Skip to main content

Abstract

Anthropogenic climate change is causing the Arctic and Subarctic to warm faster than lower latitudes. Arthropods comprise the majority of animal species and are especially sensitive to abiotic environmental changes. In this chapter we review and discuss impacts of climate change on arthropods, including extinctions and extirpations, population declines, and range shifts. Despite a rapidly growing number of studies on these issues, for arthropods, the size of the problem is such that for most important questions we have only incomplete answers and enormous data gaps remain, particularly in the Arctic and Subarctic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barber VA, Juday GP, Finney BP (2000) Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress. Nature 405:668–673

    Article  CAS  PubMed  Google Scholar 

  • Barnosky AD, Matzke N, Tomiya S, Wogan GO, Swartz B, Quental TB, Marshall C, McGuire JL, Lindsey EL, Maguire KC, Mersey B (2011) Has the Earth’s sixth mass extinction already arrived? Nature 471(7336):51–57

    Article  CAS  PubMed  Google Scholar 

  • Berg E (2015) Warm summers prepare for spruce bark beetle return. USFWS Kenai National Wildlife Refuge Notebook 17(37):71–72

    Google Scholar 

  • Berg EE, Henry JD, Fastie CL, De Volder AD, Matsuoka SM (2006) Spruce beetle outbreaks on the Kenai Peninsula, Alaska, and Kluane National Park and Reserve, Yukon Territory: relationship to summer temperatures and regional differences in disturbance regimes. For Ecol Manag 227:219–232. https://doi.org/10.1016/j.foreco.2006.02.038

    Article  Google Scholar 

  • Bohlen PJ, Scheu S, Hale CM, McLean SM, Groffman PM, Parkinson D (2004) Non-native invasive earthworms as agents of change in northern temperate forests. Front Ecol Environ 2:427–435. https://doi.org/10.1890/1540-9295(2004)002[0427:NIEAAO]2.0.CO;2

    Article  Google Scholar 

  • Bonan G (1992) A simulation analysis of environmental factors and ecological processes in north American boreal forests. In: Shugart HH, Leemans R, Bonan GB (eds) A systems analysis of the global boreal forest. Cambridge University Press, New York. https://doi.org/10.1017/cbo9780511565489.018

    Chapter  Google Scholar 

  • Booysen M, Sikes D, Bowser M, Andrews R (2018) Earthworms (Oligochaeta: Lumbricidae) of interior Alaska. Biodivers Data J 6:e27427. https://doi.org/10.3897/BDJ.6.e27427

    Article  Google Scholar 

  • Bousquet Y (ed) (1991) Checklist of beetles of Canada and Alaska. Agriculture Canada, Ottawa. vi + 430 pp.

    Google Scholar 

  • Bousquet Y, Bouchard P, Davies AE, Sikes DS (2013) Checklist of beetles (Coleoptera) of Canada and Alaska. Second edition. Pensoft Series Faunistica No 109, Sofia-Bulgaria, 402 pp. ISSN 1312-0174, ISBN 978-954-642-704-5

    Google Scholar 

  • Bowden JJ, Hansen OL, Olsen K, Schmidt NM, Høye TT (2018) Drivers of inter-annual variation and long-term change in high-Arctic spider species abundances. Polar Biol 41(8):1635–1649. https://doi.org/10.1007/s00300-018-2351-0

    Article  Google Scholar 

  • Bowler DE, Heldbjerg H, Fox AD, de Jong M, Böhning-Gaese K (2019) Long-term declines of European insectivorous bird populations and potential causes. Conserv Biol 33(5):1120–1130

    Article  PubMed  Google Scholar 

  • Breed GA, Stichter S, Crone EE (2013) Climate-driven changes in northeastern US butterfly communities. Nat Clim Chang 3(2):142–145

    Article  Google Scholar 

  • Cardoso P, Barton PS, Birkhofer K, Chichorro F, Deacon C, Fartmann T, Fukushima CS, Gaigher R, Habel JC, Hallmann CA, Hill MJ (2020) Scientists' warning to humanity on insect extinctions. Biol Conserv 242:108426. https://doi.org/10.1016/j.biocon.2020.108426

    Article  Google Scholar 

  • Cauvy-Fraunié S, Dangles O (2019) A global synthesis of biodiversity responses to glacier retreat. Nat Ecol Evol 3(12):1675–1685

    Article  PubMed  Google Scholar 

  • Ceballos G, Ehrlich PR, Barnosky AD, García A, Pringle RM, Palmer TM (2015) Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci Adv 1(5):E1400253

    Article  PubMed  PubMed Central  Google Scholar 

  • Ceballos G, Ehrlich PR, Dirzo R (2017) Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc Natl Acad Sci 114(30):E6089–E6096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapin FS, McGuire AD, Ruess RW, Hollingsworth TN, Mack MC, Johnstone JF, Kasischke ES, Euskirchen ES, Jones JB, Jorgenson MT, Kielland K (2010) Resilience of Alaska’s boreal forest to climatic change. Can J For Res 40(7):1360–1370

    Article  Google Scholar 

  • Chapman SC, Murphy EJ, Stainforth DA, Watkins NW (2020) Trends in winter warm spells in the central England temperature record. J Appl Meteorol Climatol 59(6):1069–1076

    Article  Google Scholar 

  • Chen I-C, Hill JK, Ohlemuller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333(6045):1024–1026. https://doi.org/10.1126/science.1206432

    Article  CAS  PubMed  Google Scholar 

  • Crossley MS, Meier AR, Baldwin EM, Berry LL, Crenshaw LC, Hartman GL, Lagos-Kutz D, Nichols DH, Patel K, Varriano S, Snyder WE (2020) No net insect abundance and diversity declines across US long term ecological research sites. Nat Ecol Evol 4:1368–1376. https://doi.org/10.1038/s41559-020-1269-4

    Article  PubMed  Google Scholar 

  • Cudmore TJ, Björklund N, Carroll AL, Staffan Lindgren B (2010) Climate change and range expansion of an aggressive bark beetle: evidence of higher beetle reproduction in naïve host tree populations. J Appl Ecol 47(5):1036–1043

    Article  Google Scholar 

  • Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, Martin PR (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci 105(18):6668–6672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dial RJ, Berg EE, Timm K, McMahon A, Geck J (2007) Changes in the alpine forest-tundra ecotone commensurate with recent warming in southcentral Alaska: evidence from orthophotos and field plots: tree line changes in southcentral Alaska. J Geophys Res Biogeo 112(G4). https://doi.org/10.1029/2007JG000453

  • Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJB, Collen B (2014) Defaunation in the Anthropocene. Science 345:401–406

    Article  CAS  PubMed  Google Scholar 

  • Dunn RR, Harris NC, Colwell RK, Koh LP, Sodhi NS (2009) The sixth mass coextinction: are most endangered species parasites and mutualists? Proc R Soc B Biol Sci 276(1670):3037–3045

    Article  Google Scholar 

  • Durden LA, Beckmen KB, Gerlach RF (2016) New records of ticks (Acari: Ixodidae) from dogs, cats, humans, and some wild vertebrates in Alaska: invasion potential. J Med Entomol 53(6):1391–1395

    Article  PubMed  Google Scholar 

  • Eldredge N (1992) Systematics, ecology, and the biodiversity crisis. Columbia University Press, New York

    Google Scholar 

  • Forrest JR (2016) Complex responses of insect phenology to climate change. Curr Opin Insect Sci 17:49–54

    Article  PubMed  Google Scholar 

  • GBIF.org (08 Oct 2020) GBIF occurrence download. https://doi.org/10.15468/dl.xbe734

  • Gillespie MAK, Alfredsson M, Barrio IC, Bowden JJ, Convey P, Culler LE, Coulson SJ, Krogh PH, Koltz AM, Koponen S, Loboda S, Marusik Y, Sandström JP, Sikes DS, Høye TT (2019) Status and trends of terrestrial arthropod abundance and diversity in the North Atlantic region of the Arctic. Ambio 49:718–731. https://doi.org/10.1007/s13280-019-01162-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Hale CM, Frelich LE, Reich PB (2006) Changes in hardwood forest understory plant communities in response to European earthworm invasions. Ecology 87:1637–1649. https://doi.org/10.1890/0012-9658(2006)87[1637:CIHFUP]2.0.CO;2

    Article  PubMed  Google Scholar 

  • Hallmann CA, Sorg M, Jongejans E, Siepel H, Hofland N et al (2017) More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS One 12(10):e0185809

    Article  PubMed  PubMed Central  Google Scholar 

  • Harris JE, Rodenhouse NL, Holmes RT (2019) Decline in beetle abundance and diversity in an intact temperate forest linked to climate warming. Biol Conserv 240:108219

    Article  Google Scholar 

  • Harvey JA, Heinen R, Gols R, Thakur MP (2020) Climate change-mediated temperature extremes and insects: from outbreaks to breakdowns. Glob Chang Biol 26(12):6685–6701. https://doi.org/10.1111/gcb.15377

    Article  PubMed  PubMed Central  Google Scholar 

  • Helbig M, Pappas C, Sonnentag O (2016) Permafrost thaw and wildfire: equally important drivers of boreal tree cover changes in the Taiga Plains, Canada. Geophys Res Lett 43(4):1598–1606

    Article  Google Scholar 

  • Hodkinson ID (2013) Terrestrial and freshwater invertebrates. In: Meltofte H (ed) Arctic biodiversity assessment, status and trends in Arctic biodiversity. CAFF, Akureyri, pp 195–223

    Google Scholar 

  • Hoekman D, LeVan KE, Gibson C, Ball GE, Browne RA, Davidson RL, Erwin TL, Knisley CB, LaBonte JR, Lundgren J, Maddison DR (2017) Design for ground beetle abundance and diversity sampling within the National Ecological Observatory Network. Ecosphere 8(4):e01744

    Article  Google Scholar 

  • Hogg EH, Hurdle PA (1995) The aspen parkland in western Canada: a dry-climate analogue for the future boreal forest? Water Air Soil Pollut 82(1–2):391–400

    Article  CAS  Google Scholar 

  • Høye TT, Forchhammer MC (2008) Phenology of high-arctic arthropods: effects of climate on spatial, seasonal and inter-annual variation. Adv Ecol Res 40:299–324

    Article  Google Scholar 

  • Høye TT, Sikes DS (2013) Arctic entomology in the 21st century. Can Entomol 145:125–130. https://doi.org/10.4039/tce.2013.14

    Article  Google Scholar 

  • Høye TT, Post E, Meltofte H, Schmidt NM, Forchhammer MC (2007) Rapid advancement of spring in the high Arctic. Curr Biol 17:R449–R451

    Article  PubMed  Google Scholar 

  • Høye TT, Eskildsen A, Hansen RR, Bowden JJ, Schmidt NM, Kissling WD (2014) Phenology of high-arctic butterflies and their floral resources: species-specific responses to climate change. Curr Zool 60(2):243–251

    Article  Google Scholar 

  • Hunter MD, Kozlov MV, Itämies J, Pulliainen E, Bäck J, Kyrö EM, Niemelä P (2014) Current temporal trends in moth abundance are counter to predicted effects of climate change in an assemblage of subarctic forest moths. Glob Chang Biol 20(6):1723–1737

    Article  PubMed  Google Scholar 

  • IPCC (2014) IPCC, 2014: climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC, Geneva

    Google Scholar 

  • Janzen DH, Hallwachs W (2019) Where might be many tropical insects? Biol Conserv 233:102–108

    Article  Google Scholar 

  • Juday GP, Alix C, Grant TA III (2015) Spatial coherence and change of opposite white spruce temperature sensitivities on floodplains in Alaska confirms early-stage boreal biome shift. For Ecol Manag 350(2015):46–61. https://doi.org/10.1016/j.foreco.2015.04.016

    Article  Google Scholar 

  • Kavanaugh DH, Schoville SD (2009) A new and endemic species of Nebria Latreille (Insecta: Coleoptera: Carabidae: Nebriini), threatened by climate change in the Trinity Alps of northern California. Proc Calif Acad Sci 60(1):73–84

    Google Scholar 

  • Kelly R, Chipman ML, Higuera PE, Stefanova I, Brubaker LB, Hu FS (2013) Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years. Proc Natl Acad Sci 110(32):13055–13060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerr JT, Pindar A, Galpern P, Packer L, Potts SG, Roberts SM, Rasmont P, Schweiger O, Colla SR, Richardson LL, Wagner DL, Gall LF, Sikes DS, Pantoja A (2015) Climate change impacts on bumblebees converge across continents. Science 349(6244):177–180

    Article  CAS  PubMed  Google Scholar 

  • Langor DW, DeHaas LJ, Foottit RG (2008) Diversity of non-nativeterrestrial arthropods on woody plants in Canada. In: Langor D, Sweeney J (eds) Ecological impacts of non-native invertebrates and Fungi on terrestrial ecosystems. Springer, Dordrecht, pp 5–19

    Google Scholar 

  • Lenoir J, Svenning JC (2015) Climate-related range shifts–a global multidimensional synthesis and new research directions. Ecography 38(1):15–28

    Article  Google Scholar 

  • Lloyd AH, Fastie CL (2003) Recent changes in treeline forest distribution and structure in interior Alaska. Écoscience 10(2):176–185. https://doi.org/10.1080/11956860.2003.11682765

    Article  Google Scholar 

  • Loboda S, Savage J, Buddle CM, Schmidt NM, Høye TT (2018) Declining diversity and abundance of high Arctic fly assemblages over two decades of rapid climate warming. Ecography 41(2):265–277

    Article  Google Scholar 

  • Møller AP (2019) Parallel declines in abundance of insects and insectivorous birds in Denmark over 22 years. Ecol Evol 9(11):6581–6587

    Article  PubMed  PubMed Central  Google Scholar 

  • Montgomery GA, Dunn RR, Fox R, Jongejans E, Leather SR, Saunders ME, Shortall CR, Tingley MW, Wagner DL (2020) Is the insect apocalypse upon us? How to find out. Biol Conserv 241:108327

    Article  Google Scholar 

  • Muhlfeld CC, Giersch JJ, Hauer FR, Pederson GT, Luikart G, Peterson DP, Downs CC, Fagre DB (2011) Climate change links fate of glaciers and an endemic alpine invertebrate. Clim Chang 106(2):337–345

    Article  Google Scholar 

  • Mullen LJ, Campbell JM, Sikes DS (2018) Taxonomic revision of the rove beetle genus Phlaeopterus Motschulsky, 1853 (Coleoptera: Staphylinidae: Omaliinae: Anthophagini). Coleopterists Bull 16:1–54. https://doi.org/10.1649/0010-065X-72.mo4.1. Patricia Vaurie Series Monograph

    Article  Google Scholar 

  • Myers-Smith IH, Forbes BC, Wilmking M, Hallinger M, Lantz T, Blok D, Tape KD, Macias-Fauria M, Sass-Klaassen U, Lévesque E, Boudreau S (2011) Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ Res Lett 6(4):045509

    Article  Google Scholar 

  • Nebel S, Mills A, McCracken J, Taylor P (2010) Declines of aerial insectivores in North America follow a geographic gradient. Avian Conserv Ecol 5(2). https://doi.org/10.5751/ACE-00391-050201

  • North American Bird Conservation Initiative (2012) The state of Canada’s birds, 2012. Environment Canada, Ottawa, ON

    Google Scholar 

  • Park T, Ganguly S, Tømmervik H, Euskirchen ES, Høgda KA, Karlsen SR, Brovkin V, Nemani RR, Myneni RB (2016) Changes in growing season duration and productivity of northern vegetation inferred from long-term remote sensing data. Environ Res Lett 11(8):084001

    Article  Google Scholar 

  • Peach DA (2019) First Record of Culex tarsalis (Diptera: Culicidae) in the Yukon. J Entomol Soc B C 115:123–125

    Google Scholar 

  • Post E, Forchhammer MC, Bret-Harte MS, Callaghan TV, Christensen TR, Elberling B, Fox AD, Gilg O, Hik DS, Høye TT, Ims RA (2009) Ecological dynamics across the Arctic associated with recent climate change. Science 325(5946):1355–1358

    Article  CAS  PubMed  Google Scholar 

  • Raven PH, Miller SE (2020) Here today, gone tomorrow. Science 370(6513):149. https://doi.org/10.1126/science.abf1185

    Article  CAS  PubMed  Google Scholar 

  • Renner SS, Zohner CM (2018) Climate change and phenological mismatch in trophic interactions among plants, insects, and vertebrates. Annu Rev Ecol Evol Syst 49:165–182

    Article  Google Scholar 

  • Reynolds JW (2015) A checklist of earthworms (Oligochaeta: Lumbricidae and Megascolecidae) in western and northern Canada. Megadrilogica 17:141–156

    Google Scholar 

  • Rioux Paquette S, Pelletier F, Garant D, Bélisle M (2014) Severe recent decrease of adult body mass in a declining insectivorous bird population. Proc R Soc B Biol Sci 281(1786):20140649

    Article  Google Scholar 

  • Sánchez-Bayo F, Wyckhuys KA (2019) Worldwide decline of the entomofauna: a review of its drivers. Biol Conserv 232:8–27

    Article  Google Scholar 

  • Scalzitti J, Strong C, Kochanski A (2016) Climate change impact on the roles of temperature and precipitation in western US snowpack variability. Geophys Res Lett 43(10):5361–5369

    Article  Google Scholar 

  • Seibold S, Gossner MM, Simons NK, Blüthgen N, Müller J, Ambarlı D, Ammer C, Bauhus J, Fischer M, Habel JC, Linsenmair KE (2019) Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574(7780):671–674

    Article  CAS  PubMed  Google Scholar 

  • Serreze MC, Walsh JE, Chapin FS, Osterkamp T, Dyugerov M, Romanovsky V, Oechel WC, Morison J, Zhang T, Barry RG (2000) Observational evidence of recent climate change in the northern high-latitude environment. Climate Change 46:159–207

    Article  Google Scholar 

  • Serreze MC, Barrett AP, Stroeve JC, Kindig DN, Holland MM (2009) The emergence of surface-based Arctic amplification. Cryosphere 3(1):11–19

    Article  Google Scholar 

  • Sikes DS (2019) Arthropods potentially associated with spruce (Picea spp.) in interior Alaska. Newslett Alaska Entomol Soc 12(1):2–5. https://doi.org/10.7299/X7RR1ZJT

    Article  Google Scholar 

  • Sikes DS, Allen RT (2016) First Alaskan records and a significant northern range extension for two species of Diplura (Diplura, Campodeidae). ZooKeys 563:147–157. https://doi.org/10.3897/zookeys.563.6404

    Article  Google Scholar 

  • Sikes DS, Bowser M, Morton JM, Bickford C, Meierotto S, Hildebrandt K (2017a) Building a DNA barcode library of Alaska’s non-marine arthropods. Genome 60:248–259. https://doi.org/10.1139/gen-2015-0203

    Article  CAS  PubMed  Google Scholar 

  • Sikes DS, Bowser M, Daly K, Høye TT, Meierotto S, Mullen L, Slowik J, Stockbridge J (2017b) The value of museums in the production, sharing, and use of entomological data to document hyperdiversity of the changing north. Arctic Sci 3:498–514. https://doi.org/10.1139/AS-2016-0038

    Article  Google Scholar 

  • Simmons BI, Balmford A, Bladon AJ, Christie AP, De Palma A, Dicks LV, Gallego-Zamorano J, Johnston A, Martin PA, Purvis A, Rocha R (2019) Worldwide insect declines: an important message, but interpret with caution. Ecol Evol 9(7):3678–3680

    Article  PubMed  PubMed Central  Google Scholar 

  • Simpson A, Eyler MC, Sikes D, Bowser M, Sellers E, Guala GF, Cannister M, Libby R, Kozlowski N (2019) A comprehensive list of non-native species established in three major regions of the United States: Version 2.0, (ver. 3.0, 2020). U.S. Geological Survey data release. https://doi.org/10.5066/P9E5K160

  • Smetana A (1986) Chionotyphlus alaskensis n. g., n. sp., a tertiary relict from unglaciated interior Alaska (Coleoptera, Staphylinidae). Nouvelle Revue d’Entomologie (N Sér) 3(2):171–187

    Google Scholar 

  • Stork NE (2018) How many species of insects and other terrestrial arthropods are there on Earth? Annu Rev Entomol 63:31–45

    Article  CAS  PubMed  Google Scholar 

  • Thomas C, Cameron A, Green R et al (2004) Extinction risk from climate change. Nature 427:145–148. https://doi.org/10.1038/nature02121

    Article  CAS  PubMed  Google Scholar 

  • Urban MC (2015) Accelerating extinction risk from climate change. Science 348(6234):571–573

    Article  CAS  PubMed  Google Scholar 

  • Wagner DL (2020) Insect declines in the Anthropocene. Annu Rev Entomol 65:457–480

    Article  CAS  PubMed  Google Scholar 

  • Warren R, Price J, Graham E, Forstenhaeusler N, VanDerWal J (2018) The projected effect on insects, vertebrates, and plants of limiting global warming to 1.5 C rather than 2 C. Science 360(6390):791–795

    Article  CAS  PubMed  Google Scholar 

  • Welti E, Joern A, Lightfoot DC, Record S, Rodenhouse N, Stanley EH, Kaspari M (2020) Meta-analyses of insect temporal trends must account for the complex sampling histories inherent to many long-term monitoring efforts. EcoEvoRxiv Preprint. https://ecoevorxiv.org/v3sr2/

  • Wepprich T, Adrion JR, Ries L, Wiedmann J, Haddad NM (2019) Butterfly abundance declines over 20 years of systematic monitoring in Ohio, USA. PLoS One 14(7):e0216270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westerhold T, Marwan N, Drury AJ, Liebrand D, Agnini C, Anagnostou E, Barnet JS, Bohaty SM, De Vleeschouwer D, Florindo F, Frederichs T (2020) An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 369(6509):1383–1387. https://doi.org/10.1126/science.aba6853

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Klimaszewski, J. et al. (2021). Effects of Global Warming on the Distribution and Diversity of Arctic and Subarctic Insects. In: A Faunal Review of Aleocharine Beetles in the Rapidly Changing Arctic and Subarctic Regions of North America (Coleoptera, Staphylinidae). Springer, Cham. https://doi.org/10.1007/978-3-030-68191-3_4

Download citation

Publish with us

Policies and ethics