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Abstract The Big Data Value (BDV) Reference Model has been developed with
input from technical experts and stakeholders along the whole big data value chain.
The BDV Reference Model may serve as a common reference framework to locate
big data technologies on the overall IT stack. It addresses the main technical
concerns and aspects to be considered for big data value systems. The BDV
Reference Model enables the mapping of existing and future data technologies
within a common framework. Within this chapter, we detail the reference model in
more detail and show how it can be used to manage a portfolio of research and
innovation projects.
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1 Introduction

The Big Data Value (BDV) Reference Model has been developed with input from
technical experts and stakeholders along the whole big data value chain. The BDV
Reference Model may serve as a common reference framework to locate big data
technologies on the overall IT stack. It addresses the main concerns and aspects to be
considered for big data value systems. Within this chapter, we detail the reference
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model in more detail and show how it can be used to manage a portfolio of research
and innovation projects. Section 2 details the Reference Model with its horizontal
and concerns. Section 3 describes the use of the Reference Model within large-scale
data projects to map projects’ technical outcomes. Finally, Sect. 4 concludes the
chapter.

2 Reference Model

An overview of the BDV Reference Model is shown in Fig. 1. It distinguishes
between two different elements. On the one hand, it describes the elements that are at
the core of the BDVA (also see Chap. “The European Big Data Value Ecosystem”);
on the other, it outlines the features that are developed in strong collaboration with
related European activities.

The BDV Reference Model has been developed by the Big Data Value Associ-
ation (BDVA), taking into account input from technical experts and stakeholders
along the whole big data value chain, as well as interactions with other related
public-private partnerships (PPPs) ( Zillner et al. 2017). The BDV Reference Model
may serve as a common reference framework to locate big data technologies on the
overall IT stack. It addresses the main concerns and aspects to be considered for big
data value systems.

The BDV Reference Model is structured into horizontal and vertical concerns.
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* Horizontal concerns cover specific aspects along the data processing chain,
starting with data collection and ingestion, and extending to data visualisation.
It should be noted that the horizontal concerns do not imply a layered architecture.
As an example, data visualisation may be applied directly to collected data (the
data management aspect) without the need for data processing and analytics.

* Vertical concerns address cross-cutting issues, which may affect all the horizontal
concerns. In addition, vertical concerns may also involve non-technical aspects.

It should be noted that the BDV Reference Model has no ambition to serve as a
technical reference architecture. However, it is compatible with such reference
architectures, most notably the emerging ISO JTC1 WG9 Big Data Reference
Architecture.

The following elements as expressed in the BDV Reference Model are elaborated
in the remainder of this section.

2.1 Horizontal Concerns

Horizontal concerns cover specific aspects of a big data system. On the one hand,
they cover the different elements of the data processing chain, starting from data
collection and ingestion up to data visualisation and user interaction. On the other
hand, they cover elements that facilitate deploying and operating big data systems,
including Cloud and HPC, as well as Edge and IoT.

2.1.1 Data Visualisation and User Interaction

This concern covers advanced visualisation approaches for improved user experi-
ence. Data visualisation plays a key role in effectively exploring and understanding
big data. Visual analytics is the science of analytical reasoning assisted by interactive
user interfaces. Data generated from data analytics processes need to be presented to
end-users via (traditional or innovative) multi-device reports and dashboards which
contain varying forms of media for the end-user, ranging from text and charts to
dynamic, 3D and possibly augmented-reality visualisations. In order for users to
quickly and correctly interpret data in multi-device reports and dashboards, carefully
designed presentations and digital visualisations are required. Interaction techniques
fuse user input and output to provide a better way for a user to perform a task.
Common tasks that allow users to gain a better understanding of big data include
scalable zooms, dynamic filtering and annotation.

When representing complex information on multi-device screens, the design
issues multiply rapidly. Complex information interfaces need to be responsive to
human needs and capacity (Raskin 2000). Knowledge workers need to be supplied
with relevant information according to the just-in-time approach. Too much infor-
mation, which cannot be efficiently searched and explored, can obscure the
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information that is most relevant. In fast-moving time-constrained environments,
knowledge workers need to be able to quickly understand the relevance and relat-
edness of information.

2.1.2 Data Analytics

This concern covers data analytics, which ranges from descriptive analytics (“What
happened and why?”) through predictive analytics (“What will happen and when?”’)
to prescriptive analytics (“What is the best course of action to take?””). The progress
of data analytics is key not only for turning big data into value but also for making it
accessible to the wider public. Data analytics will have a positive influence on all
parts of the data value chain (Cavanillas et al. 2016) and increase business oppor-
tunities through business intelligence and analytics while bringing benefits to both
society and citizens.

Data analytics is an open, emerging field, in which Europe has strong competitive
advantages and a promising business development potential. It has been estimated
that governments in Europe could save $149 billion (Manyika et al. 2011) by using
big data analytics to improve operational efficiency. Big data analytics can provide
additional value in every sector where it is applied, leading to more efficient and
accurate processes. A study by the McKinsey Global Institute placed a strong
emphasis on analytics, ranking it as the main future driver for US economic growth,
ahead of shale oil and gas productions (Lund et al. 2013).

The next generation of analytics will be required to deal with a vast amount of
information from different types of sources, with differentiated characteristics, levels
of trust and frequency of updating. Data analytics will have to provide insights into
the data in a cost-effective and economically sustainable way. On the one hand, there
is a need to create complex and fine-grained predictive models for heterogeneous
and massive datasets such as time series or graph data. On the other hand, such
models must be applied in real time to large amounts of streaming data. This ranges
from structured to unstructured data, from numerical data to micro-blogs and streams
of data. The latter is exceptionally challenging because data streams, in addition to
their volume, are very heterogeneous and highly dynamic, which also calls for
scalability and high throughput. For instance, data collection related to a disaster
area can easily occupy terabytes in binary GIS formats, and real-time data streams
can show bursts of gigabytes per minute.

In addition, an increasing number of big data applications are based on complex
models of real-world objects and systems, which are used in computation-intensive
simulations to generate new huge datasets. These can be used for iterative refine-
ments of the models, but also for providing new data analytics services which can
process extremely large datasets.
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2.1.3 Data Processing Architectures

This concern covers optimised and scalable architectures for analytics of both data-
at-rest and data-in-motion, thereby delivering low-latency real-time analytics.

The Internet of Things (IoT) is one of the key drivers of the big data phenomenon.
Initially, this phenomenon started by applying the existing architectures and tech-
nologies of big data that we categorise as data-at-rest, which is data kept in persistent
storage. In the meantime, the need for processing immense amounts of sensor data
streams has increased. This type of data-in-motion (i.e. non-persistent data processed
on the fly) has extreme requirements for low-latency and real-time processing. What
has hardly been addressed is the concept of complete processing for the combination
of data-in-motion and data-at-rest.

For the IoT domain, these capabilities are essential. They are also required for
other domains like social networks or manufacturing, where huge amounts of
streaming data are produced in addition to the available big datasets of actual and
historical data.

These capabilities will affect all layers of future big data infrastructures, ranging
from the specifications of low-level data flows with the continuous processing of
micro-messages, to sophisticated analytics algorithms. The parallel need for real-
time and large data volume capabilities is a key challenge for big data processing
architectures. Architectures to handle streams of data such as the lambda and kappa
architectures will be considered as a baseline for achieving a tighter integration of
data-in-motion with data-at-rest.

Developing the integrated processing of data-at-rest and data-in-motion in an ad
hoc fashion is of course possible, but only the design of generic, decentralised and
scalable architectural solutions will leverage their true potential. Optimised frame-
works and toolboxes allowing the best use of both data-in-motion (e.g. data streams
from sensors) and data-at-rest will leverage the dissemination of reference solutions
which are ready and easy to deploy in any economic sector. For example, proper
integration of data-in-motion with predictive models based on data-at-rest will
enable efficient, proactive processing (detection ahead of time). Architectures that
can handle heterogeneous and unstructured data are also important. When such
solutions become available to service providers, in a straightforward manner, they
will then be free to focus on the development of business models.

The capabilities of existing systems to process such data-in-motion and answer
queries in real time and for thousands of concurrent users are limited. Special-
purpose approaches based on solutions like Complex Event Processing (CEP) are
not sufficient for the challenges posed by the IoT in big data scenarios. The problem
of achieving effective and efficient processing of data streams (data-in-motion) in a
big data context is far from being solved, especially when considering the integration
with data-at-rest and breakthroughs in NoSQL databases and parallel processing
(e.g. Hadoop, Apache Spark, Apache Flink, Apache Kafka). Applications, for
instance of Artificial Intelligence, are also required to fully exploit all the capabilities
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of modern and heterogeneous hardware, including parallelism and distribution to
boost performance.

To achieve the agility demanded by real-time business and next-generation
applications, a new set of interconnected data management capabilities is required.

2.1.4 Data Protection

This concern covers privacy and anonymisation mechanisms to facilitate data
protection. This is shown related to data management and processing as there is a
strong link here, but it can also be associated with the area of cybersecurity.

Data protection and anonymisation is a major issue in the areas of big data and
data analytics. With more than 90% of today’s data having been produced in the last
2 years, a huge amount of person-specific and sensitive information from disparate
data sources, such as social networking sites, mobile phone applications and elec-
tronic medical record systems, is increasingly being collected. Analysing this wealth
and volume of data offers remarkable opportunities for data owners, but, at the same
time, requires the use of state-of-the-art data privacy solutions, as well as the
application of legal privacy regulations, to guarantee the confidentiality of
individuals who are represented in the data. Data protection, while essential in the
development of any modern information system, becomes crucial in the context of
large-scale sensitive data processing.

Recent studies on mechanisms for protecting privacy have demonstrated that
simple approaches, such as the removal or masking of the direct identifiers in a
dataset (e.g. names, social security numbers), are insufficient to guarantee privacy.
Indeed, such simple protection strategies can be easily circumvented by attackers
who possess little background knowledge about specific data subjects. Due to the
critical importance of addressing privacy issues in many business domains, the
employment of privacy-protection techniques that offer formal privacy guarantees
has become a necessity. This has paved the way for the development of privacy
models and techniques such as differential privacy, private information retrieval,
syntactic anonymity, homomorphic encryption, secure search encryption and secure
multiparty computation, among others. The maturity of these technologies varies,
with some, such as k-anonymity, more established than others. However, none of
these technologies has so far been applied to large-scale commercial data processing
tasks involving big data.

In addition to the privacy guarantees that can be offered by state-of-the-art
privacy-enhancing technologies, another important consideration concerns the abil-
ity of the data protection approaches to maintain the utility of the datasets to which
they are applied, with the goal of supporting different types of data analysis. Privacy
solutions that offer guarantees while maintaining high data utility will make privacy
technology a key enabler for the application of analytics to proprietary and poten-
tially sensitive data.

A truly modern and harmonised legal framework on data protection which has
teeth and can be enforced appropriately will ensure that stakeholders pay attention to



A Reference Model for Big Data Technologies 133

the importance of data protection. At the same time, it should enable the uptake of
big data and incentivise privacy-enhancing technologies, which could be an asset for
Europe as this is currently an underdeveloped market. In addition, users are begin-
ning to pay more attention to how their data are processed. Hence, firms operating in
the digital economy may realise that investing in privacy-enhancing technologies
could give them a competitive advantage.

2.1.5 Data Management

This concern covers principles and techniques for data management, including data
ingestion, sharing, integration, cleansing and storage. More and more data are
becoming available. This data explosion, often called a “data tsunami”, has been
triggered by the growing volumes of sensor data and social data, born out of Cyber-
Physical Systems (CPS) and Internet of Things (IoT) applications. Traditional means
for data storage and data management are no longer able to cope with the size and
speed of data delivered in heterogeneous formats and at distributed locations.

Large amounts of data are being made available in a variety of formats — ranging
from unstructured to semi-structured to structured — such as reports, Web 2.0 data,
images, sensor data, mobile data, geospatial data and multimedia data. Important
data types include numeric types, arrays and matrices, geospatial data, multimedia
data and text. A great deal of this data is created or converted and further processed
as text. Algorithms or machines are not able to process the data sources due to the
lack of explicit semantics. In Europe, text-based data resources occur in many
different languages, since customers and citizens create content in their local lan-
guage. This multilingualism of data sources means that it is often impossible to align
them using existing tools because they are generally available only in the English
language. Thus, the seamless aligning of data sources for data analysis or business
intelligence applications is hindered by the lack of language support and gaps in the
availability of appropriate resources.

Isolated and fragmented data pools are found in almost all industrial sectors. Due
to the prevalence of data silos, it is challenging to accomplish seamless integration
with and smart access to the various heterogeneous data sources. And still today,
data producers and consumers, even in the same sector, rely on different storage,
communication and thus different access mechanisms for their data. Due to the lack
of commonly agreed standards and frameworks, the migration and federation of data
between pools impose high levels of additional costs. Without a semantic interop-
erability layer being imposed upon all these different systems, the seamless align-
ment of data sources cannot be realised.

In order to ensure a valuable big data analytics outcome, the incoming data has to
be of high quality, or, at least, the quality of the data should be known to enable
appropriate judgements to be made. This requires differentiating between noise and
valuable data, and thereby being able to decide which data sources to include and
which to exclude to achieve the desired results.
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Over many years, several different application sectors have tried to develop
vertical processes for data management, including specific data format standards
and domain models. However, consistent data lifecycle management — that is, the
ability to clearly define, interoperate, openly share, access, transform, link, syndicate
and manage data — is still missing. In addition, data, information and content need to
be syndicated from data providers to data consumers while maintaining provenance,
control and source information, including IPR considerations (data provenance).
Moreover, to ensure transparent and flexible data usage, the aggregation and man-
agement of respective datasets enhanced by a controlled access mechanism through
APIs should be enabled (Data-as-a-Service).

2.1.6 Cloud and High-Performance Computing (HPC)

Efficient big data processing, data analytics and data management require the
effective use of Cloud and High-Performance Computing infrastructures to address
the computational resource and storage needs of big data systems.

Cloud Data ecosystems, promoted by the BDVA, should include strong links to
scientific research that is becoming predominantly data driven. The BDVA is in a
strong position to nurture such links as it has established strong relationships with
European big data academia. However, a lack of access, trust and reusability pre-
vents European researchers in academia and industry from gaining the full benefits
of data-driven science. Most datasets from publicly funded research are still inac-
cessible to the majority of scientists in the same discipline, not to mention other
potential users of the data, such as company R&D departments. Approximately 80%
of research data is not in a trusted repository. However, even if the data openly
appears in repositories, this is not always enough. As a current example, only 18% of
the data in open repositories is reusable.' This leads to inefficiencies and delays; in
recent surveys, the time reportedly spent by data scientists in collecting and cleaning
data sources made up 80% of their work (G. Press 2016).

In response to these challenges, the Commission has launched a large effort to
create “a European Open Science Cloud to make science more efficient and produc-
tive and let millions of researchers share and analyse research data in a trusted
environment across technologies, disciplines and borders”'. The initial outline for
the European Open Science Cloud (EOSC) was laid out in the report from the High-
Level Expert Group.” The report advised the Commission on several measures
needed to implement the governance and the financial scheme of the European
Open Science Cloud, such as being based on a federated system of existing and
emerging research (e-)infrastructures operating under light international governance
with well-defined Rules of Engagement for participation. Machine understanding of

"“Are FAIR data principles FAIR?” LIBER Webinar by Alastair Dunning, 10.03.2017.

2Realising the European Open Science Cloud, 2016, https://ec.europa.eu/research/openscience/pdf/
realising_the_european_open_science_cloud_2016.pdf
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data — based on common or widely used data standards — is required to handle the
exponential growth in publications. Attractive career paths for data experts should be
created through proper training and by applying modern reward and recognition
practices. This should help to satisfy the growing demand for data scientists working
together with substance scientists. Turning science into innovation is emphasised,
and alongside this there is a need for industry, especially SMEs and start-ups, to be
able to access the appropriate data resources.

A first phase aims at establishing a governance and business model that sets the
rules for the use of the EOSC, creating a cross-border and multi-disciplinary open
innovation environment for research data, knowledge and services, and ultimately
establishing global standards for the interoperability of scientific data.

The EU has already initiated and will go on to launch several more infrastructure
projects, such as EOSC-hub, within H2020 for implementing and piloting the
EOSC. In addition to these projects, Germany and the Netherlands, among other
countries, are promoting the GO FAIR initiative (Germany and the Netherlands
2017). The FAIR principles aim to ensure that Data and Digital Research Objects are
Findable, Accessible, Interoperable and Reusable (FAIR) (Wilkinson et al. 2016).
As science becomes increasingly data driven, making data FAIR will create real
added value since it allows for combining datasets across disciplines and across
borders to address pressing societal challenges that are mostly interdisciplinary.

The GO FAIR initiative is a bottom-up, open-to-all, cross-border and cross-
disciplinary approach aiming to contribute to a broad involvement of the European
science community as a whole, including the “long tail” of science.

The EOSC initiative is aligned with the BDVA agenda, as both promote data
accessibility, trustworthiness and reproducibility over domains and borders. In the
BDVA, this mainly applies to the i-Spaces and Lighthouse instruments, where the
interoperability of datasets is central. Data standardisation is a self-evident topic for
cooperation, but there are also common concerns in non-technical priorities — most
notably skills development (relating to data-intensive engineers and data scientists).
Both industry and academia benefit from findable, accessible, interoperable and
reproducible data.

High-Performance Computing In some sectors, big data applications are expected
to move towards more computation-intensive algorithms to reap deeper insights
across descriptive (explaining what is happening), diagnostic (exploring why it
happens), prognostic (predicting what can happen) and prescriptive (proactive
handling) analysis. The adoption of specific HPC-type capabilities by the big data
analytics stack is likely to be of assistance where big data insights will be of the
utmost value. Faster decision-making is crucial and extremely complex datasets are
involved — i.e. extreme data analytics.

The Big Data and HPC communities (through BDVA and ETP4HPC collabora-
tion') have recognised their shared interests in strengthening Europe’s position
regarding extreme data analytics. Recent engagements between PPPs have focused
on the relevant issues of looking at how HPC and Big Data platforms are
implemented, understanding the platform requirements for HPC and Big Data
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workloads, and exploring how the cross-transfer of certain technical capabilities
belonging to either HPC or big data could benefit each other. For example, the
application of deep learning is one such workload that readily stands to benefit from
certain HPC-type capabilities regarding optimising and parallelising difficult opti-
misation problems.

Major technical requirements include highly scalable performance, high memory
bandwidth, low power consumption and excellent short arithmetic performance.
Additionally, more flexible end-user education paths, utilisation and business
models will be required to capitalise on the rapidly evolving technologies underpin-
ning extreme data analytics, as well as continued support for collaboration across the
communities of both big data and HPC to jointly define the way forward for Europe.

2.1.7 IoT, CPS, Edge and Fog Computing

The main source of big data is sensor data from an IoT context and actuator
interaction in Cyber-Physical Systems. To meet real-time needs, it will often be
necessary to handle big data aspects at the edge of the system. This area is separately
elaborated further in collaboration with the IoT (Alliance for Internet of Things
Innovation (AIOTI)) and CPS communities.

Internet of Things (IoT) technology, which enables the connection of any type of
smart device or object, will have a profound impact on many sectors in the European
economy. Fostering this future market growth requires the seamless integration of
IoT technology (such as sensor integration, field data collection, Cloud, Edge and
Fog computing) and big data technology (such as data management, analytics, deep
analytics, edge analytics and processing architectures).

The mission of the Alliance of Internet of Things Innovation (AIOTI) is to foster
the European IoT market uptake and position by developing ecosystems across
vertical silos, contributing to the direction of H2020 large-scale pilots, gathering
evidence on market obstacles for IoT deployment in the Digital Single Market
context, championing the EU in spearheading IoT initiatives, and mapping and
bridging global, EU and Members States’ IoT innovation and standardisation activ-
ities. AIOTI working groups cover various vertical markets from smart farming to
smart manufacturing and smart cities, and specific horizontal topics on
standardisation, policy, research and innovation ecosystems. The AIOTI was
launched by the European Commission in 2015 as an informal group and established
as a legal entity in 2016. It is a major cross-domain European IoT innovation
activity.

Close cooperation between the AIOTI and the BDVA is seen as being very
beneficial for the BDVA. The following areas of collaboration are of particular
interest to the BDVA:

e Alignment of high-level reference architectures: A common understanding of
how the AIOTI High-Level Architecture (HLA) and the BDV A Reference Model
are related to each other enables well-grounded decisions and prioritisations
related to the future impact of technologies.
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e Deepening the understanding about sectorial needs: Through the mutual
exchange of roadmaps, accompanied by insights about sectorial needs in the
various domains, the BDVA will receive additional input about drivers for and
constraints on the adoption of big data in the various sectors. In particular,
insights about sector-specific user requirements as well as topics related to the
BDV strategic research and innovation roadmap will be fed back into our ongoing
updating process.

» Standardisation activities: To foster the seamless integration of IoT and big data
technologies, the standardisation activities of both communities should be aligned
whenever technically required. In addition, the BDVA can benefit from the
already established partnerships between the AIOTI and standardisation bodies
to communicate big-data-related standardisation requirements.

Aligning Security Efforts The efforts to strengthen security in the [oT domain will
have a huge impact on the integrity of data in the big data domain. When IoT security
is compromised, so too is the generated data. By developing a mutual understanding
on security issues in both domains, trust in both technologies and their applications
will be increased.

2.2 Vertical Concerns

Vertical concerns address cross-cutting issues, which are relevant and may affect
more than one of the horizontal concerns. They may not be purely technical and also
involve some non-technical aspects.

2.2.1 Big Data Types and Semantics

One specific vertical concern defined by the BDV Reference Model is data types.
Different data types may require the use of different techniques and mechanisms in
the horizontal concerns, for instance for data analytics and data storage.

The following six big data types have been identified as the main relevant data
types used in big data systems: (1) structured data, (2) time series data, (3) geospatial
data, (4) media data (image, video, audio, etc.), (5) text data (including natural
language data and genomics representations) and (6) graph or network data. In
addition, it is important to support both the syntactical and semantic aspects of
data for all big data types, in particular, considering metadata.

2.2.2 Standards

This concern covers the standardisation of big data technology areas to facilitate data
integration, sharing and interoperability.
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Standardisation is a fundamental pillar in the construction of a Digital Single
Market and Data Economy. It is only through the use of standards that the require-
ments of interconnectivity and interoperability can be ensured in an ICT-centric
economy. The PPP will continue to lead the way in the development of technology
and data standards for big data by:

* Leveraging existing common standards as the basis for an open and successful
big data market

* Supporting standards development organisations (SDOs), such as ETSI,
CEN-CENELEC, ISO, I[EC, W3C, ITU-T and IEEE, by making experts available
for all aspects of big data in the standardisation process

e Aligning the BDV Reference Model with existing and evolving compatible
architectures

» Liaising and collaborating with international consortia and SDOs through the
TF6SG6 Standards Group and Workshops

¢ Integrating national efforts on an international (European) level as early as
possible

* Providing education and educational material to promote developing standards

Standards are the essential building blocks for product and service development
as they define clear protocols that can be easily understood and adopted internation-
ally. They are a prime source of compatibility and interoperability and simplify
product and service development as well as speeding the time-to-market. Standards
are globally adopted; they make it easier to understand and compare competing
products, and thus drive international trade.

In the data ecosystem, standardisation applies to both the technology and the data.

Technology Standardisation Most technology standards for big data processing
are de facto standards that are not prescribed (but are at best described after the fact)
by a standards organisation. However, the lack of standards is a significant obstacle.
One example is the NoSQL databases. The history of NoSQL is based on solving
specific technology challenges that lead to a range of different storage technologies.
The broad range of choices, coupled with the lack of standards for querying the data,
makes it harder to exchange data stores, as this may tie application-specific code to a
specific storage solution. The PPP is likely to take a pragmatic approach to
standardisation and look to influence, in addition to NoSQL databases, the
standardisation of technologies such as complex event processing for real-time big
data applications, languages to encode the extracted knowledge bases, Artificial
Intelligence, computation infrastructure, data curation infrastructure, query inter-
faces and data storage technologies.

Data Standardisation The “variety” of big data makes it very difficult to standard-
ise. Nevertheless, there is a great deal of potential for data standardisation in the
areas of data exchange and data interoperability. The exchange and use of data assets
are essential for functioning ecosystems and the data economy. Enabling the seam-
less flow of data between participants (i.e. companies, institutions and individuals) is
a necessary cornerstone of the ecosystem.
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To this end, the PPP is likely to undertake collaborative efforts to support, where
possible and pragmatic, the definition of semantic standardised data representation,
ranging from the domain (industry sector)-specific solutions, like domain ontologies,
to general concepts, such as Linked Open Data, to simplify and reduce the costs of
data exchange.

In line with JTC1 Directives Clause 3.3.4.2, the Big Data Value Association
(BDVA) requested the establishment of a Category C liaison with the ISO/IEC
JTC1/WG9 Big Data Reference Architecture. This request was processed at the
August Plenary meeting of ISO IEC JTC1 WG9, and the recommendation was
unanimously approved by the working group. This liaison moves the BDVA work
forward from a technology standardisation viewpoint, and now the BDVA Big Data
Reference Model is closely aligned with the ISO Big Data Reference Architecture,
as described in ISO IEC JTC1 WG9 20547-3. The BDVA TF6SG6 Standardisation
Group is now also in the process of using the WG9 Use Case Template to extract
data from the PPP Projects to extend the European use case influence on the ISO big
data standards.

As the data ecosystem overlaps with many other ecosystems, such as Cloud
computing, [oT, smart cities and Artificial Intelligence, the PPP will continue to be
a forum for bringing together industry stakeholders from across these other domains
to collaborate. These fora will continue to drive interoperability within the big data
domain but will also extend this activity across the other technological ecosystems.

2.2.3 Communication and Connectivity

This concern covers effective communication and connectivity mechanisms, which
are necessary for providing support for big data. This area is separately further
elaborated, along with various communication communities, such as the 5G
community.

The 5G PPP will deliver solutions, architectures, technologies and standards for
the ubiquitous next generation of communication infrastructures in the coming
decade. It will provide 1000 times higher wireless area capacity by facilitating
very dense deployments of wireless communication links to connect over 7 trillion
wireless devices serving over 7 billion people. This guarantees access to a wider
panel of services and applications for everyone, everywhere.

5G provides the opportunity to collect and process big data from the network in
real time. The exploitation of Data Analytics and big data techniques supports
Network Management and Automation. This will pave the way to monitoring
users’ Quality of Experience (QoE) and Quality of Service (QoS) through new
metrics combining network and behavioural data while guaranteeing privacy. 5G
is also based on flexible network function orchestration, where machine learning
techniques and approaches from big data handling will become necessary to opti-
mise the network.

Turning to the [oT arena, the per-bit value of IoT is relatively low, while the value
generated by holistic orchestration and big data analytics is enormous. Combinations
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of 5G infrastructure capabilities, big data assets and IoT development may help to
create more value, increased sector knowledge and ultimately more ground for new
sector applications and services.

On the agenda of 5G PPP is the realisation of prototypes, technology demos, and
pilots of network management and operation, Cloud-based distributed computing,
edge computing and big data for network operation — as is the extension of pilots and
trials to non-ICT stakeholders to evaluate the technical solutions and their impact on
the real economy.

The aims of 5G PPP are closely related to the agenda of the BDVA. Collaborative
interactions involving both ecosystems (e.g. joint events, workshops and confer-
ences) could provide opportunities for the BDVA and 5G PPP to advance under-
standing and definition in their respective areas. The 5SG PPP and BDV A ecosystems
need to increase their collaboration with each other, and in so doing could develop
joint recommendations related to big data.

2.2.4 Cybersecurity

This concern covers security and trust elements that go beyond privacy and
anonymisation. The aspect of trust frequently has links to trust mechanisms such
as blockchain technologies, smart contracts and various forms of encryption.

Cybersecurity and big data naturally complement each other and are closely
related, for instance in using cybersecurity algorithms to secure a data repository,
or reciprocally, using big data technologies to build dynamic and smart responses
and protection from attacks (web crawling to gather information and learning
techniques to extract relevant information).

By its nature, any data manipulation presents a cybersecurity challenge. The issue
of Data Sovereignty perfectly illustrates the way in which both technologies can be
intertwined. Data Sovereignty consists in merging personal data from several
sources, always allowing the data owner to retain control over their data, be it by
partial anonymisation, secure protocols, smart contracts or other methods. The
problem as a whole cannot be solved by considering each of these technologies
separately, especially those relevant to cybersecurity and big data. The problem has
to be solved globally, taking a functionally complete and secure-by-design approach.

In the case of personal data space, both security and privacy should be consid-
ered. For industrial dataspaces, the challenges relate more to the protection of IPRs,
the protection of data at large and the secure processing of sensitive data in the
Cloud.

In terms of research and innovation, several topics have to be considered, for
example homomorphic encryption, threat intelligence and how to test a learning
process, assurance in gaining trust, differential privacy techniques for privacy-aware
big data analytics and the protection of data algorithms.

Artificial Intelligence could be used and could even be more efficient in attacking
a system rather than protecting it. The impact of falsified data, and trust in data,
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should also be considered. It is essential to define the concepts of measurable trust
and evidence-based trust. Data should be secured at rest and in motion.

The European Cyber Security Organisation (ECSO) represents the contractual
counterpart to the European Commission for the implementation of the Cybersecu-
rity contractual Public-Private Partnership (PPP)'. A collaboration with ECSO,
supporting the Cybersecurity PPP, has been initiated and further steps planned.

2.2.5 Engineering and DevOps for Building Big Data Value Systems

This concern covers methodologies for developing and operating big data systems.

While big data technologies gain significant momentum in research and innova-
tion, mature, proven and empirically sound engineering methodologies for building
next-generation big data value systems are not yet available. Moreover, we lack
proven approaches for continuous development and operations (DevOps) of big data
value systems. The availability of engineering methodologies and DevOps
approaches — combined with adequate toolchains and big data platforms — will be
essential for fostering productivity and quality. As a result, these methodologies and
approaches will empower the new wave of data professionals to deliver high-quality
next-generation big data value systems.

2.2.6 Marketplaces, Industrial Data Platforms and Personal Data
Platforms (IDPs/PDPs), Ecosystems for Data Sharing
and Innovation Support

This concern covers data platforms for data sharing, which include, in particular,
IDPs and PDPs, but also other data sharing platforms such as Research Data
Platforms (RDPs), Data Platforms for Smart Environments (Curry 2020) and
Urban/City Data Platforms (UDPs). These platforms facilitate the efficient usage
of a number of the horizontal and vertical big data areas, most notably data
management, data processing, data protection and cybersecurity.

Data sharing and trading are seen as essential ecosystem enablers in the data
economy, although closed and personal data present particular challenges for the free
flow of data (Curry and Ojo 2020). The following two conceptual solutions —
Industrial Data Platforms (IDPs) and Personal Data Platforms (PDPs) — introduce
new approaches to addressing this particular need to regulate closed proprietary and
personal data.
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3 Transforming Transport Case Study

This section illustrates the use of the BDV Reference Model within the large-scale
European big data project TransformingTransport (http://www.
transformingtransport.eu). The model was used to structure systematically, map,
coordinate and align the project’s technical outcomes, thereby also serving to distil
lessons learned for the different technical concerns.

The TransformingTransport project demonstrated in a realistic, measurable and
replicable way the transformations that big data can bring to the mobility and
logistics market (Castifieira and Metzger 2018; Metzger et al. 2019a). Structured
into 13 different pilots, which cover areas of major importance for the mobility and
logistics sector in Europe, TransformingTransport validated the technical and eco-
nomic viability of big data for reshaping transport processes and services. To this
end, TransformingTransport exploited access to industrial data sets from over
160 data sources, totalling 410,000 GB.

TransformingTransport ran from January 2017 to July 2019 and brought together
knowledge, solutions and impact potential of major European ICT and big data
technology providers with the competence and experience of key European industry
players and public bodies in the mobility and logistics domain.
TransformingTransport was one of the first two Lighthouse projects of the
European Big Data Value Public-Private Partnership (http://www.big-data-value.
eu/) funded by the European Commission within the framework of the Horizon 2020
programme.

TransformingTransport addresses 13 pilots in seven highly relevant pilot domains
within mobility and transport that will benefit from big data solutions and the
increased availability of data. The seven pilot domains and 13 pilots are shown in
Fig. 2. For each pilot, TransformingTransport explored innovative use cases and
engaged key players in the sector to demonstrate the transformative nature that big
data technologies can bring about.
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Fig. 2 Thirteen pilots in seven pilot domains


http://www.transformingtransport.eu
http://www.transformingtransport.eu
http://www.big-data-value.eu/
http://www.big-data-value.eu/

A Reference Model for Big Data Technologies 143

Smart Sustainable " proactive Rail rortsas Smart Airport Integrated Dynamic
Highways Connected Y |- frastructures it llesnC Turnaround [l Urban Mobilit Supply
G Vehicles Logistics Hubs q Networks

Data Management
Semantic Annotation of unstructured and semi-
structured data 2 2 3 3 3 3 3 3 3 3 4 4 3
Semantic interoperability 3 3 3 4 3 3 3 3 3 3 4 4 3
Data quality 3 3 4 4 2 2 4 4 4 4 4 4 4
Data lifecycle management and data governance 4 4 4 4 4 4 4 4 3 3 3 3 3
Integration of data and business processes 3 2 3 4 4 4 4 4 4 4 4 4 4
Data-as-a service 4 4 4 4 4 4 4 4 4 4 4 4 3
Distributed trust infrastructures for data
management 4 4 4 4 4 4 4 4 4 4 4 4 4
Data Processing Architectures
Heterogeneity 4 4 4 4 4 4 4 4 4 4 8 3] 4
Scalability Bl Bl 3 ] ) Bl Bl Bl Bl Bl 3 ] 3]
Processing of data-in-motion and data-at-rest 4 4 4 4 4 4 4 4 4 4 4 4 4
Decentralizatrion 4 4 4 4 4 4 4 4 4 4 4 4 4
Performance 4 4 4 4 4 4 4 4 4 4 4 4 4
Novel architectures for enabling new types of big
data workloads 3 3 4 4 4 4 4 4 4 4 4 4
Introduction of new hardware capabilities 4 4 4 3 4 4 4 4 4 3
Data Analytics
Semantic and knowledge-based analysis 3 2 3 3 2 2 Sl 3 2 2 2 2 2
Content validation 4 4 4 4 3 3 4 4 3 3 4 4 4
Analytics frameworks & processing 2 3 3 3 3 3 3 3 3 3 3 3 3
Advanced business analytics and intelligence 3 2 2 1 1 1 2 2 3 3 2 2 2
Predictive and prescriptive analytics 1 1 1 2 1 1 1 1 1 1 1 1 1
High Performance Data Analytics (HPDA) 2 2 2 2 1 1 2 2 2 2 3 3 2
Data analytics and Artificial Intelligence 4 4 4 3 4 4 4 4 4 4 4 4 g
Data Protection
Generic and easy to use data protection
approaches 4 4 4 4 4 4 4 4 4 4 4 4 4
Robust Data privacy (incl. multi-party computation)| 4 4 4 4 4 4 4 4 4 4 4 4 4
Risk based approaches 4 4 4 4 4 4 4 4 4 4 4 4 4
Data Visualisation and User Interaction
Visual data discovery 3 3 3 2 2 2 3 3 8 B 8 3 g
Interactive visual analytics of multiple scale data 2 2 3 2 2 2 2 2 3 3 2 2 2
Collaborative, intuitive and interactive visual
interfaces 2 2 2 2 2 2 2 2 3 3 2 2 2
Interactive visual data exploration and querying in
a multi-device context 2 2 2 2 2 2 2 2 3 3 2 2 2

Fig. 3 Coverage of Big Data Value Reference Model (1 = Main focus; 2 = Topic addressed, but
not main focus; 3 = Topic marginally addressed; 4 = Topic not addressed)

Figure 3 shows how the different pilots contributed to the different horizontal
concerns of the Big Data Value Reference Model (as introduced in Sect. 2), breaking
down their contributions to different technical priorities per concern. The numbers
indicate the focus of the pilots on the respective technical priorities.

As can be seen, the most relevant horizontal concerns of TransformingTransport
were (1) Data Analytics, (2) Data Visualisation and (3) Data Management, which we
elaborate below together with lessons learned from the project. We then elaborate on
how the impact of big data solutions on key business outcomes can be measured to
assess the usefulness of these techniques, and then conclude the use case with some
final observations.
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3.1 Data Analytics

The key enabling analytics technology employed by TransformingTransport is
predictive data analytics. Predictive analytics is a significant next step from descrip-
tive analytics. While descriptive analytics answers the question “What happened and
why?”, predictive analytics attempts to answer the question “What will happen and
when?” (see Sect. 2.1.2). For example, predictive analytics may help predict whether
there may be a delay in a transport process, helping transport operators to be
proactive and take action to decrease or prevent delays (Metzger et al. 2019a).

A case in point is the Smart Passenger Flows pilot at Athens Airport. With
passenger demand increasing annually, the challenge for Athens Airport has been
to identify intelligent ways to improve and streamline the flow of people through the
airport, i.e., increase throughput, while at the same time ensuring the safety and the
experience of passengers (Feltus et al. 2018). Increasing throughput requires sophis-
ticated data analysis to build powerful big data models that can segment passengers
and identify patterns and trends that will lead to actionable strategies on behalf of the
airport.

Lessons learned in data analytics include:

¢ Data quality: Among the most universally accepted principles of analytics is
“Garbage in — Garbage out”, which refers to the quality of the data in the
training models. It means that if poor-quality data enter the system, no matter how
trendy the software for the analysis, the output value is expected to be of low
quality too. To overcome this, checking and coping with missing data, data
accuracy, data timelines, different time-zones (clocks), etc., is a must; so is
assigning “data owners” that understand data and its field (domain) being able
to be in the care of data quality.

e Using Deep Learning and Neural Networks helps to create more efficient
development and engineering. They have been proven to work well even without
extensive hyper-parametrisation, provided that enough good-quality data is avail-
able. This means that the time- and resource-consuming step of extensive exper-
imentation with hyper-parameters may be skipped, leading to a more efficient
development and deployment process of big data applications (Palm et al. 2020).

e Data accuracy: Operators benefit from information about data accuracy. This
results in improved decision-making and helps to determine when to trust a
prediction. Augmenting the quality of data (live or predicted) with confidence
intervals, error ranges or reliability estimates allows operators to acquaint them-
selves with the most realistic situation.

* Time series models can be successfully approached by traditional machine
learning techniques. It has been verified that machine learning techniques and
Arima models are quite similar in short-term predictions, while the former tend to
be more accurate as the time to be predicted increases. Not only are predictive
models useful to improve a process, but it is also necessary to have teams with
enough experience to select the most suitable alternative (descriptive or predic-
tive). Another lesson learned is that external variables are easily included in the
modelisation.



A Reference Model for Big Data Technologies 145

» Historical data: Regarding data analytics, pilots found it useful to keep histor-
ical non-reproducible data and, when possible, in raw format. Several reasons
support this method, such as possible errors or improvements in the code that do
not allow rebuilding of processed data if the original data is deleted. If one
substitutes raw data with processed data, and there are no possible mechanisms
to reverse the process, important information can be missed in ulterior processing
stages. A drawback in maintaining unprocessed raw data could be the need for
increased storage capacity. Raw historical data can also be used for training in
machine learning algorithms. The main idea is to keep the complete historical
data since some bits of previously untreated information can be very important for
future analyses.

3.2 Data Visualisation

As the project concluded, one of the most useful and profitable visualisation
techniques that was considered as a “key success factor” was cockpit for data
visualisation and real-time control. Cockpit is a flexible human-machine interface
(HMI) designed to help operators in day-to-day monitoring, where pilots have
shared their knowledge to gain the most valuable insights from these tools.

A case in point is developed as part of Dusiport inland port pilot. This cockpit
exploits advanced data processing, predictive analytics capabilities and interactive
visualisation to support terminal operators in proactive decision-making and process
adaptation (Metzger et al. n.d.). In addition to raising alarms in the case of a
predicted delay, the terminal productivity cockpit also shows a reliability estimate
for the predicted delay. The reliability estimate gives the probability (in %) of
whether the alarm is indeed a true alarm. Reliability estimates facilitate
distinguishing between more and less reliable predictions on a case-by-case basis
(Metzger et al. 2019b).

Lessons learned in data visualisation include the following:

* Despite being an excellent tool to see what is happening around the pilot, a
cockpit should not be exhaustive in relation to the amount of information
displayed, which can lead to cognitive overload due to information overflow.
There are three main requisites. First, the information must be shown hierar-
chically from top to bottom interface, enabling making summaries with the most
relevant details. Second, widgets must be intuitive, simple and ‘“‘clean” for the
user and allow for quick handling to easily grasp the information shown. Third,
cockpit should only display critical and sufficiently well-validated events, in
order to avoid overloading the interface with superfluous warnings and focus the
attention on the most important ones.

 Static user interfaces (UI) may be limiting. Providing dynamic customisation of
Ul from simple multi-option dropdowns to more complex interchangeable
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requests could boost the efficiency of the analysis, adapting itself to specific user
and operator needs.

* Visualisation helps to take decisions, with synthetic and clear results. Implica-
tions of the human factors team were found to be useful in understanding these
aspects. Moreover, involving them in the early stages of the project also helped to
gain a better perspective of the demonstrator.

» Itis relevant to address the right customer or user who is going to work with the
visualised data. In day-to-day business, there is often not enough time to only
look at visualisations without an explicit added value. Yet, if the cockpit also
serves as a decision-making tool, e.g. to plan routes, or has other technical
implementations, it provides more added value. Another group to be approached
could be decision-makers who can use these cockpits for strategic planning
purposes.

* The goal of data visualisation is to make the data easily understandable and usable
by the operators. To accomplish this, visualisations beyond just showing the
quantitative data in big tables must be developed, thereby enabling the users to
make a qualitative assessment of quantitative data intuitively. The terminal
operators must be sure that the data is current. However, only knowing the
current state is not sufficient for the operator. In addition, the date and time of
the last critical event were perceived as important, to allow the operator to
visualise/search for anomalies around the fault in historical data, and not only
rely on the prediction algorithm. To enable the user to recognise critical trends
more easily, it is recommended that spaces above and below certain thresholds be
colour-coded.

* As it turns out, cockpits are an excellent means to gain a clear perception of the
current status of activities. Nevertheless, excessive overload in the presentation
of the results can be risky for a good understanding of the actual and relevant
situation.

3.3 Data Management

Data collection, integration and quality requires significant effort and time in
TransformingTransport. It has been estimated at around 80% by some pilots. Access
to the data sources has turned out to be much more complicated than expected due to
the following reasons: first, the number of different sources and data production and
storage systems; secondly, the access characteristics of data sources — from a
technical point of view, some of these sources and systems did not have the optimal
flexibility. Using domain-specific data platforms (such as the BDV data platform
project DataPorts: http://dataports-project.eu/) together with domain-specific
machine learning components could significantly increase productivity in develop-
ing and deploying data analytics solutions.
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Further lessons learned for data management are as follows:

* Concerning real-time analysis, tools have in many cases been implemented not as
pure real-time but as near-real-time systems adapting the reaction time of the
tools to the more lagged data-producing process. This is an important lesson
because expecting pure real-time systems is nowadays far from easy due to
ageing systems in several cases. This technology should be updated for further
replications, mainly concerning big data projects, to take advantage of the new
technologies.

¢ In order to provide services in real time, extra storage is required (which should
be considered in the dimensioning phase of the system). This means that special
care must be taken in defining optimised structures derived from the raw data that
allows lower latency to process data. Additionally, in the case of databases, it is
important to define appropriate indexes, reaching a compromise between the
speed of writing in the database and reading from it. It has also been found that
non-relational databases are more appropriate than traditional relational databases
for evolving systems. Relational databases are more restrictive in their structure
and do not allow rapid changes, offering advantages such as flexible schemas and
better scaling (e.g. when new datasets are added and more fields in a table — or
collection — are necessary, the addition is much easier in a non-relational
database).

¢ One of the research goals was to identify valuable data sources that support the
understanding of the different transport domains. Therefore, many different types
of data and data sources were part of the pilots. These data sources differed in
terms of format, timely availability and geographical spread (for pilots with large
areas of action). One of the first things that many pilots learned was to abandon
the idea of a holistic technical integration of all data sources. Data can also
provide valuable insights when considered separately to some extent. Concerning
visualisation, it was important to develop good use cases and to define the right
data for them. Therefore, only useful data were used and further processed, which
finally reduced complexity and increased understandability.

¢ The management of data required, in many cases, two approaches depending on
whether processes required the use of raw datasets or processed datasets. Raw
data were stored in file structures which were accessible to all workers. The
parallelisation of computations was then organised such that each process task
would use a different file from other processes, resulting in a mitigation of file
access conflicts. Results were then stored in a variety of data structures that were
capable of receiving data very quickly from multiple sources and enabled very
fast search and retrieval times for records. Key was to have access to people who
really know the data, because standardisation has not always been completed.

* Data availability and fit for purpose: Having data available on day 1 of the
project does not mean it is fit for purpose (enough to answer the addressed
business or operational needs) since technical access (interfaces) and
organisational access (ownership) may require time to resolve. Because of this,
first data analytics and visualisation goals must be defined and then it must be
determined which data needs to be accessed and how, or vice versa.
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3.4 Assessing the Impact of Big Data Technologies

As reported above, different lessons learned were collected for different technical
concerns. However, such lessons learned were mostly qualitative. In order to
complement these qualitative insights with quantitative measurements,
TransformingTransport followed a stringent KPI measurement regime to demon-
strate the transformative effects that big data could have on the transport sector
through pilot projects in different countries, locations, transport modes and operating
conditions. It applied big data for reshaping transport processes and services,
increasing operational efficiency, improving customer experience and fostering
new business models. As previously mentioned, data collection, integration and
quality require significant effort and time, estimated at around 80% by some pilots
mainly due to difficulties to be faced such as different data sources and storage
characteristics. In this context, good and consistent data management is essential to
improve operations.

A multi-criteria analysis (MCA) was designed specifically to assess the multiple
impact levels of big data technologies implemented in the 13 different pilot cases of
the project. The use of MCA appears to be an adequate option for simultaneously
evaluating a certain number of both quantitative and qualitative criteria, some
incommensurable, that ultimately need to be aggregated. MCA arose in the context
of operations research (Charnes and Cooper 1977) and assessed alternatives on a set
of criteria reflecting the decision-makers objectives, ranked based on an aggregation
procedure. The scores achieved do not need to be translated into monetary terms but
can simply be expressed in physical units or in qualitative terms (de Brucker et al.
2011). To make this method possible, a set of “Key Performance Indicators” (KPIs)
were selected, defined as measurable figures able to shed light on how effective a
certain application is. Applying the groundings of MCA, which enables the combi-
nation of both qualitative and quantitative aspects, TransformingTransport devel-
oped a methodology of assessing a high number of indicators pertaining to entirely
different transport sectors (Velazquez et al. 2018) and Assessment Categories of
major relevance, i.e. operational efficiency, asset management, environmental qual-
ity, energy consumption and safety. These categories have been used to perform a
complete assessment of the different pilots and manage data collected through pilot-
only evaluation and then — in a transversal way across pilots — a comparison
between them.

The large differences among pilots and domains have led to the creation of a
specific methodology out of which the analysis of results showed the impacts of the
tested technological improvements. Throughout several consciously selected KPIs,
it has been possible to assess the benefits of big data implementation on the
transportation sector. Then, a four-level assessment was carried out. The first level
consists of the evaluation of each pilot individually for each of the Assessment
Categories, after an aggregation process. The second level goes through the analysis
of the aggregated achievements within the same pilot domain, comparing the
performance of the pilots within the domain. Therefore, the effects of big data in
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the same mode in different settings and conditions are analysed. The third level of
the evaluation is the transversal assessment of the pilots for each category; the goal
was to perform a comparative analysis through the different pilots on each of the
aspects, e.g. how operational efficiency or energy savings vary among them. The
fourth assessment is the strategic level, for which only the most relevant KPIs for
each pilot are considered (Vazquez et al. 2020).

The evaluation procedure analyses the impact of the big data implementation over
different transport sectors, by comparing KPI final measurements with the original
ones. There is thus a four-level assessment comparison between two scenarios: the
reference scenario before leveraging the big data technology (baseline or ex ante
scenario) and the scenario once the technologies have been introduced (big data
technology scenario) (Velazquez et al. 2018). The results of this assessment reveal
improvements of around 40-60% regarding the operative cost, energy consumption,
environmental quality and enhancement of the predictive maintenance of assets,
among others. Big data technologies have demonstrated their usefulness when it
comes to gaining deeper insights from the huge quantity of data to boost the different
transport processes.

Effective and consistent data management is essential to improve transport
operations. A further lesson learned from TransformingTransport is that due to the
huge volume and variety of data and data sources, a coherent, in-depth and inte-
grated approach for data management and analysis is necessary.

3.5 Use Case Conclusion

As can be concluded from the use case presented above, big data technologies
promise to deliver profound economic and societal impact in mobility and logistics.
TransformingTransport pursued big data use cases in all areas of major importance
for the mobility and logistics sector in Europe, demonstrating the technical and
economic viability of big data for reshaping transport processes and services.
TransformingTransport employed predictive data analytics and predictive mainte-
nance as the key enabling big data technologies to bring about this transformation.

The significant growth of transport data volumes and the rates at which such data
is generated will be an important driver for the next level of technology innovation in
transport: data-driven Artificial Intelligence (AI). Data-driven Al has a tremendous
potential to benefit European citizens, economy and society (Sonja Zillner et al.
2018; Zillner et al. 2020). From an industrial point of view, Al means algorithm-
based and data-driven computer systems that enable machines and people with
digital capabilities such as perception, reasoning, learning and even autonomous
decision-making. Al will facilitate software to draw conclusions, learn, adapt and
adjust parameters accordingly. With recent advances in computing power, connec-
tivity and algorithms, Al is making great strides. With today’s promising results in
using Al technology, we can expect the next level of efficiency and operational
improvements in the mobility and transport sectors in Europe.
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4 Summary

The Big Data Value Reference Model has been developed with input from technical
experts and stakeholders along the whole big data value chain. The BDV Reference
Model may serve as a common reference framework to locate big data technologies
on the overall IT stack. This chapter elaborated the various elements (both horizontal
and vertical) of the framework and illustrated how it might be used to map technical
elements stemming from research and innovation projects. Complementing this
application of the reference model, it has also been used to systematically monitor
the technical progress of the Big Data Value PPP. To determine how well the
technical priorities and challenges are covered by ongoing research and innovation
activities, the BDVA performed a systematic collection of data, where the BDV
Reference Model provided the structure for a common data collection template and
frame for data analysis.
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