Skip to main content

Rice Husk-Derived Nanomaterials for Potential Applications

  • Chapter
  • First Online:
Waste Recycling Technologies for Nanomaterials Manufacturing

Abstract

Agricultural waste reuse has been gained much interest in various environmental and industrial aspects. The agricultural waste is a rich source of various nanomaterials such as nanosilica (NS), nanocarbon (NC), and nanozeolite (NZ). Through the rice planting to the final product, 20% husk was left as a by-product from the total weight, so-called rice husk (RH). The economic consideration of RH refers to the rich source of NS, NC, and NZ, where RH contents are 70–85% organic matter and inorganic residues (20–25%). Also, rice husk ash (RHA) contents are 60% silica and 10–40% carbon as well as another mineral’s composition. Therefore, there are many approached for producing and extracting NS and NC from RH and RHA using different effective physical and chemical recycling methodologies. The extracted NS from RH and RHA was successfully used for the development and production of NZ. The production of NS, NC, and NZ from RH and RHA is a potential approach for reducing the environmental effect and raising the economic values with highly effective materials in various applications. The valuable usage of NS, NC, and NZ is very high, which can be used in various industrial and environmental aspects such as electronics, ceramic, catalyst support, adsorbents, ion exchangers, water treatment, antimicrobial products, biosensing, and biomedical applications. In this chapter, the various extraction and synthesis methodologies for the controlled formation of NS, NC, and NZ from RH and RHA were reported. Besides, the potential usage and sustainable applications of these materials were successfully presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

0D:

Zero-dimensional

1D:

One-dimensional

2D:

Two-dimensional

3D:

Three-dimensional

AFM:

Atomic force microscopy

Ag NPs:

Silver nanoparticles

Au NPs:

Gold nanoparticles

AWM:

Agricultural waste management

BRHA:

Black rice husk ash

CNTs:

Carbon nanotubes

CVD:

Chemical vapor deposition

DI water:

Deionized water

EDX:

Energy-dispersive X-ray spectroscopy

FTIR:

Fourier transform infrared

GO:

Graphene oxide

GQDs:

Graphene quantum dots

GR:

Graphene

HR-TEM:

High-resolution transmission electron microscopy

ICP-MS:

Inductively coupled plasma mass spectrometry

LiBs :

Lithium-ion batteries

MP:

Magnetic particle

MWCNTs:

Multi-walled carbon nanotubes

NC:

Nanocarbon

NPs:

Nanoparticles

NS:

Nanosilica

NZ:

Nanozeolite

PAA:

Polyacrylic acid

PDMS:

Polydimethylsiloxane

QD:

Quantum dot

RH:

Rice husk

RHA:

Rice husk ash

SEM:

Scanning electron microscope

SWCNTs:

Single-walled carbon nanotubes

TEM:

Transmission electron microscopy

WRHA:

White rice husk ash

XRD:

X-ray diffraction

ZSM-5:

Zeolite Socony Mobil–5

References

  1. Zhang Z, Gonzalez AM, Davies EGR, Liu Y (2012) Agricultural Wastes. Water Environ Res 84(10):1386–1406

    Article  CAS  Google Scholar 

  2. Ali GAM, Divyashree A, Supriya S, Chong KF, Ethiraj AS, Reddy MV, Algarni H, Hegde G (2017) Carbon nanospheres derived from Lablab purpureus for high performance supercapacitor electrodes: a green approach. Dalton Trans 46(40):14034–14044

    Article  CAS  Google Scholar 

  3. Obi FO, Ugwuishiwu BO, Nwakaire JN (2016) Agricultural Waste Concept, Generation, Utilization and Management. Niger J Technol 35(4):957

    Article  Google Scholar 

  4. Agamuthu P (2009) Challenges and opportunities in agro-waste management: An Asian perspective. in Inaugural meeting of first regional 3R forum in Asia

    Google Scholar 

  5. Hadiya UB, Javed F, Jadeja KY (2018) Approach towards enhancing sanitation in godavadi village through sustainable solid waste management. Int Res J Eng Technol 5(4):2067–2072

    Google Scholar 

  6. Hai HT, Tuyet NTA (2010) Benefits of the 3R approach for agricultural waste management (AWM) in Vietnam: Under the framework of joint project on Asia Resource Circulation Research. Institute for Global Environmental Strategies

    Google Scholar 

  7. Hegde G, Abdul Manaf SA, Kumar A, Ali GAM, Chong KF, Ngaini Z, Sharma KV (2015) Biowaste sago bark based catalyst free carbon nanospheres: waste to wealth approach. ACS Sustain Chem & Eng 5(9):2247–2253

    Article  CAS  Google Scholar 

  8. Ali GAM, Abdul Manaf SA, Kumar A, Chong KF, Hegde G (2014) High performance supercapacitor using catalysis free porous carbon nanoparticles. J Phys D Appl Phys 47(49):495307–495313

    Article  CAS  Google Scholar 

  9. Hossain SS, Mathur L, Roy PK (2018) Rice husk/rice husk ash as an alternative source of silica in ceramics: A review. J Asian Ceram Soc 6(4):299–313

    Article  Google Scholar 

  10. Lokare K (2019) Rising from the Ashes: Renewable Silica from Rice Husk Ash

    Google Scholar 

  11. Sarangi M, Bhattacharyya S, Behera R (2009) Effect of temperature on morphology and phase transformations of nano-crystalline silica obtained from rice husk. Phase TransitS 82(5):377–386

    Article  CAS  Google Scholar 

  12. Kishore R, Bhikshma V, Prakash PJ (2011) Study on strength characteristics of high strength rice husk ash concrete. Procedia Engineering 14:2666–2672

    Article  CAS  Google Scholar 

  13. Shatat MR, Ali GAM, Gouda GA, Abdallah MH (2014) Rice husk ash for enhancing salts attack resistance of blended cement containing metakoalin. Can Chem Trans 2(3):274–285

    Article  CAS  Google Scholar 

  14. Foletto EL, Hoffmann R, Hoffmann RS, Portugal UL Jr, Jahn SL (2005) Aplicabilidade das cinzas da casca de arroz. Quim Nova 28(6):1055–1060

    Article  CAS  Google Scholar 

  15. Sankar S, Sharma SK, Kaur N, Lee B, Kim DY, Lee S, Jung H (2016) Biogenerated silica nanoparticles synthesized from sticky, red, and brown rice husk ashes by a chemical method. Ceram Int 42(4):4875–4885

    Article  CAS  Google Scholar 

  16. Moayedi H, Aghel B, Nguyen H, Rashid ASA (2019) Applications of rice husk ash as green and sustainable biomass. Journal of Cleaner Production:117851

    Google Scholar 

  17. Naddaf M, Kafa H, Ghanem I (2019) Extraction and Characterization of Nano-Silica from Olive Stones. Silicon 12(1):185–192

    Article  CAS  Google Scholar 

  18. Emran MY, El-Safty SA, Shenashen MA, Minowa T (2019) A well-thought-out sensory protocol for screening of oxygen reactive species released from cancer cells. Sensors and Actuators B: Chemical 284:456–467

    Article  CAS  Google Scholar 

  19. Emran MY, Khalifa H, Gomaa H, Shenashen MA, Akhtar N, Mekawy M, Faheem A, El-Safty SA (2017) Hierarchical CN doped NiO with dual-head echinop flowers for ultrasensitive monitoring of epinephrine in human blood serum. Microchim Acta 184(11):4553–4562

    Article  CAS  Google Scholar 

  20. Emran MY, Mekawy M, Akhtar N, Shenashen MA, El-Sewify IM, Faheem A, El-Safty SA (2018) Broccoli-shaped biosensor hierarchy for electrochemical screening of noradrenaline in living cells. Biosens Bioelectron 100:122–131

    Article  CAS  Google Scholar 

  21. Emran MY, Shenashen MA, Abdelwahab AA, Abdelmottaleb M, El-Safty SA (2018) Facile synthesis of microporous sulfur-doped carbon spheres as electrodes for ultrasensitive detection of ascorbic acid in food and pharmaceutical products. New J Chem 42(7):5037–5044

    Article  CAS  Google Scholar 

  22. Emran MY, Shenashen MA, Abdelwahab AA, Abdelmottaleb M, Khairy M, El-Safty SA (2018) Nanohexagonal Fe 2 O 3 electrode for one-step selective monitoring of dopamine and uric acid in biological samples. Electrocatalysis 9(4):514–525

    Article  CAS  Google Scholar 

  23. Gomaa H, Khalifa H, Selim M, Shenashen M, Kawada S, Alamoudi AS, Azzam A, Alhamid A, El-Safty S (2017) Selective, photoenhanced trapping/detrapping of arsenate anions using mesoporous blobfish head TiO2 monoliths. ACS Sustain Chem & Eng 5(11):10826–10839

    Article  CAS  Google Scholar 

  24. Thalji MR, Ali GAM, Algarni H, Chong KF (2019) Al3+ ion intercalation pseudocapacitance study of W18O49 nanostructure. J Power Sources 438:227028

    Article  CAS  Google Scholar 

  25. Ali GAM, Habeeb OA, Algarni H, Chong KF (2018) CaO impregnated highly porous honeycomb activated carbon from agriculture waste: symmetrical supercapacitor study. J Mater Sci 54:683–692

    Article  CAS  Google Scholar 

  26. Fouad OA, Makhlouf SA, Ali GAM, El-Sayed AY (2011) Cobalt/silica nanocomposite via thermal calcination-reduction of gel precursors. Mater Chem Phys 128(1–2):70–76

    Article  CAS  Google Scholar 

  27. Ali GAM, Fouad OA, Makhlouf SA (2013) Structural, optical and electrical properties of sol-gel prepared mesoporous Co3O4/SiO2 nanocomposites. J Alloy Compd 579:606–611

    Google Scholar 

  28. Emran MY, Shenashen MA, Abdelwahab AA, Khalifa H, Mekawy M, Akhtar N, Abdelmottaleb M, El-Safty SA (2018) Design of hierarchical electrocatalytic mediator for one step, selective screening of biomolecules in biological fluid samples. J Appl Electrochem 48(5):529–542

    Article  CAS  Google Scholar 

  29. Emran MY, Shenashen MA, Mekawy M, Azzam AM, Akhtar N, Gomaa H, Selim MM, Faheem A, El-Safty SA (2018) Ultrasensitive in-vitro monitoring of monoamine neurotransmitters from dopaminergic cells. SensS Actuators B: Chem 259:114–124

    Article  CAS  Google Scholar 

  30. Emran MY, Shenashen MA, Morita H, El-Safty SA (2018) One-step selective screening of bioactive molecules in living cells using sulfur-doped microporous carbon. Biosens Bioelectron 109:237–245

    Article  CAS  Google Scholar 

  31. Emran MY, Shenashen MA, Morita H, El-Safty SA (2018) 3D-ridge stocked layers of nitrogen-doped mesoporous carbon nanosheets for ultrasensitive monitoring of dopamine released from PC12 cells under K + stimulation. Adv Healthc Mater 7(16):1701459

    Article  CAS  Google Scholar 

  32. Gomaa H, Shenashen M, Yamaguchi H, Alamoudi A, El-Safty S (2018) Extraction and recovery of Co 2 + ions from spent lithium-ion batteries using hierarchical mesosponge γ-Al 2 O 3 monolith extractors. Green Chem 20(8):1841–1857

    Article  CAS  Google Scholar 

  33. Barhoum A, Shalan AE, El-Hout SI, Ali GAM, Abdelbasir SM, Abu Serea ES, Ibrahim AH, Pal K (2019) A Broad Family of Carbon Nanomaterials: Classification, Properties, Synthesis, and Emerging Applications. In: Barhoum A, Bechelany M, Makhlouf A (eds) Handbook of Nanofibers. Springer International Publishing, Cham, pp 1–40

    Chapter  Google Scholar 

  34. Ali GAM, Lih Teo EY, Aboelazm EAA, Sadegh H, Memar AOH, Shahryari-Ghoshekandi R, Chong KF (2017) Capacitive performance of cysteamine functionalized carbon nanotubes. Mater Chem Phys 197:100–104

    Article  CAS  Google Scholar 

  35. Ali GAM, Tan LL, Jose R, Yusoff MM, Chong KF (2014) Electrochemical performance studies of MnO2 nanoflowers recovered from spent battery. Mater Res Bull 60:5–9

    Article  CAS  Google Scholar 

  36. Abdel Ghafar HH, Ali GAM, Fouad OA, Makhlouf SA (2015) Enhancement of adsorption efficiency of methylene blue on Co3O4/SiO2 nanocomposite. Desalination Water Treat 53(11):2980–2989

    Article  CAS  Google Scholar 

  37. Pokropivny V, Lohmus R, Hussainova I, Pokropivny A, Vlassov S (2007) Introduction to nanomaterials and nanotechnology. Tartu University Press Ukraine

    Google Scholar 

  38. Gomaa H, Shenashen MA, Yamaguchi H, Alamoudi AS, Abdelmottaleb M, Cheira MF, El-Naser TAS, El-Safty SA (2018) Highly-efficient removal of AsV, Pb2+, Fe3+, and Al3+ pollutants from water using hierarchical, microscopic TiO2 and TiOF2 adsorbents through batch and fixed-bed columnar techniques. J Clean Prod 182:910–925

    Google Scholar 

  39. Ali GAM, Fouad OA, Makhlouf SA (2016) Electrical properties of cobalt oxide/silica nanocomposites obtained by sol-gel technique. Am J Eng Appl Sci 9(1):12–16

    Article  Google Scholar 

  40. Fouad OA, Ali GAM, El-Erian MAI, Makhlouf SA (2012) Humidity sensing properties of cobalt oxide/silica nanocomposites prepared via sol-gel and related routes. Nano 7(5):1250038

    Google Scholar 

  41. Ali GAM, Yusoff MM, Shaaban ER, Chong KF (2017) High performance MnO2 nanoflower supercapacitor electrode by electrochemical recycling of spent batteries. Ceram Int 43:8440–8448

    Article  CAS  Google Scholar 

  42. Ali GAM, Thalji MR, Soh WC, Algarni H, Chong KF (2020) One-step electrochemical synthesis of MoS2/graphene composite for supercapacitor application. J Solid State Electrochem 24(1):25–34

    Article  CAS  Google Scholar 

  43. Ali GAM, Yusoff MM, Algarni H, Chong KF (2018) One-step electrosynthesis of MnO2/rGO nanocomposite and its enhanced electrochemical performance. Ceram Int 44(7):7799–7807

    Google Scholar 

  44. Ali GAM, Yusoff MM, Ng YH, Lim NH, Chong KF (2015) Potentiostatic and galvanostatic electrodeposition of MnO2 for supercapacitors application: A comparison study. Curr Appl Phys 15(10):1143–1147

    Article  Google Scholar 

  45. Tolba GM, Barakat NA, Bastaweesy A, Ashour E, Abdelmoez W, El-Newehy MH, Al-Deyab SS, Kim HY (2015) Effective and highly recyclable nanosilica produced from the rice husk for effective removal of organic dyes. J Ind Eng Chem 29:134–145

    Article  CAS  Google Scholar 

  46. Gomaa H, El-Safty S, Shenashen M, Kawada S, Yamaguchi H, Abdelmottaleb M, Cheira M (2018) Three-dimensional, vertical platelets of ZnO carriers for selective extraction of cobalt ions from waste printed circuit boards. ACS Sustain Chem & Eng 6(11):13813–13825

    Article  CAS  Google Scholar 

  47. Griffin S, Masood MI, Nasim MJ, Sarfraz M, Ebokaiwe AP, Schäfer K-H, Keck CM, Jacob C (2018) Natural nanoparticles: A particular matter inspired by nature. Antioxidants 7(1):3

    Article  CAS  Google Scholar 

  48. Mor S, Manchanda CK, Kansal SK, Ravindra K (2017) Nanosilica extraction from processed agricultural residue using green technology. J Clean Prod 143:1284–1290

    Article  CAS  Google Scholar 

  49. Pek YS, Wan AC, Shekaran A, Zhuo L, Ying JY (2008) A thixotropic nanocomposite gel for three-dimensional cell culture. Nat Nanotechnol 3(11):671

    Article  CAS  Google Scholar 

  50. Tang L, Cheng J (2013) Nonporous silica nanoparticles for nanomedicine application. Nano Today 8(3):290–312

    Article  CAS  Google Scholar 

  51. Singh P, Srivastava S, Chakrabarti P, Singh SK (2017) Nanosilica based electrochemical biosensor: A novel approach for the detection of platelet-derived microparticles. SensS Actuators B: Chem 240:322–329

    Article  CAS  Google Scholar 

  52. Tao Z (2014) Mesoporous silica-based nanodevices for biological applications. RSC Adv 4(36):18961–18980

    Article  CAS  Google Scholar 

  53. Ali GAM, Barhoum A, Gupta VK, Nada AA, El-Maghrabi H, Kanthasamy R, Shaaban ER, Algarni H, Chong KF (2020) High surface area mesoporous silica for hydrogen sulfide effective removal. Curr Nanosci 16(2):226–234

    Google Scholar 

  54. Pouroutzidou GK, Theodorou GS, Kontonasaki E, Tsamesidis I, Pantaleo A, Patsiaoura D, Papadopoulou L, Rhoades J, Likotrafiti E, Lioutas CB (2019) Effect of ethanol/TEOS ratios and amount of ammonia on the properties of copper-doped calcium silicate nanoceramics. J Mater Sci Mater Med 30(9):98

    Article  CAS  Google Scholar 

  55. Chen H, Wang F, Zhang C, Shi Y, Jin G, Yuan S (2010) Preparation of nano-silica materials: The concept from wheat straw. J Non-Cryst Solids 356(50–51):2781–2785

    Article  CAS  Google Scholar 

  56. Liou T-H, Yang C-C (2011) Synthesis and surface characteristics of nanosilica produced from alkali-extracted rice husk ash. Mater Sci Eng, B 176(7):521–529

    Article  CAS  Google Scholar 

  57. Asnawi M, Azhari S, Hamidon MN, Ismail I, Helina I (2018) Synthesis of Carbon Nanomaterials from Rice Husk via Microwave Oven. J Nanomater 2018:1–5

    Article  CAS  Google Scholar 

  58. Greil P (2015) Perspectives of nano-carbon based engineering materials. Adv Eng Mater 17(2):124–137

    Article  CAS  Google Scholar 

  59. Zhang H, Zhang X, Sun X, Ma Y (2013) Shape-controlled synthesis of nanocarbons through direct conversion of carbon dioxide. Scientific reports 3:3534

    Article  Google Scholar 

  60. Villarreal CC, Pham T, Ramnani P, Mulchandani A (2017) Carbon allotropes as sensors for environmental monitoring. Current Opinion in Electrochemistry 3(1):106–113

    Article  CAS  Google Scholar 

  61. Jiang J-W, Leng J, Li J, Guo Z, Chang T, Guo X, Zhang T (2017) Twin graphene: A novel two-dimensional semiconducting carbon allotrope. Carbon 118:370–375

    Article  CAS  Google Scholar 

  62. Wang Z, Ogata H, Morimoto S, Ortiz-Medina J, Fujishige M, Takeuchi K, Muramatsu H, Hayashi T, Terrones M, Hashimoto Y, Endo M (2015) Nanocarbons from rice husk by microwave plasma irradiation: From graphene and carbon nanotubes to graphenated carbon nanotube hybrids. Carbon 94:479–484

    Article  CAS  Google Scholar 

  63. Akhtar N, Emran MY, Shenashen MA, Khalifa H, Osaka T, Faheem A, Homma T, Kawarada H, El-Safty SA (2017) Fabrication of photo-electrochemical biosensors for ultrasensitive screening of mono-bioactive molecules: the effect of geometrical structures and crystal surfaces. J Mater Chem B 5(39):7985–7996

    Article  CAS  Google Scholar 

  64. Kure N, Hamidon MN, Azhari S, Mamat N, Yusoff H, Isa B, Yunusa Z (2017) Simple microwave-assisted synthesis of carbon nanotubes using polyethylene as carbon precursor. Journal of Nanomaterials 2017

    Google Scholar 

  65. Ghasemi Z, Younesi H (2011) Preparation and Characterization of Nanozeolite NaA from Rice Husk at Room Temperature without Organic Additives. J Nanomater 2011:1–8

    Article  CAS  Google Scholar 

  66. Breck DW (1974) Zeolite Molecular Sieves. Wiley, New York

    Google Scholar 

  67. Groenen E, Kortbeek A, Mackay M, Sudmeijer O (1986) Double-ring silicate anions in tetraalkyl-ammonium hydroxide/silicate solutions; their possible role in the synthesis of silicon-rich zeolites. Zeolites 6(5):403–411

    Article  CAS  Google Scholar 

  68. Xu M, Cheng M, Bao X (2000) Growth of ultrafine zeolite Y crystals on metakaolin microspheres. Chem Commun 19:1873–1874

    Article  Google Scholar 

  69. Wang H, Wang Z, Yan Y (2000) Colloidal suspensions of template-removed zeolite nanocrystalsElectronic supplementary information (ESI) available: Suppl. Figs. 1–3: TGA curves, XRD patterns and IR spectra. See http://www.rsc.org/suppdata/cc/b0/b006518h Chemical Communications (23):2333–2334

  70. Nur H (2001) Direct synthesis of NaA zeolite from rice husk and carbonaceous rice husk ash. Indones J Agric Sci 1:40–45

    Google Scholar 

  71. Prasetyoko D, Ramli Z, Endud S, Hamdan H, Sulikowski B (2006) Conversion of rice husk ash to zeolite beta. Waste Manag 26(10):1173–1179

    Article  CAS  Google Scholar 

  72. Rawtani AV, Rao MS, Gokhale K (1989) Synthesis of ZSM-5 zeolite using silica from rice-husk ash. Ind Eng Chem Res 28(9):1411–1414

    Article  CAS  Google Scholar 

  73. Ramli Z (1995) Rhenium-impregnated zeolites: synthesis, characterization and modification ascatalysts in the metathesis of alkanes. Universiti Teknologi, Malaysia

    Google Scholar 

  74. Bhagiyalakshmi M, Anuradha R, Palanichamy M, Jang HT (2010) Dexterous template-free synthesis of ferrisilicate with MFI morphology using rice husk ash. J Non-Cryst Solids 356(23–24):1204–1209

    Article  CAS  Google Scholar 

  75. Pode R (2016) Potential applications of rice husk ash waste from rice husk biomass power plant. Renew Sustain Energy Rev 53:1468–1485

    Article  Google Scholar 

  76. Chandrasekhar S, Satyanarayana K, Pramada P, Raghavan P, Gupta T (2003) Review processing, properties and applications of reactive silica from rice husk—an overview. J Mater Sci 38(15):3159–3168

    Article  CAS  Google Scholar 

  77. Babaso PN, Sharanagouda H (2017) Rice Husk and Its Applications: Review. Int J Curr Microbiol Appl Sci 6(10):1144–1156

    Article  CAS  Google Scholar 

  78. Conradt R, Pimkhaokham P, Leela-Adisorn U (1992) Nano-structured silica from rice husk. J Non-Cryst Solids 145:75–79

    Article  CAS  Google Scholar 

  79. Real C, Alcala MD, Criado JM (1996) Preparation of silica from rice husks. J Am Ceram Soc 79(8):2012–2016

    Article  CAS  Google Scholar 

  80. Muthadhi A, Anitha R, Kothandaraman S (2007) Rice husk ash-Properties and its uses: a review. Journal of the Institution of Engineers. India. Civil Engineering Division 88(5):50–56

    Google Scholar 

  81. Muntohar AS (2004) Utilization of uncontrolled burnt rice husk ash in soil improvement. Civ Eng Dimens 4(2):100–105

    Google Scholar 

  82. Ugheoke IB, Mamat O (2012) A critical assessment and new research directions of rice husk silica processing methods and properties. Maejo Int J Sci Technol 6(3):430

    CAS  Google Scholar 

  83. Vlaev L, Markovska I, Lyubchev L (2003) Non-isothermal kinetics of pyrolysis of rice husk. Thermochim Acta 406(1–2):1–7

    Article  CAS  Google Scholar 

  84. Ghaly A, Mansaray K (1999) Comparative study on the thermal degradation of rice husks in various atmospheres. Energy Sources 21(10):867–881

    Article  CAS  Google Scholar 

  85. Mohamed R, Mkhalid I, Barakat M (2015) Rice husk ash as a renewable source for the production of zeolite NaY and its characterization. Arab J Chem 8(1):48–53

    Article  CAS  Google Scholar 

  86. Zou Y, Yang T (2019) Rice Husk, Rice Husk Ash and Their Applications, in Rice Bran and Rice Bran Oil Chemistry, Processing and Utilization, pp 207–246

    Google Scholar 

  87. Bakar RA, Yahya R, Gan SN (2016) Production of high purity amorphous silica from rice husk. Procedia Chemistry 19:189–195

    Article  CAS  Google Scholar 

  88. Bhardwaj A, Hossain S, Majhi MR (2017) Preparation and characterization of clay bonded high strength silica refractory by utilizing agriculture waste. Boletín de la Sociedad Española de Cerámica y Vidrio 56(6):256–262

    Article  Google Scholar 

  89. Della VP, Kühn I, Hotza D (2002) Rice husk ash as an alternate source for active silica production. Mater Lett 57(4):818–821

    Article  CAS  Google Scholar 

  90. Fernandes IJ, Calheiro D, Kieling AG, Moraes CA, Rocha TL, Brehm FA, Modolo RC (2016) Characterization of rice husk ash produced using different biomass combustion techniques for energy. Fuel 165:351–359

    Article  CAS  Google Scholar 

  91. Ghorbani F, Sanati AM, Maleki M (2015) Production of silica nanoparticles from rice husk as agricultural waste by environmental friendly technique. Environmental Studies of Persian Gulf 2(1):56–65

    Google Scholar 

  92. Gomes GMF, Philipssen C, Bard EK, Dalla Zen L, de Souza G (2016) Rice husk bubbling fluidized bed combustion for amorphous silica synthesis. J Environ Chem Eng 4(2):2278–2290

    Article  CAS  Google Scholar 

  93. Habeeb GA, Mahmud HB (2010) Study on properties of rice husk ash and its use as cement replacement material. Materials research 13(2):185–190

    Article  Google Scholar 

  94. Ma Z, Ye J, Zhao C, Zhang Q (2015) Gasification of rice husk in a downdraft gasifier: the effect of equivalence ratio on the gasification performance, properties, and utilization analysis of byproducts of char and tar. BioResources 10(2):2888–2902

    Article  CAS  Google Scholar 

  95. Nehdi M, Duquette J, El Damatty A (2003) Performance of rice husk ash produced using a new technology as a mineral admixture in concrete. Cem Concr Res 33(8):1203–1210

    Article  CAS  Google Scholar 

  96. Umeda J, Kondoh K (2008) High-purity amorphous silica originated in rice husks via carboxylic acid leaching process. J Mater Sci 43(22):7084–7090

    Article  CAS  Google Scholar 

  97. Vayghan AG, Khaloo A, Rajabipour F (2013) The effects of a hydrochloric acid pre-treatment on the physicochemical properties and pozzolanic performance of rice husk ash. Cement Concr Compos 39:131–140

    Article  CAS  Google Scholar 

  98. Affandi S, Setyawan H, Winardi S, Purwanto A, Balgis R (2009) A facile method for production of high-purity silica xerogels from bagasse ash. Adv Powder Technol 20(5):468–472

    Article  CAS  Google Scholar 

  99. Tang Z, Zhang Y, Guo Q (2010) Catalytic hydrocracking of pyrolytic lignin to liquid fuel in supercritical ethanol. Ind Eng Chem Res 49(5):2040–2046

    Article  CAS  Google Scholar 

  100. Yakovlev V, Yeletsky P, Lebedev MY, Ermakov DY, Parmon V (2007) Preparation and investigation of nanostructured carbonaceous composites from the high-ash biomass. Chem Eng J 134(1–3):246–255

    Article  CAS  Google Scholar 

  101. Sun L, Gong K (2001) Silicon-based materials from rice husks and their applications. Ind Eng Chem Res 40(25):5861–5877

    Article  CAS  Google Scholar 

  102. Patel KG, Shettigar RR, Misra NM (2017) Recent Advance in Silica Production Technologies from Agricultural Waste Stream. J Adv Agric Technol 4(3)

    Google Scholar 

  103. Yang H, Liu B, Chen Y, Li B, Chen H (2015) Influence of inherent silicon and metals in rice husk on the char properties and associated silica structure. Energy Fuels 29(11):7327–7334

    Article  CAS  Google Scholar 

  104. Hamad M (1981) Combustion of rice hulls in a static bed. Energy Agric 1:311–315

    Article  Google Scholar 

  105. Huang S, Jing S, Wang J, Wang Z, Jin Y (2001) Silica white obtained from rice husk in a fluidized bed. Powder Technol 117(3):232–238

    Article  CAS  Google Scholar 

  106. Genieva S, Turmanova S, Dimitrova A, Vlaev L (2008) Characterization of rice husks and the products of its thermal degradation in air or nitrogen atmosphere. J Therm Anal Calorim 93(2):387–396

    Article  CAS  Google Scholar 

  107. Luan TC, Chou TC (1990) Recovery of silica from the gasification of rice husks/coal in the presence of a pilot flame in a modified fluidized bed. Ind Eng Chem Res 29(9):1922–1927

    Article  CAS  Google Scholar 

  108. Bautista E, Aldas R, Gagelonia E (1996) Rice hull furnaces for paddy drying: The Philippine rice research institute’s experience. In: ACIAR PROCEEDINGS

    Google Scholar 

  109. Singh R, Maheshwari R, Ojha T (1980) Development of a husk fired furnace. J Agric Eng Res 25(2):109–120

    Article  Google Scholar 

  110. Rozainee M, Ngo S, Salema AA, Tan K (2008) Fluidized bed combustion of rice husk to produce amorphous siliceous ash. Energy Sustain Dev 12(1):33–42

    Article  CAS  Google Scholar 

  111. Sugita S (1994) Method of producing active rice husk ash, Google Patents

    Google Scholar 

  112. Soponronnarit S, Swasdisevi T, Wetchacama S, Shujinda A, Srisawat B (2007) Cyclonic rice husk furnace and its application on paddy drying. Int Energy J 1(2)

    Google Scholar 

  113. Zulkifli NSC, Ab Rahman I, Mohamad D, Husein A (2013) A green sol–gel route for the synthesis of structurally controlled silica particles from rice husk for dental composite filler. Ceram Int 39(4):4559–4567

    Article  CAS  Google Scholar 

  114. Hassan A, Abdelghny A, Elhadidy H, Youssef A (2014) Synthesis and characterization of high surface area nanosilica from rice husk ash by surfactant-free sol–gel method. J Sol-Gel Sci Technol 69(3):465–472

    Article  CAS  Google Scholar 

  115. Zulfiqar U, Subhani T, Husain SW (2015) Towards tunable size of silica particles from rice husk. J Non-Cryst Solids 429:61–69

    Article  CAS  Google Scholar 

  116. Song S, Cho H-B, Kim HT (2018) Surfactant-free synthesis of high surface area silica nanoparticles derived from rice husks by employing the Taguchi approach. J Ind Eng Chem 61:281–287

    Article  CAS  Google Scholar 

  117. Rehman MSU, Umer MA, Rashid N, Kim I, Han J-I (2013) Sono-assisted sulfuric acid process for economical recovery of fermentable sugars and mesoporous pure silica from rice straw. Ind Crops Prod 49:705–711

    Article  CAS  Google Scholar 

  118. Thuc CNH, Thuc HH (2013) Synthesis of silica nanoparticles from Vietnamese rice husk by sol–gel method. Nanoscale Res Lett 8(1):1–10

    CAS  Google Scholar 

  119. Awizar DA, Othman NK, Jalar A, Daud AR, Rahman IA, Al-Hardan N (2013) Nanosilicate extraction from rice husk ash as green corrosion inhibitor. Int J Electrochem Sci 8(2):1759–1769

    CAS  Google Scholar 

  120. Haq IU, Akhtar K, Malik A (2014) Effect of experimental variables on the extraction of silica from the rice husk ash. J Chem Soc Pak 36(3):382

    Google Scholar 

  121. Coorey R (2017) Application of sago pith waste and nanosilica from rice husk ash as hybrid bio-nanofiller composite for food plastic packaging. Ukr Food J 6(4):618–631

    Google Scholar 

  122. Carmona V, Oliveira R, Silva W, Mattoso L, Marconcini J (2013) Nanosilica from rice husk: extraction and characterization. Ind Crops Prod 43:291–296

    Article  CAS  Google Scholar 

  123. Mahmud A, Megat-Yusoff P, Ahmad F, Farezzuan AA (2016) Acid leaching as efficient chemical treatment for rice husk in production of amorphous silica nanoparticles. ARPN J Eng Appl Sci 11(22):13384–13388

    CAS  Google Scholar 

  124. Rafiee E, Shahebrahimi S (2012) Nano silica with high surface area from rice husk as a support for 12-tungstophosphoric acid: an efficient nano catalyst in some organic reactions. Chin J Catal 33(7–8):1326–1333

    Article  CAS  Google Scholar 

  125. Soltani N, Bahrami A, Pech-Canul M, González L (2015) Review on the physicochemical treatments of rice husk for production of advanced materials. Chem Eng J 264:899–935

    Article  CAS  Google Scholar 

  126. Adam F, Chew T-S, Andas J (2011) A simple template-free sol–gel synthesis of spherical nanosilica from agricultural biomass. J Sol-Gel Sci Technol 59(3):580–583

    Article  CAS  Google Scholar 

  127. Duan R, Li C, Liu S, Liu Z, Li Y, Yuan Y, Hu X (2016) Determination of adenine based on the fluorescence recovery of the L-Tryptophan–Cu2 + complex. Spectrochim Acta Part A Mol Biomol Spectrosc 152:272–277

    Article  CAS  Google Scholar 

  128. Slowing II, Vivero-Escoto JL, Trewyn BG, Lin VS-Y (2010) Mesoporous silica nanoparticles: structural design and applications. J Mater Chem 20(37):7924–7937

    Article  CAS  Google Scholar 

  129. Balaji T, El-Safty SA, Matsunaga H, Hanaoka T, Mizukami F (2006) Optical sensors based on nanostructured cage materials for the detection of toxic metal ions. Angew Chem Int Ed 45(43):7202–7208

    Article  CAS  Google Scholar 

  130. Awual MR, Ismael M, Yaita T, El-Safty SA, Shiwaku H, Okamoto Y, Suzuki S (2013) Trace copper (II) ions detection and removal from water using novel ligand modified composite adsorbent. Chem Eng J 222:67–76

    Article  CAS  Google Scholar 

  131. Awual MR, Yaita T, El-Safty SA, Shiwaku H, Suzuki S, Okamoto Y (2013) Copper (II) ions capturing from water using ligand modified a new type mesoporous adsorbent. Chem Eng J 221:322–330

    Article  CAS  Google Scholar 

  132. Ji X, Wang H, Song B, Chu B, He Y (2018) Silicon nanomaterials for biosensing and bioimaging analysis. Frontiers in chemistry 6:38

    Article  CAS  Google Scholar 

  133. Jafari S, Derakhshankhah H, Alaei L, Fattahi A, Varnamkhasti BS, Saboury AA (2019) Mesoporous silica nanoparticles for therapeutic/diagnostic applications. Biomed Pharmacother 109:1100–1111

    Article  CAS  Google Scholar 

  134. Gubala V, Giovannini G, Kunc F, Monopoli MP, Moore CJ (2020) Dye-doped silica nanoparticles: synthesis, surface chemistry and bioapplications. Cancer Nanotechnology 11(1):1–43

    Article  CAS  Google Scholar 

  135. Ma M, Zheng S, Chen H, Yao M, Zhang K, Jia X, Mou J, Xu H, Wu R, Shi J (2014) A combined “RAFT” and “Graft From” polymerization strategy for surface modification of mesoporous silica nanoparticles: towards enhanced tumor accumulation and cancer therapy efficacy. J Mater Chem B 2(35):5828–5836

    Article  CAS  Google Scholar 

  136. El-Safty S, Shahat A, Awual MR, Mekawy M (2011) Large three-dimensional mesocage pores tailoring silica nanotubes as membrane filters: nanofiltration and permeation flux of proteins. J Mater Chem 21(15):5593–5603

    Article  CAS  Google Scholar 

  137. Owens GJ, Singh RK, Foroutan F, Alqaysi M, Han C-M, Mahapatra C, Kim H-W, Knowles JC (2016) Sol–gel based materials for biomedical applications. Prog Mater Sci 77:1–79

    Article  CAS  Google Scholar 

  138. Selvan ST, Tan TTY, Yi DK, Jana NR (2010) Functional and multifunctional nanoparticles for bioimaging and biosensing. Langmuir 26(14):11631–11641

    Article  CAS  Google Scholar 

  139. Slowing I, Trewyn BG, Lin VS-Y (2006) Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticles on the endocytosis by human cancer cells. J Am Chem Soc 128(46):14792–14793

    Article  CAS  Google Scholar 

  140. Kempen PJ, Greasley S, Parker KA, Campbell JL, Chang H-Y, Jones JR, Sinclair R, Gambhir SS, Jokerst JV (2015) Theranostic mesoporous silica nanoparticles biodegrade after pro-survival drug delivery and ultrasound/magnetic resonance imaging of stem cells. Theranostics 5(6):631

    Article  CAS  Google Scholar 

  141. Davis ME, Hsieh PC, Takahashi T, Song Q, Zhang S, Kamm RD, Grodzinsky AJ, Anversa P, Lee RT (2006) Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction. Proc Natl Acad Sci 103(21):8155–8160

    Article  CAS  Google Scholar 

  142. Kupferschmidt N, Qazi KR, Kemi C, Vallhov H, Garcia-Bennett AE, Gabrielsson S, Scheynius A (2014) Mesoporous silica particles potentiate antigen-specific T-cell responses. Nanomedicine 9(12):1835–1846

    Article  CAS  Google Scholar 

  143. Prokopowicz M, Żegliński J, Gandhi A, Sawicki W, Tofail SA (2012) Bioactive silica-based drug delivery systems containing doxorubicin hydrochloride: In vitro studies. Colloids Surf B 93:249–259

    Article  CAS  Google Scholar 

  144. Sánchez-Muñoz S, Gómez-Ruiz S, Pérez-Quintanilla D, Morante-Zarcero S, Sierra I, Prashar S, Paschke R, Kaluđerović GN (2012) Preliminary study of the anticancer applications of mesoporous materials functionalized with the natural product betulinic acid. Chem Med Chem 7(4):670–679

    Article  CAS  Google Scholar 

  145. Bollu VS, Barui AK, Mondal SK, Prashar S, Fajardo M, Briones D, Rodríguez-Diéguez A, Patra CR, Gómez-Ruiz S (2016) Curcumin-loaded silica-based mesoporous materials: Synthesis, characterization and cytotoxic properties against cancer cells. Mater Sci Eng, C 63:393–410

    Article  CAS  Google Scholar 

  146. Kaluđerović GN, Pérez-Quintanilla D, Žižak Ž, Juranić ZD, Gómez-Ruiz S (2010) Improvement of cytotoxicity of titanocene-functionalized mesoporous materials by the increase of the titanium content. Dalton Trans 39(10):2597–2608

    Article  CAS  Google Scholar 

  147. García-Peñas A, Gómez-Ruiz S, Pérez-Quintanilla D, Paschke R, Sierra I, Prashar S, del Hierro I, Kaluđerović GN (2012) Study of the cytotoxicity and particle action in human cancer cells of titanocene-functionalized materials with potential application against tumors. J Inorg Biochem 106(1):100–110

    Article  CAS  Google Scholar 

  148. Bulatović MZ, Maksimović-Ivanić D, Bensing C, Gómez-Ruiz S, Steinborn D, Schmidt H, Mojić M, Korać A, Golić I, Pérez-Quintanilla D (2014) Organotin (IV)-loaded mesoporous silica as a biocompatible strategy in cancer treatment. Angew Chem Int Ed 53(23):5982–5987

    Article  CAS  Google Scholar 

  149. Zheng Y, Fahrenholtz CD, Hackett CL, Ding S, Day CS, Dhall R, Marrs GS, Gross MD, Singh R, Bierbach U (2017) Large‐Pore Functionalized Mesoporous Silica Nanoparticles as Drug Delivery Vector for a Highly Cytotoxic Hybrid Platinum–Acridine Anticancer Agent. Chemistry–A Eur J 23(14):3386–3397

    Google Scholar 

  150. Durgalakshmi D, Rishvanth R, Rakkesh RA, Bargavi P, Balakumar S, Aruna P, Ganesan S (2020) Chitosan mediated 5-Fluorouracil functionalized silica nanoparticle from rice husk for anticancer activity. Int J Biol Macromol

    Google Scholar 

  151. Abdel-Haliem ME, Hegazy HS, Hassan NS, Naguib DM (2017) Effect of silica ions and nano silica on rice plants under salinity stress. Ecol Eng 99:282–289

    Article  Google Scholar 

  152. Wanyika H, Gatebe E, Kioni P, Tang Z, Gao Y (2012) Mesoporous silica nanoparticles carrier for urea: potential applications in agrochemical delivery systems. J Nanosci Nanotechnol 12(3):2221–2228

    Article  CAS  Google Scholar 

  153. Torney F, Trewyn BG, Lin VS-Y, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2(5):295–300

    Article  CAS  Google Scholar 

  154. Wang W, Martin JC, Fan X, Han A, Luo Z, Sun L (2012) Silica Nanoparticles and Frameworks from Rice Husk Biomass. ACS Appl Mater Interfaces 4(2):977–981

    Article  CAS  Google Scholar 

  155. Kopittke PM, Lombi E, Wang P, Schjoerring JK, Husted S (2019) Nanomaterials as fertilizers for improving plant mineral nutrition and environmental outcomes. Environmental Science: Nano 6(12):3513–3524

    CAS  Google Scholar 

  156. Shang Y, Hasan M, Ahammed GJ, Li M, Yin H, Zhou J (2019) Applications of nanotechnology in plant growth and crop protection: a review. Molecules 24(14):2558

    Article  CAS  Google Scholar 

  157. Janmohammadi M, Amanzadeh T, Sabaghnia N, Ion V (2016) Effect of nano-silicon foliar application on safflower growth under organic and inorganic fertilizer regimes. Botanica Lithuanica 22(1):53–64

    Article  Google Scholar 

  158. Hossain K-Z, Monreal CM, Sayari A (2008) Adsorption of urease on PE-MCM-41 and its catalytic effect on hydrolysis of urea. Colloids Surf B 62(1):42–50

    Article  CAS  Google Scholar 

  159. Mattos BD, Rojas OJ, Magalhães WL (2017) Biogenic silica nanoparticles loaded with neem bark extract as green, slow-release biocide. J Clean Prod 142:4206–4213

    Article  CAS  Google Scholar 

  160. Sibag M, Choi B-G, Suh C, Lee KH, Lee JW, Maeng SK, Cho J (2015) Inhibition of total oxygen uptake by silica nanoparticles in activated sludge. J Hazard Mater 283:841–846

    Article  CAS  Google Scholar 

  161. (a) Cho YK, Park EJ, Kim YD (2014) Removal of oil by gelation using hydrophobic silica nanoparticles. J Ind Eng Chem 20(4):1231–1235. (b) Gomaa H, Shenashen MA, Elbaz A, Yamaguchi H, Abdelmottaleb M, El-Safty SA (2021) Mesoscopic engineering materials for visual detection and selective removal of copper ions from drinking and waste water sources. J Hazard Mater 406:124314

    Google Scholar 

  162. Park S, Ko Y-S, Jung H, Lee C, Woo K, Ko G (2018) Disinfection of waterborne viruses using silver nanoparticle-decorated silica hybrid composites in water environments. Sci Total Environ 625:477–485

    Article  CAS  Google Scholar 

  163. Karim A, Jalil A, Triwahyono S, Sidik S, Kamarudin N, Jusoh R, Jusoh N, Hameed B (2012) Amino modified mesostructured silica nanoparticles for efficient adsorption of methylene blue. J Colloid Interface Sci 386(1):307–314

    Article  CAS  Google Scholar 

  164. Jeelani PG, Mulay P, Venkat R, Ramalingam C (2019) Multifaceted Application of Silica Nanoparticles. A Review. Silicon:1–18

    Google Scholar 

  165. Gribov B, Zinov’ev K, Kalashnik O, Gerasimenko N, Smirnov D, Sukhanov V, Kononov N, Dorofeev S (2017) Production of Silicon Nanoparticles for Use in Solar Cells. Semiconductors 51(13):1675–1680

    Article  Google Scholar 

  166. Arunmetha S, Vinoth M, Srither SR, Karthik A, Sridharpanday M, Suriyaprabha R, Manivasakan P, Rajendran V (2017) Study on Production of Silicon Nanoparticles from Quartz Sand for Hybrid Solar Cell Applications. J Electron Mater 47(1):493–502

    Article  CAS  Google Scholar 

  167. Marchal JC, Krug DJ III, McDonnell P, Sun K, Laine RM (2015) A low cost, low energy route to solar grade silicon from rice hull ash (RHA), a sustainable source. Green Chem 17(7):3931–3940

    Article  CAS  Google Scholar 

  168. Acharya H, Datta S, Banerjee H, Basu S (1982) Low-temperature preparation of polycrystalline silicon from silicon tetrachloride. Mater Lett 1(2):64–66

    Article  CAS  Google Scholar 

  169. Favors Z, Wang W, Bay HH, Mutlu Z, Ahmed K, Liu C, Ozkan M, Ozkan CS (2014) Scalable synthesis of nano-silicon from beach sand for long cycle life Li-ion batteries. Scientific reports 4:5623

    Article  CAS  Google Scholar 

  170. Shen Y (2017) Rice husk silica-derived nanomaterials for battery applications: a literature review. J Agric Food Chem 65(5):995–1004

    Article  CAS  Google Scholar 

  171. Wong DP, Suriyaprabha R, Yuvakumar R, Rajendran V, Chen Y-T, Hwang B-J, Chen L-C, Chen K-H (2014) Binder-free rice husk-based silicon–graphene composite as energy efficient Li-ion battery anodes. J Mater Chem A 2(33):13437–13441

    Article  CAS  Google Scholar 

  172. Cui J, Zhang H, Liu Y, Li S, He W, Hu J, Sun J (2020) Facile, economical and environment-friendly synthesis process of porous N-doped carbon/SiOx composite from rice husks as high-property anode for Li-ion batteries. Electrochim Acta 334:135619

    Article  CAS  Google Scholar 

  173. (a) Zaytseva O, Neumann G (2016) Carbon nanomaterials: production, impact on plant development, agricultural and environmental applications. Chem Biol Technol Agric 3:17. (b) Abdien HG, Cheira MF, Abd-Elraheem MA, Saef El-Naser TA, Zidan IH (2016) Extraction and pre-concentration of uranium using activated carbon impregnated trioctyl phosphine oxide. Elixir Appl. Chem. 100:43462

    Google Scholar 

  174. Rauti R, Musto M, Bosi S, Prato M, Ballerini L (2019) Properties and behavior of carbon nanomaterials when interfacing neuronal cells: How far have we come? Carbon 143:430–446

    Article  CAS  Google Scholar 

  175. Khare R (2005) Carbon nanotube based composites-a review. J Miner Mater Charact Eng 4(01):31

    Google Scholar 

  176. Ummah H, Suriamihardja D, Selintung M, Wahab A (2015) Analysis of chemical composition of rice husk used as absorber plates sea water into clean water. ARPN J Eng Appl Sci 10(14):6046–6050

    CAS  Google Scholar 

  177. Georgakilas V, Perman JA, Tucek J, Zboril R (2015) Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem Rev 115(11):4744–4822

    Article  CAS  Google Scholar 

  178. Gupta V, Rastogi A (2008) Biosorption of lead from aqueous solutions by green algae Spirogyra species: kinetics and equilibrium studies. J Hazard Mater 152(1):407–414

    Article  CAS  Google Scholar 

  179. Gupta V, Srivastava S, Mohan D, Sharma S (1998) Design parameters for fixed bed reactors of activated carbon developed from fertilizer waste for the removal of some heavy metal ions. Waste Manag 17(8):517–522

    Article  Google Scholar 

  180. Gupta VK, Jain C, Ali I, Chandra S, Agarwal S (2002) Removal of lindane and malathion from wastewater using bagasse fly ash—a sugar industry waste. Water Res 36(10):2483–2490

    Article  CAS  Google Scholar 

  181. Zhang C, Long D, Xing B, Qiao W, Zhang R, Zhan L, Liang X, Ling L (2008) The superior electrochemical performance of oxygen-rich activated carbons prepared from bituminous coal. Electrochem Commun 10(11):1809–1811

    Article  CAS  Google Scholar 

  182. Sahu J, Acharya J, Meikap B (2010) Optimization of production conditions for activated carbons from Tamarind wood by zinc chloride using response surface methodology. Biores Technol 101(6):1974–1982

    Article  CAS  Google Scholar 

  183. Yang K, Peng J, Srinivasakannan C, Zhang L, Xia H, Duan X (2010) Preparation of high surface area activated carbon from coconut shells using microwave heating. Biores Technol 101(15):6163–6169

    Article  CAS  Google Scholar 

  184. Donald J, Xu CC, Hashimoto H, Byambajav E, Ohtsuka Y (2010) Novel carbon-based Ni/Fe catalysts derived from peat for hot gas ammonia decomposition in an inert helium atmosphere. Appl Catal A 375(1):124–133

    Article  CAS  Google Scholar 

  185. Ma J, Tan J, Du X, Li R (2010) Effects of preparation parameters on the textural features of a granular zeolite/activated carbon composite material synthesized from elutrilithe and pitch. Microporous Mesoporous Mater 132(3):458–463

    Article  CAS  Google Scholar 

  186. Seredych M, Deliyanni E, Bandosz TJ (2010) Role of microporosity and surface chemistry in adsorption of 4, 6-dimethyldibenzothiophene on polymer-derived activated carbons. Fuel 89(7):1499–1507

    Article  CAS  Google Scholar 

  187. Yuen FK, Hameed B (2009) Recent developments in the preparation and regeneration of activated carbons by microwaves. Adv Coll Interface Sci 149(1–2):19–27

    Article  CAS  Google Scholar 

  188. Gupta V (2009) Application of low-cost adsorbents for dye removal–a review. J Environ Manage 90(8):2313–2342

    Article  CAS  Google Scholar 

  189. Guo Y, Rockstraw DA (2007) Activated carbons prepared from rice hull by one-step phosphoric acid activation. Microporous Mesoporous Mater 100(1–3):12–19

    Article  CAS  Google Scholar 

  190. Ghosh R (2013) A Review Study on Precipitated Silica and Activated Carbon from Rice Husk. J Chem Eng & Process Technol 4(04)

    Google Scholar 

  191. Shrestha LK, Thapa M, Shrestha RG, Maji S, Pradhananga RR, Ariga K (2019) Rice husk-derived high surface area nanoporous carbon materials with excellent iodine and methylene blue adsorption properties. C—Journal Carbon Res 5(1):10

    Google Scholar 

  192. Le Van K, Luong Thi TT (2014) Activated carbon derived from rice husk by NaOH activation and its application in supercapacitor. Prog Nat Sci: Mater Int 24(3):191–198

    Article  CAS  Google Scholar 

  193. Fathy NA (2017) Carbon nanotubes synthesis using carbonization of pretreated rice straw through chemical vapor deposition of camphor. RSC Adv 7(45):28535–28541

    Article  CAS  Google Scholar 

  194. Geng D, Wang H, Yu G (2015) Graphene single crystals: size and morphology engineering. Adv Mater 27(18):2821–2837

    Article  CAS  Google Scholar 

  195. Novoselov KS, Fal V, Colombo L, Gellert P, Schwab M, Kim K (2012) A roadmap for graphene. Nature 490(7419):192–200

    Article  CAS  Google Scholar 

  196. Bhuyan MSA, Uddin MN, Islam MM, Bipasha FA, Hossain SS (2016) Synthesis of graphene. International. Nano Lett 6(2):65–83

    Article  CAS  Google Scholar 

  197. Ismail MS, Yusof N, Yusop MZM, Fauzi A (2019) Synthesis and characterization of graphene derived from rice husks. Malays J Fundam Appl Sci 15(4):516–521

    Article  Google Scholar 

  198. Wang Z, Yu J, Zhang X, Li N, Liu B, Li Y, Wang Y, Wang W, Li Y, Zhang L, Dissanayake S, Suib SL, Sun L (2016) Large-Scale and Controllable Synthesis of Graphene Quantum Dots from Rice Husk Biomass: A Comprehensive Utilization Strategy. ACS Appl Mater Interfaces 8(2):1434–1439

    Article  CAS  Google Scholar 

  199. Singh P, Bahadur J, Pal K (2017) One-Step One Chemical Synthesis Process of Graphene from Rice Husk for Energy Storage Applications. Graphene 06(03):61–71

    Article  CAS  Google Scholar 

  200. Sankar S, Lee H, Jung H, Kim A, Ahmed ATA, Inamdar AI, Kim H, Lee S, Im H, Kim DY (2017) Ultrathin graphene nanosheets derived from rice husks for sustainable supercapacitor electrodes. New J Chem 41(22):13792–13797

    Article  CAS  Google Scholar 

  201. De Volder MF, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. science 339(6119):535–539

    Google Scholar 

  202. Nasibulin AG, Shandakov SD, Nasibulina LI, Cwirzen A, Mudimela PR, Habermehl-Cwirzen K, Grishin DA, Gavrilov YV, Malm JE, Tapper U (2009) A novel cement-based hybrid material. New J Phys 11(2):023013

    Article  CAS  Google Scholar 

  203. Peddini S, Bosnyak C, Henderson N, Ellison CJ, Paul DR (2014) Nanocomposites from styrene-butadiene rubber (SBR) and multiwall carbon nanotubes (MWCNT) part 1: Morphology and rheology. Polymer 55(1):258–270

    Article  CAS  Google Scholar 

  204. Luinge H (2011) Nano-modified materials in aviation: Carbon nanotubes for lighter airplane outer shells. Konstruktion

    Google Scholar 

  205. Uritu CM, Varganici CD, Ursu L, Coroaba A, Nicolescu A, Dascalu AI, Peptanariu D, Stan D, Constantinescu CA, Simion V (2015) Hybrid fullerene conjugates as vectors for DNA cell-delivery. J Mater Chem B 3(12):2433–2446

    Article  CAS  Google Scholar 

  206. Bergeson LL, Cole MF (2012) Fullerenes used in skin creams. Nanotech L & Bus 9:114

    Google Scholar 

  207. Choi W, Lahiri I, Seelaboyina R, Kang YS (2010) Synthesis of graphene and its applications: a review. Crit Rev Solid State Mater Sci 35(1):52–71

    Article  CAS  Google Scholar 

  208. Das R, Ali ME, Hamid SBA, Ramakrishna S, Chowdhury ZZ (2014) Carbon nanotube membranes for water purification: a bright future in water desalination. Desalination 336:97–109

    Article  CAS  Google Scholar 

  209. Khan NA, Khan SU, Ahmed S, Farooqi IH, Dhingra A, Hussain A, Changani F (2019) Applications of Nanotechnology in Water and Wastewater Treatment: A Review. Asian J Water Environ Pollut 16(4):81–86

    Article  Google Scholar 

  210. Yan H, Gong A, He H, Zhou J, Wei Y, Lv L (2006) Adsorption of microcystins by carbon nanotubes. Chemosphere 62(1):142–148

    Article  CAS  Google Scholar 

  211. Li Y-H, Wang S, Wei J, Zhang X, Xu C, Luan Z, Wu D, Wei B (2002) Lead adsorption on carbon nanotubes. Chem Phys Lett 357(3–4):263–266

    Article  CAS  Google Scholar 

  212. Dichiara AB, Webber MR, Gorman WR, Rogers RE (2015) Removal of copper ions from aqueous solutions via adsorption on carbon nanocomposites. ACS Appl Mater Interfaces 7(28):15674–15680

    Article  CAS  Google Scholar 

  213. Zhang L, Song X, Liu X, Yang L, Pan F, Lv J (2011) Studies on the removal of tetracycline by multi-walled carbon nanotubes. Chem Eng J 178:26–33

    Article  CAS  Google Scholar 

  214. Deng J, Shao Y, Gao N, Deng Y, Tan C, Zhou S, Hu X (2012) Multiwalled carbon nanotubes as adsorbents for removal of herbicide diuron from aqueous solution. Chem Eng J 193:339–347

    Article  CAS  Google Scholar 

  215. Zheng X, Su Y, Chen Y, Wei Y, Li M, Huang H (2014) The effects of carbon nanotubes on nitrogen and phosphorus removal from real wastewater in the activated sludge system. RSC Adv 4(86):45953–45959

    Article  CAS  Google Scholar 

  216. Kraus GA, Seidl PR, and Stankiewicz A, Green materials for sustainable water remediation and treatment. 2013: Royal Society of Chemistry

    Google Scholar 

  217. Srivastava M, Abhilash P, Singh N (2011) Remediation of lindane using engineered nanoparticles. J Biomed Nanotechnol 7(1):172–174

    Article  CAS  Google Scholar 

  218. Wang L, Fortner JD, Hou L, Zhang C, Kan AT, Tomson MB, Chen W (2013) Contaminant-mobilizing capability of fullerene nanoparticles (nC60): Effect of solvent-exchange process in nC60 formation. Environ Toxicol Chem 32(2):329–336

    Article  CAS  Google Scholar 

  219. Yoo J, Ozawa H, Fujigaya T, Nakashima N (2011) Evaluation of affinity of molecules for carbon nanotubes. Nanoscale 3(6):2517–2522

    Article  CAS  Google Scholar 

  220. Wang H, Ma H, Zheng W, An D, Na C (2014) Multifunctional and recollectable carbon nanotube ponytails for water purification. ACS Appl Mater Interfaces 6(12):9426–9434

    Article  CAS  Google Scholar 

  221. Jung JH, Hwang GB, Lee JE, Bae GN (2011) Preparation of airborne Ag/CNT hybrid nanoparticles using an aerosol process and their application to antimicrobial air filtration. Langmuir 27(16):10256–10264

    Article  CAS  Google Scholar 

  222. Al-Hakami SM, Khalil AB, Laoui T, and Atieh MA (2013) Fast disinfection of Escherichia coli bacteria using carbon nanotubes interaction with microwave radiation. Bioinorganic chemistry and applications 2013

    Google Scholar 

  223. González-Melendi P, Fernández-Pacheco R, Coronado MJ, Corredor E, Testillano P, Risueño MC, Marquina C, Ibarra MR, Rubiales D, Pérez-de-Luque A (2008) Nanoparticles as smart treatment-delivery systems in plants: assessment of different techniques of microscopy for their visualization in plant tissues. Ann Bot 101(1):187–195

    Article  Google Scholar 

  224. Zhang M, Gao B, Chen J, Li Y, Creamer AE, Chen H (2014) Slow-release fertilizer encapsulated by graphene oxide films. Chem Eng J 255:107–113

    Article  CAS  Google Scholar 

  225. Giraldo JP, Landry MP, Faltermeier SM, McNicholas TP, Iverson NM, Boghossian AA, Reuel NF, Hilmer AJ, Sen F, Brew JA (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13(4):400–408

    Article  CAS  Google Scholar 

  226. Wang X, Liu X, Chen J, Han H, Yuan Z (2014) Evaluation and mechanism of antifungal effects of carbon nanomaterials in controlling plant fungal pathogen. Carbon 68:798–806

    Article  CAS  Google Scholar 

  227. Liu S, Hu M, Zeng TH, Wu R, Jiang R, Wei J, Wang L, Kong J, Chen Y (2012) Lateral dimension-dependent antibacterial activity of graphene oxide sheets. Langmuir 28(33):12364–12372

    Article  CAS  Google Scholar 

  228. Akhavan O, Ghaderi E (2010) Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4(10):5731–5736

    Article  CAS  Google Scholar 

  229. He H, Pham-Huy LA, Dramou P, Xiao D, Zuo P, Pham-Huy C (2013) Carbon nanotubes: applications in pharmacy and medicine. Biomed Res Int 2013:578290

    Article  Google Scholar 

  230. Singh B, Baburao C, Pispati V, Pathipati H, Muthy N, Prassana S, and Rathode BG (2012) Carbon nanotubes. A novel drug delivery system. International Journal of Research in Pharmacy and Chemistry 2(2):523–532

    Google Scholar 

  231. Al-Jamal KT, Nerl H, Müller KH, Ali-Boucetta H, Li S, Haynes PD, Jinschek JR, Prato M, Bianco A, Kostarelos K (2011) Cellular uptake mechanisms of functionalised multi-walled carbon nanotubes by 3D electron tomography imaging. Nanoscale 3(6):2627–2635

    Article  CAS  Google Scholar 

  232. Elhissi A, Ahmed W, Hassan IU, Dhanak V, and D’Emanuele A (2012) Carbon nanotubes in cancer therapy and drug delivery. Journal of drug delivery 2012

    Google Scholar 

  233. Maiti D, Tong X, Mou X, Yang K (2018) Carbon-Based Nanomaterials for Biomedical Applications: A Recent Study. Front Pharmacol 9:1401

    Article  CAS  Google Scholar 

  234. Gera Y (2017) Applications of Graphene in Medicine and Electronics: A Review. IOSR Journal of Applied Physics 09(04):19–28

    Article  Google Scholar 

  235. Song J, Yang X, Jacobson O, Lin L, Huang P, Niu G, Ma Q, Chen X (2015) Sequential drug release and enhanced photothermal and photoacoustic effect of hybrid reduced graphene oxide-loaded ultrasmall gold nanorod vesicles for cancer therapy. ACS Nano 9(9):9199–9209

    Article  CAS  Google Scholar 

  236. Cheon YA, Bae JH, Chung BG (2016) Reduced graphene oxide nanosheet for chemo-photothermal therapy. Langmuir 32(11):2731–2736

    Article  CAS  Google Scholar 

  237. Fong YT, Chen C-H, Chen J-P (2017) Intratumoral delivery of doxorubicin on folate-conjugated graphene oxide by in-situ forming thermo-sensitive hydrogel for breast cancer therapy. Nanomaterials 7(11):388

    Article  CAS  Google Scholar 

  238. Su S, Wang J, Vargas E, Wei J, Martínez-Zaguilán R, Sennoune SR, Pantoya ML, Wang S, Chaudhuri J, Qiu J (2016) Porphyrin immobilized nanographene oxide for enhanced and targeted photothermal therapy of brain cancer. ACS Biomaterials Science & Engineering 2(8):1357–1366

    Article  CAS  Google Scholar 

  239. Shao L, Zhang R, Lu J, Zhao C, Deng X, Wu Y (2017) Mesoporous silica coated polydopamine functionalized reduced graphene oxide for synergistic targeted chemo-photothermal therapy. ACS Appl Mater Interfaces 9(2):1226–1236

    Article  CAS  Google Scholar 

  240. Peng X, Li Y, Luan Z, Di Z, Wang H, Tian B, Jia Z (2003) Adsorption of 1, 2-dichlorobenzene from water to carbon nanotubes. Chem Phys Lett 376(1–2):154–158

    Article  CAS  Google Scholar 

  241. Lu C, Su F, Hu S (2008) Surface modification of carbon nanotubes for enhancing BTEX adsorption from aqueous solutions. Appl Surf Sci 254(21):7035–7041

    Article  CAS  Google Scholar 

  242. Cho H-H, Wepasnick K, Smith BA, Bangash FK, Fairbrother DH, Ball WP (2010) Sorption of aqueous Zn [II] and Cd [II] by multiwall carbon nanotubes: the relative roles of oxygen-containing functional groups and graphenic carbon. Langmuir 26(2):967–981

    Article  CAS  Google Scholar 

  243. Li Y-H, Ding J, Luan Z, Di Z, Zhu Y, Xu C, Wu D, Wei B (2003) Competitive adsorption of Pb2 + , Cu2 + and Cd2 + ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 41(14):2787–2792

    Article  CAS  Google Scholar 

  244. Madrakian T, Afkhami A, Ahmadi M, Bagheri H (2011) Removal of some cationic dyes from aqueous solutions using magnetic-modified multi-walled carbon nanotubes. J Hazard Mater 196:109–114

    Article  CAS  Google Scholar 

  245. Ray PZ, Shipley HJ (2015) Inorganic nano-adsorbents for the removal of heavy metals and arsenic: a review. RSC Adv 5(38):29885–29907

    Article  CAS  Google Scholar 

  246. Zhao Y, Zhao D, Chen C, Wang X (2013) Enhanced photo-reduction and removal of Cr (VI) on reduced graphene oxide decorated with TiO2 nanoparticles. J Colloid Interface Sci 405:211–217

    Article  CAS  Google Scholar 

  247. Tan L, Wang Y, Liu Q, Wang J, Jing X, Liu L, Liu J, Song D (2015) Enhanced adsorption of uranium (VI) using a three-dimensional layered double hydroxide/graphene hybrid material. Chem Eng J 259:752–760

    Article  CAS  Google Scholar 

  248. Gupta V, Rastogi A (2008) Equilibrium and kinetic modelling of cadmium (II) biosorption by nonliving algal biomass Oedogonium sp. from aqueous phase. J Hazard Mater 153(1–2):759–766

    Google Scholar 

  249. Li L, Zhou G, Weng Z, Shan X-Y, Li F, Cheng H-M (2014) Monolithic Fe2O3/graphene hybrid for highly efficient lithium storage and arsenic removal. Carbon 67:500–507

    Article  CAS  Google Scholar 

  250. Zhang W, Shi X, Zhang Y, Gu W, Li B, Xian Y (2013) Synthesis of water-soluble magnetic graphene nanocomposites for recyclable removal of heavy metal ions. J Mater Chem A 1(5):1745–1753

    Article  CAS  Google Scholar 

  251. Ghasemi Z, Younesi H, Kazemian H (2011) Synthesis of nanozeolite sodalite from rice husk ash without organic additives. Can J Chem Eng 89(3):601–608

    Article  CAS  Google Scholar 

  252. Sari ZGLV, Younesi H, Kazemian H (2014) Synthesis of nanosized ZSM-5 zeolite using extracted silica from rice husk without adding any alumina source. Appl Nanosci 5(6):737–745

    Article  CAS  Google Scholar 

  253. Tan W-C, Yap S-Y, Matsumoto A, Othman R, Yeoh F-Y (2011) Synthesis and characterization of zeolites NaA and NaY from rice husk ash. Adsorption 17(5):863–868

    Article  CAS  Google Scholar 

  254. Song Z, Huang Y, Xu WL, Wang L, Bao Y, Li S, Yu M (2015) Continuously adjustable, molecular-sieving “gate” on 5A zeolite for distinguishing small organic molecules by size. Sci Rep 5:13981

    Article  Google Scholar 

  255. Μolla A, Ioannou Z, Mollas S, Skoufogianni E, Dimirkou A (2017) Removal of chromium from soils cultivated with maize (Zea mays) after the addition of natural minerals as soil amendments. Bull Environ Contam Toxicol 98(3):347–352

    Article  CAS  Google Scholar 

  256. Voronina A, Blinova M, Semenishchev V, Gupta D (2015) Returning land contaminated as a result of radiation accidents to farming use. J Environ Radioact 144:103–112

    Article  CAS  Google Scholar 

  257. Fruijtier-Pölloth C (2009) The safety of synthetic zeolites used in detergents. Arch Toxicol 83(1):23–35

    Article  CAS  Google Scholar 

  258. Bacakova L, Vandrovcova M, Kopova I, Jirka I (2018) Applications of zeolites in biotechnology and medicine – a review. Biomater Sci 6(5):974–989

    Article  CAS  Google Scholar 

  259. Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92(3):407–418

    Article  CAS  Google Scholar 

  260. Wang S, Peng Y (2010) Natural zeolites as effective adsorbents in water and wastewater treatment. Chem Eng J 156(1):11–24

    Article  CAS  Google Scholar 

  261. Moussavi G, Talebi S, Farrokhi M, Sabouti RM (2011) The investigation of mechanism, kinetic and isotherm of ammonia and humic acid co-adsorption onto natural zeolite. Chem Eng J 171(3):1159–1169

    Article  CAS  Google Scholar 

  262. Inglezakis V, Doula M, Aggelatou V, Zorpas A (2010) Removal of iron and manganese from underground water by use of natural minerals in batch mode treatment. Desalination Water Treat 18(1–3):341–346

    Article  CAS  Google Scholar 

  263. Derakhshankhah H, Jafari S, Sarvari S, Barzegari E, Moakedi F, Ghorbani M, Shiri Varnamkhasti B, Jaymand M, Izadi Z, Tayebi L (2020) Biomedical Applications of Zeolitic Nanoparticles, with an Emphasis on Medical Interventions. Int J Nanomedicine 15:363–386

    Article  CAS  Google Scholar 

  264. Bedi RS, Zanello LP, Yan Y (2009) Osteoconductive and osteoinductive properties of zeolite MFI coatings on titanium alloys. Adv Func Mater 19(24):3856–3861

    Article  CAS  Google Scholar 

  265. Bedi RS, Chow G, Wang J, Zanello L, Yan YS (2012) Bioactive Materials for Regenerative Medicine: Zeolite-Hydroxyapatite Bone Mimetic Coatings. Adv Eng Mater 14(3):200–206

    Article  CAS  Google Scholar 

  266. Cefali EA, Nolan JC, McConnell WR, Walters DL (1995) Pharmacokinetic study of zeolite A, sodium aluminosilicate, magnesium silicate, and aluminum hydroxide in dogs. Pharm Res 12(2):270–274

    Article  CAS  Google Scholar 

  267. Pavelic K, Katic M, Sverko V, Marotti T, Bosnjak B, Balog T, Stojkovic R, Radacic M, Colic M, Poljak-Blazi M (2002) Immunostimulatory effect of natural clinoptilolite as a possible mechanism of its antimetastatic ability. J Cancer Res Clin Oncol 128(1):37–44

    Article  CAS  Google Scholar 

  268. Colic M, Pavelic K (2000) Molecular mechanisms of anticancer activity of natural dietetic products. J Mol Med 78(6):333–336

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammed Y. Emran or Hassanien Gomaa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ali, S.H., Emran, M.Y., Gomaa, H. (2021). Rice Husk-Derived Nanomaterials for Potential Applications. In: Makhlouf, A.S.H., Ali, G.A.M. (eds) Waste Recycling Technologies for Nanomaterials Manufacturing. Topics in Mining, Metallurgy and Materials Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-68031-2_19

Download citation

Publish with us

Policies and ethics