/j.ejps.2012.09.016

    Article  CAS  PubMed  Google Scholar 

  • Albanese AA, Elissondo MC, Gende L, Eguaras M, Denegri MG (2009) Echinococcus granulosus: in vitro efficacy of Rosmarinus officinalis essential oil on protoscoleces. IntJ Essen Oil Ther 3:69–75

    Google Scholar 

  • Ankri S, Mirelman D (1999) Antimicrobial properties of allicin from garlic. Microbes Infect 1:125–129

    Article  CAS  PubMed  Google Scholar 

  • Antunes MDC, Cavaco AM (2010) The use of essential oils for postharvest decay control. A review. Flavour Fragr J 25:351–366

    Article  CAS  Google Scholar 

  • Baser KHC, Demirci F (2011) Essential oils. In: Kirk-Othmer encyclopedia of chemical technology, 4th edn. Wiley, Chichester, pp 1–37

    Google Scholar 

  • Behal K (1991) Evaluation of some green plants against fungal and pulse beetles causing deterioration of Cicer arietinum L. during storage. Ph.D. thesis Kanpur University, Kanpur

    Google Scholar 

  • Bekele J, Obeng-Ofori D, Hassanalli A (1995) Products derived from the leaves of Ocimum kilimandscharicum (Labiatae) as post-harvest grain protectants against the infestation of three major stored product insect pests. Bull Entomol Res 85:361–367

    Article  Google Scholar 

  • Caballero B, Trugo LC, Finglas PM (2003) Encyclopedia of food sciences and nutrition. Academic Press, Amsterdam

    Google Scholar 

  • Campolo O, Giunti G, Russo A, Palmeri V, Zappala L (2018) Essential oils in stored product insect pest control. J Food Qual. https://doi.org/10.1155/2018/6906105

  • Chen Z, Guo S, Cao J, Pang X, Geng Z, Wang Y, Zhang Z, Du S (2018) Insecticidal and repellent activity of essential oil from Amomum villosum Lour. and its main compounds against two stored-product insects. Int J Food Prop 21(1):2265–2275

    Article  CAS  Google Scholar 

  • Combrinck S, Regnier T, Kamatou GPP (2011) In vitro activity of eighteen essential oils and some major components against common postharvest fungal pathogens of fruit. Ind Crop Prod 33:344–349

    Article  CAS  Google Scholar 

  • Dawit KZ, Bekelle J (2010) Evaluation of orange peel Citrus sinensis (L.) as a source of repellent, toxicant and protectant against Zabrotes subfasciatus (Coleoptera: Bruchidae). C.N.C.S. Makelle University 2(1):61–75

    Google Scholar 

  • De M, De AK, Banerjee AB (1999) Antimicrobial screening of some Indian spices. Phytother Res 13:616–618

    Article  CAS  PubMed  Google Scholar 

  • De Oliveira TLC, De Araujo SR, Ramos EM, Das Gracas Cardoso M, Alves E, Piccoli RH (2011) Antimicrobial activity of Satureja montana L. essential oil against Clostridium perfringens type A inoculated in mortadella-type sausages formulated with different levels of sodium nitrite. Int J Food Microbiol 144:546–555

    Article  PubMed  CAS  Google Scholar 

  • Delaquis PJ, Stanich K, Girard B, Mazza G (2002) Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils. Int J Food Microbiol 74:101–109

    Article  CAS  PubMed  Google Scholar 

  • Demuner AJ, Barbosa LCA, Magalhaes CG, Silva CJD, Maltha CRA, Pinheiro AL (2011) Seasonal variation in the chemical composition and antimicrobial activity of volatile oils of three species of Leptospermum (Myrtaceae) Grown in Brazil. Molecules 26:1181–1191

    Article  CAS  Google Scholar 

  • Devi R, Kaur T, Kour D, Rana KL, Yadav A, Yadav AN (2020) Beneficial fungal communities from different habitats and their roles in plant-growth promotion and soil health. Microb Biosyst 5:21–47

    Article  Google Scholar 

  • Dimetry NZ, Barakata AA, El-Metwaly HE, Risha EME, Abdel Salam AME (2004) Assessment of damage and losses in some medicinal plants by the cigarette beetle (Lasioderma serricorne (F.)). Bull Nat Res Cent Egypt 29:325–333

    Google Scholar 

  • Djenane D, Yanguela J, Montanes L, Djerbal M, Roncales P (2011) Antimicrobial activity of Pistacia lentiscus and Satureja montana essential oils against Listeria monocytogenes CECT 935 using laboratory media: efficacy and synergistic potential in minced beef. Food Control 22:1046–1053

    Article  CAS  Google Scholar 

  • Du Plooy W, Regnier T, Combrinck S (2009) Essential oil amended coatings as alternatives to synthetic fungicides in citrus postharvest management. Postharvest Biol Tec 53:117–122

    Article  CAS  Google Scholar 

  • El-Sabrout A, Zahran HE, Abdelgaleil S (2018) Effects of essential oils on growth, feeding and food utilization of Spodoptera littoralis larvae. J Entomol 15:36–46

    Article  CAS  Google Scholar 

  • Erler F (2005) Fumigant activity of six monoterpenoids from aromatic plants in Turkey against the two stored-product pests confused flour beetle, Tribolium confusum and Mediterranean flour moth, Ephestia kuehniella. J Plant Dis Protect 112:602–611

    Article  Google Scholar 

  • Espina L, Somolinos M, Loreen S, Conchello P, Garcia D, Pageen R (2010) Chemical composition of commercial Citrus fruit essential oils and evaluation of their antimicrobial activity acting alone or in combined processes. Food Control 22:896–902

    Article  CAS  Google Scholar 

  • Essam E (2001) Insecticidal activity of essential oils: octopaminergic sites of action. Comp. Biochem Phys C 130:325–337

    Google Scholar 

  • Fernandez-Cruz ML, Mansilla ML, Tadeo JL (2010) Mycotoxins in fruits and their processed products: analysis, occurrence and health implications. J Adv Res 15:7532–7546

    Google Scholar 

  • Fraenkel GS (1959) The raison d’etre of secondary plant substances. Science 129:1466–1470

    Article  CAS  PubMed  Google Scholar 

  • Gachango E, Kirk W, Schafer R, Wharton P (2012) Evaluation and comparison of biocontrol and conventional fungicides for control of postharvest potato tuber diseases. Biol Control 63:15–120

    Article  CAS  Google Scholar 

  • Gao C, Tian C, Lu Y, Xu J, Luo J, Guo X (2011) Essential oil composition and antimicrobial activity of Sphallerocarpus gracilis seeds against selected food-related bacteria. Food Control 22:517–522

    Article  CAS  Google Scholar 

  • Gatto MA, Ippolito A, Linsalata V, Cascarano NA, Nigro F, Vanadia S, Di Venere D (2011) Activity of extracts from wild edible herbs against postharvest fungal diseases of fruit and vegetables. Postharvest Biol Tec 61:72–82

    Article  Google Scholar 

  • Gautam SS, Navneet KS, Chauhan R (2015) Antimicrobial efficacy of Althaea officinalis Linn. Seed extracts and essential oil against respiratory tract pathogens. J Appl Pharm 5(9):115–119

    CAS  Google Scholar 

  • George DR, Smith TJ, Shiel RS, Sparagano OAE, Guy JH (2009) Mode of action and variability in efficacy of plant essential oils showing toxicity against the poultry red mite, Dermanyssus gallinae. Vet Parasitol 161:276–282

    Article  CAS  PubMed  Google Scholar 

  • Haider SZ, Tiwari SC, Sah S, Mohan M (2011) Antimicrobial activities of essential oils from different populations of Tanacetum nubigenum Wallich ex. DC. and Tanacetum dolichophyllum (Kitam.) Kitam. In Uttarakhand (India). Med Plants 3(4):319–321

    Google Scholar 

  • Hammer KA, Carson CF, Riley TV (1999) Antimicrobial activity of essential oils and other plant extracts. J Appl Microbiol 86:985–990

    Article  CAS  PubMed  Google Scholar 

  • Harborne JB (1993) Introduction to ecological biochemistry, 4th edn. Academic Press, Cambridge

    Google Scholar 

  • Hernadez-Carlos B, Gamboa-Angulo M (2019) Insecticidal and nematicidal contributions of Mexican flora in the search for safer biopesticides. Molecules 24(5):897. https://doi.org/10.3390/molecules24050897

    Article  CAS  Google Scholar 

  • Ho SH, Koh L, Ma Y, Huang Y, Sim KY (1996) The oil of garlic, Allium satiuum L. (Amaryllidaceae), as a potential grain protectant against Tribolium castaneum (Herbst) and Sitophilus zeamais Motsch. Postharvest Biol Tec 9:41–48

    Article  CAS  Google Scholar 

  • Huang Y, Lam SL, Ho SH (2000) Bioactivities of essential oils from Elletaria cardamomum (L.) to Sitophilus zeamais Motschulsky and Tribolium castaneum (Herbst). J Stored Prod Res 36:107–117

    Article  CAS  Google Scholar 

  • Hyldgaard M, Mygind T, Meyer RL (2012) Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Front Microbiol 3:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Ibrahim S (2019) Essential oil nanoformulations as a novel method for insect pest control in horticulture. IntechOpen. https://doi.org/10.5772/intechopen.80747

  • Jing L, Lei Z, Li L, Xie R, Xi W, Guan Y, Sumner LW, Zhou Z (2014) Antifungal activity of Citrus essential oils. J Agric Food Chem 62(14):3011–3033

    Article  CAS  PubMed  Google Scholar 

  • Kalemba D, Kunicka A (2003) Antibacterial and antifungal properties of essential oils. Curr Med Chem 10:813–829

    Article  CAS  PubMed  Google Scholar 

  • Keita SM, Vincent C, Schmidt JP, Arnason JT, Belanger A (2001) Efficacy of essential oil of Ocimum basilicum L. and O. gratissimum L. applied as an insecticidal fumigant and powder to control Callosobruchus maculatus (Fab.) (Coleoptera: Bruchidae). J Stored Prod Res 37:339–349

    Article  CAS  PubMed  Google Scholar 

  • Ketoh GK, Koumaglo HK, Glitho IA, Huignard J (2006) Comparative effects of Cymbopogon schoenanthus essential oil and piperitone on Callosobruchus maculatus development. Fitoterapia 77:506–510

    Article  CAS  PubMed  Google Scholar 

  • Kim SI, Roh JY, Kim DH, Lee HS, Ahn YJ (2003) Insecticidal activities of aromatic plant extracts and essential oils against Sitophilus oryzae and Callosobruchus chinensis. J Stored Prod Res 39:293–303

    Article  CAS  Google Scholar 

  • Ko K, Waraporn J, Angsumarn C (2009) Repellency, fumigant and contact toxicities of Litsea cubeba (Lour.) Persoon against Sitophilus zeamais Motschulsky and Tribolium castaneum (Herbst). Kasetsart J Nat Sci 43:56–63

    CAS  Google Scholar 

  • Kumar A, Negi N, Haider SZ, Negi DS (2014) Composition and efficacy of Zanthoxylum alatum essential oils and extracts against Spodoptera litura. Chem Nat Compd 50:920–923

    Article  CAS  Google Scholar 

  • Kumar R, Kumar A, Prasad CS, Dubey NK, Samant R (2008) Insecticidal activity Aegle marmelos (L.) Correa essential oil against four stored grain insect pests. Int J Food Saf 10:39–49

    Google Scholar 

  • Lee BH, Annis PC, Tumaalii F, Choi WS (2004) Fumigant toxicity of essential oils from the Myrtaceae family and 1,8-cineole against 3 major stored-grain insects. J Stored Prod Res 40:553–564

    Article  CAS  Google Scholar 

  • Liu ZL, Ho SH (1999) Bioactivity of the essential oil extracted from Evodia rutaecarpa Hook F. et Thomas against the grain storage insects, Sitophilus zeamais Motsch and Tribolium castaneum (Herbst). J Stored Prod Res 35:317–328

    Article  Google Scholar 

  • Logrieco A, Bottalico A, Mule G, Moretti A, Perrone G (2003) Epidemiology of toxigenic fungi and their associated mycotoxins for some Mediterranean crops. Eur J Plant Pathol 109:645–667

    Article  CAS  Google Scholar 

  • Maggiore MA, Albanese AA, Gende LB, Eguaras MJ, Denegri GM, Elissondo MC (2012) Anthelmintic effect of Mentha spp. essential oils on Echinococcus granulosus protoscoleces and metacestodes. Parasitol Res 110:1103–1112

    Article  PubMed  Google Scholar 

  • Mahilrajan S, Nandakumar J, Kailayalingam R, Manoharan AN, SriVijeindran S (2014) Screening the antifungal activity of essential oils against decay fungi from palmyrah leaf handicrafts. Biol Res 47:35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mann RS, Kaufman PE (2012) Natural product pesticides: their development, delivery and use against insect vectors. Mini Rev Org Chem 9:185–202

    Article  CAS  Google Scholar 

  • Martinez-Romero D, Serrano M, Bailen G, Guillen F, Zapata PJ, Valverde JM, Castillo S, Fuetes M, Valero D (2008) The use of a natural fungicide as an alternative to preharvest synthetic fungicide treatments to control lettuce deterioration during postharvest storage. Postharvest Biol Tec 47:54–60

    Article  CAS  Google Scholar 

  • Mikhaiel AA (2011) Potential of some volatile oils in protecting packages of irradiated wheat flour against Ephestia kuehniella and Tribolium castaneum. J Stored Prod Res 47(4):357–364

    Article  CAS  Google Scholar 

  • Mikolo B, Massamba D, Matos L, Bani G, Maloumbi MG, Glitho IA, Lenga A, Chalchat JC, Miller T (2009) Toxicity and repellent activity of essential oil from Waya (Plectranthus grandifolius Handel-Mazzetti) against Callosobruchus maculatus F. (Coleoptera: Bruchidae). Biopestic Int 5:52–59

    Google Scholar 

  • Moazeni M, Saharkhiz MJ, Hosseini AA (2012) In vitro lethal effect of ajowan (Trachyspermum ammi L.) essential oil on hydatid cyst protoscoleces. Vet Parasitol 187:203–208

    Article  CAS  PubMed  Google Scholar 

  • Mohan M, Haider SZ, Andola HC, Purohit VK (2011) Essential oils as green pesticides: for sustainable agriculture. Res J Pharm Biol Chem Sci 2:100

    Google Scholar 

  • Mohan M, Haider SZ, Sharma A, Seth R, Sharma M (2012) Antimicrobial activity and composition of the volatiles of Cinnamomum tamala Nees. and Murraya koenigii (L.) Spreng from Uttarakhand (India). Asian Pac J Trop Dis 2:S324–S327

    Article  CAS  Google Scholar 

  • Muthaiyan A, Martin EM, Natesan S, Crandall PG, Wilkinson BJ, Ricke SC (2012) Antimicrobial effect and mode of action of terpeneless cold-pressed Valencia orange essential oil on methicillin-resistant Staphylococcus aureus. J Appl Microbiol 112:1020–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagmo TLS, Goudoum A, Ngassoum MB, Mapongmetsem LG, Malaisse F, Hance T (2007) Chronic toxicity of essential oils of three local aromatic plants towards Sitophilus zeamais Motsch (Coleoptera: Curculionidae). Afr J Agric Res 2:164–167

    Google Scholar 

  • Nannapaneni R, Chalova VI, Crandall PG, Ricke SC, Johnson MG, Bryan CAO (2009) Campylobacter and Arcobacter species sensitivity to commercial orange oil fractions. Int J Food Microbiol 129:43–49

    Article  CAS  PubMed  Google Scholar 

  • Nazzaro F, Fratianni F, Coppola R, De Feo V (2017) Essential oils and antifungal activity. Pharmaceuticals 10:86. https://doi.org/10.3390/ph10040086

    Article  CAS  PubMed Central  Google Scholar 

  • Negahban M, Moharramipour S, Sefidkon F (2007) Fumigant toxicity of essential oil from Artemisia sieberi Besser against three stored product insects. J Stored Prod Res 43:123–128

    Article  CAS  Google Scholar 

  • Nguefack J, Leth V, Amvam Zollo PH, Mathur SB (2004) Evaluation of five essential oils from aromatic plants of Cameroon for controlling food spoilage and mycotoxin producing fungi. Int J Food Microbiol 94:329–334

    Article  CAS  PubMed  Google Scholar 

  • Olonisakin AM, Oladimeji O, Lajide L (2007) Composition and antibacterial activity of steam distilled oils of Xylopia aethiopica and Syzygium aromaticum. J Eng Appl Sci 2:236–240

    CAS  Google Scholar 

  • Paibon W, Yimnoi CA, Tembab N, Boonlue W, Jampachaisri K, Nuengchamnong N, Waranuch N, Ingkaninan K (2011) Comparison and evaluation of volatile oils from three different extraction methods for some Thai fragrant flowers. Int J Cosmet Sci 33:150–156

    Article  CAS  PubMed  Google Scholar 

  • Pandey AK, Mohan M, Singh P, Tripathi NN (2015) Chemical composition, antioxidant and antimicrobial activities of the essential oil of Nepeta hindostana (Roth) Haines from India. Rec Nat Prod 9:224–233

    Google Scholar 

  • Panizzi L, Flamini G, Cioni PL, Morelli I (1993) Composition and antimicrobial properties of essential oils of four Mediterranean lamiaceae. J Ethnopharmacol 39:167–170

    Article  CAS  PubMed  Google Scholar 

  • Papachristos DP, Karamanoli KI, Stamopoulos DC, Menkissoglu-Spiroudi U (2004) The relationship between the chemical composition of three essential oils and their insecticidal activity against Acanthoscelides obtectus (Say). Pest Manag Sci 60(5):514–520

    Article  CAS  PubMed  Google Scholar 

  • Rahman MM, Schmidt GH (1999) Effect of Acorus calamus (L.) (Araceae) essential oil vapours from various origins on Callosobruchus phaseoli (Gyllenhal) (Coleoptera: Bruchidae). J Stored Prod Res 35:285–295

    Article  CAS  Google Scholar 

  • Raja N, Albert S, Ignacimuthu S, Dorn SE (2001) Effect of plant volatile oils in protecting stored cowpea Vigna unguiculata (L.) walpers against Callosobruchus maculates (F.) (Coleoptera: Bruchidae) infection. J Stored Prod Res 37:127–132

    Article  CAS  PubMed  Google Scholar 

  • Rajendran S, Sriranjini V (2008) Plant products as fumigant for stored-product insect control. J Stored Prod Res 44:126–135

    Article  CAS  Google Scholar 

  • Rammanee K, Hongpattarakere T (2011) Effects of tropical citrus essential oils on growth, aflatoxin production, and ultrastructure alterations of Aspergillus flavus and Aspergillus parasiticus. Food Bioprocess Tech 4:1050–1059

    Article  CAS  Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2020a) New and future developments in microbial biotechnology and bioengineering: trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam

    Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2020b) New and future developments in microbial biotechnology and bioengineering: trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Amsterdam

    Google Scholar 

  • Ray DP, Wahi S, Dureja P, Singh RP (2000) The essential oils extracted from the flowers of T. erecta have been effective repellent against insects. Indian Perfumer 44:267–270

    Google Scholar 

  • Risha EM, El-Nahal AKM, Schmidt GH (1990) Toxicity of vapours of Acorusclamus L. oil to immature stage of some stored product Coleoptera. J Stored Prod Res 26:133–137

    Article  Google Scholar 

  • Roller S (2003) Natural antimicrobials for the minimal processing of foods. Woodhead Publishing, Limited, Cambridge

    Book  Google Scholar 

  • Salunke BK, Kotkar HM, Mendki PS, Upasani SM, Maheshwari VL (2005) Efficacy of flavanoids in controlling Callosobruchus chinensis (L.) (Coleoptera: Bruchidae), a post-harvest pest of grain legumes. Crop Prot 24:888–893

    Article  CAS  Google Scholar 

  • Sanchez E, Garcia S, Heredia N (2010) Extracts of edible and medicinal plants damage membranes of Vibrio cholerae. Appl Environ Microbiol 76:6888–6894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schnitzler P, Astani A, Reichling J (2011) Screening for antiviral activities of isolated compounds from essential oils. Evid Based Complement Alternat Med. https://doi.org/10.1093/ecam/nep187

  • Sharma N, Tiwari R, Srivastava MP (2013) Zingiber officinale Roscoe. Oil: a preservative of stored commodities against storage mycoflora. IntJCurrMicrobiolApplSci 2(7):123–134

    Google Scholar 

  • Shukla RM, Ghand G, Saini ML (1989) Effect of Malathion resistance on tolerance to various environmental stresses in rust-red flour beetle (Tribolium castaneum). Indian J Agr Sci 59:778–780

    Google Scholar 

  • Sighamony S, Anees I, Chandrakala TS, Osmani Z (1986) Efficacy of certain indigenous plant products as grain protectants against Sitophilus oryzae (L.) and Rhyzopertha dominica (F.). J Stored Prod Res 22:21–23

    Article  Google Scholar 

  • Silva F, Ferreira S, Duarte A, Mendonca DI, Domingues FC (2011) Antifungal activity of Coriandrum sativum essential oil, its mode of action against Candida species and potential synergism with amphotericin B. Phytomedicine 19:42–47

    Article  CAS  PubMed  Google Scholar 

  • Singh C, Tiwari S, Singh JS, Yadav AN (2020) Microbes in agriculture and environmental development. CRC Press, Boca Raton

    Book  Google Scholar 

  • Singh J, Yadav AN (2020) Natural bioactive products in sustainable agriculture. Springer, Singapore

    Book  Google Scholar 

  • Singh P, Pandey AK, Tripathi NN (2012) Essential oils: a renewable source for the management of stored product insects-a review. Agric Rev 33:226–236

    Google Scholar 

  • Stamopoulos DC, Damos P, Karagianidou G (2007) Bioactivity of five monoterpenoid vapours to Tribolium confusum(du Val) (Coleoptera: Tenebrionidae). J Stored Prod Res 43:571–577

    Article  CAS  Google Scholar 

  • Taghizadeh-Saroukolai A, Moharramipour S, Meshkatalsadat MH (2010) Insecticidal properties of Thymus persicus essential oil against Tribolium castaneum and Sitophilus oryzae. J Pest Sci 83:3–8

    Article  Google Scholar 

  • Tajkarimi MM, Ibrahim SA, Cliver DO (2010) Antimicrobial herb and spice compounds in food. Food Control 21:1199–1218

    Article  CAS  Google Scholar 

  • Tapondjou AL, Alder C, Fontem DA, Bouda H, Reichmuth C (2005) Bioactivities of cymol and essential oils of Cupressus sempervirens and Eucalyptus saligna against Sitophilus zeamais Motschulsky and Tribolium confusum du Val. J Stored Prod Res 41:91–102

    Article  CAS  Google Scholar 

  • Thakur N, Kaur S, Tomar P, Thakur S, Yadav AN (2020) Microbial biopesticides: current status and advancement for sustainable agriculture and environment. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 243–282. https://doi.org/10.1016/B978-0-12-820526-6.00016-6

    Chapter  Google Scholar 

  • Tiwari R, Dixit V, Bahal K (1998) Insect repellent activity of the essential oil of Cinnamomum zeylanicum bark. Ind Perf 42:68–72

    Google Scholar 

  • Tiwari TN, Chansouria JPN, Dubey NK (2003) Antimycotic potency of some essential oils in the treatment of induced dermatomycosis of an experimental animal. Pharm Biol 41(5):351–356

    Article  CAS  Google Scholar 

  • Tongnuanchan P, Benjakul S (2014) Essential oils: extraction, bioactivities, and their uses for food preservation. J Food Sci 79(7):1231–1249

    Article  CAS  Google Scholar 

  • Tripathi AK, Prajapati V, Aggarwal KK, Kumar S (2001) Toxicity, feeding deterrence, and effect of activity of 1,8-cineole from Artemisia annua on progeny production of Tribolium castaneum (Coleoptera: Tenebrionidae). JEconEntomol 94:979–983

    CAS  Google Scholar 

  • Tripathi AK, Prajapati V, Kumar S (2003) Bioactivities of l- carvon, d-carvon and dihydrocarvon towards three stored product beetles. J Stored Prod Res 96:1594–1601

    CAS  Google Scholar 

  • Tripathi NN, Kumar N (2007) Putranjiva roxburghii oil, a potential herbal preservative for peanuts during storage. J Stored Prod Res 43:435–442

    Article  CAS  Google Scholar 

  • Tserennadmid R, Tako M, Galgoczy L, Papp T, Pesti M, Vagvolgyi C, Almassy K, Krisch J (2011) Antiyeast activities of some essential oils in growth medium, fruit juices and milk. Int J Food Microbiol 144:480–486

    Article  CAS  PubMed  Google Scholar 

  • Vitoratos A, Bilalis D, Karkanis A, Efthimiadou A (2013) Antifungal activity of plant essential oils against Botrytiscinerea, Penicillium italicum and Penicillium digitatum. Not Bot Horti Agrobo 41(1):86–92

    Article  Google Scholar 

  • Yadav AN (2020) Recent trends in mycological research, volume 1: agricultural and medical perspective. Springer, Cham

    Google Scholar 

  • Yadav AN, Mishra S, Kour D, Yadav N, Kumar A (2020a) Agriculturally important fungi for sustainable agriculture, volume 1: perspective for diversity and crop productivity. Springer International Publishing, Cham

    Book  Google Scholar 

  • Yadav AN, Mishra S, Kour D, Yadav N, Kumar A (2020b) Agriculturally important fungi for sustainable agriculture, volume 2: functional annotation for crop protection. Springer International Publishing, Cham

    Book  Google Scholar 

  • Yadav AN, Singh J, Singh C, Yadav N (2020c) Current trends in microbial biotechnology for sustainable agriculture. Springer, Singapore

    Google Scholar 

  • Zain ME (2011) Impact of mycotoxins on humans and animals. J Saudi Chem Soc 15:129–144

    Article  CAS  Google Scholar 

  • Zeng WC, Zhu RX, Jia LR, Gao H, Zheng Y, Sun Q (2011) Chemical composition, antimicrobial and antioxidant activities of essential oil from Gnaphlium affine. Food Chem Toxicol 49:1322–1328

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohan, M., Gautam, S.S., Haider, S.Z., Sen, N., Gupta, S., Singh, P. (2021). Preservative Efficacy of Essential Oils Against Postharvested Fungi and Insects of Food Commodities – A Prospect to Go Green. In: Yadav, A.N. (eds) Recent Trends in Mycological Research. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-68260-6_16

Download citation

Publish with us

Policies and ethics