Skip to main content

Recent Trends of Recycled Carbon-Based Nanomaterials and Their Applications

  • Chapter
  • First Online:
Waste Recycling Technologies for Nanomaterials Manufacturing

Abstract

“There’s Plenty of Room at the Bottom: An Invitation to Enter a New Field of Physics” said Richard Feynman in 1959, this lecture opened the way to the new field of science which we know today as nanotechnology. Materials’ manipulation at a very small size, ranges from 1 to 100 nm (nanoworld or the nano-edge) is well-known as nanotechnology. Since then, a lot of investigations and research were devoted by many researchers around the globe to keep an eye on the different properties and behavior of nanomaterials. Materials with at least one nanoscale dimension are called nanomaterials that have outstanding features compared to their bulk counterparts. These exceptional characteristics are due to the relatively-high surface area and the relatively-large surface atoms compared to those in the inner mass. Thus, nanomaterials have attractive chemical, physical, electronic, physiological, and optical properties. In this chapter, we are covering the historical overview and origin of nanomaterials to their recent applications. In addition, types and applications of recycled carbon-based nanomaterials as an example have also been discussed.

Authors: M. Abd Elkodousa and Gharieb S. El-Sayyad are equally contibuted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

C60:

Fullerenes

CDs:

Carbon dots

CNFs:

Carbon nanofibers

CNHs:

Carbon nanohorns

CNMs:

Carbon nanomaterials

CNOs:

Carbon nanoonions

CNPs:

Carbon nanoparticles

CNTs:

Carbon nanotubes

DDGS:

Distiller’s dried grains

DNA:

Deoxyribonucleic acid

FCNDs:

Fluorescent carbon nanodots

FESEM:

Field emission scanning electron microscope

GO:

Graphene oxide

HRTM:

High resolution transmission microscope

NMs:

Nanomaterials

NPs:

Nanoparticles

QDs:

Quantum dots

SEM:

Scanning electron microscope

References

  1. Wong CW, Chan YS, Jeevanandam J, Pal K, Bechelany M, Abd Elkodous M, El-Sayyad GS (2020) Response Surface Methodology Optimization of Mono-dispersed MgO Nanoparticles Fabricated by Ultrasonic-Assisted Sol-Gel Method for Outstanding Antimicrobial and Antibiofilm Activities. J Cluster Sci 31:367–389

    Article  CAS  Google Scholar 

  2. Govindasamy G, Pal K, Abd Elkodous M, El-Sayyad GS, Gautam K, Murugasan P (2019) Growth dynamics of CBD-assisted CuS nanostructured thin-film: optical, dielectric and novel switchable device applications. J Mater Sci: Mater Electron 30(17):16463–16477

    CAS  Google Scholar 

  3. Abd Elkodous M, El-Sayyad GS, Abdel Maksoud MIA, Abdelrahman IY, Mosallam FM, Gobara M, El-Batal AI (2019) Fabrication of ultra-pure anisotropic zinc oxide nanoparticles via simple and cost-effective route: implications for UTI and EAC medications. Biol Trace Elem Res 196:297–317

    Google Scholar 

  4. Fouad OA, Makhlouf SA, Ali GAM, El-Sayed AY (2011) Cobalt/silica nanocomposite via thermal calcination-reduction of gel precursors. Mater Chem Phys 128(1):70–76

    Article  CAS  Google Scholar 

  5. Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK (2018) Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 9(1):1050–1074

    Article  CAS  Google Scholar 

  6. Ali GAM, Fouad OA, Makhlouf SA (2013) Structural, optical and electrical properties of sol-gel prepared mesoporous Co3O4/SiO2 nanocomposites. J Alloy Compd 579:606–611

    Google Scholar 

  7. Nathan A, Ahnood A, Cole MT, Lee S, Suzuki Y, Hiralal P, Bonaccorso F, Hasan T, Garcia-Gancedo L, Dyadyusha A (2012) Flexible electronics: the next ubiquitous platform. Proceedings of the IEEE 100(Special Centennial Issue):1486–1517

    Google Scholar 

  8. Xu P, Zeng GM, Huang DL, Feng CL, Hu S, Zhao MH, Lai C, Wei Z, Huang C, Xie GX (2012) Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ 424:1–10

    Article  CAS  Google Scholar 

  9. Charitidis CA, Georgiou P, Koklioti MA, Trompeta A-F, Markakis V (2014) Manufacturing nanomaterials: from research to industry. Manuf Rev 1:11–29

    Google Scholar 

  10. De Marchi L, Pretti C, Gabriel B, Marques PA, Freitas R, Neto V (2018) An overview of graphene materials: Properties, applications and toxicity on aquatic environments. Sci Total Environ 631:1440–1456

    Article  CAS  Google Scholar 

  11. Aneggi E, de Leitenburg C, Boaro M, Fornasiero P, Trovarelli A (2020) Catalytic applications of cerium dioxide. In: Cerium Oxide (CeO2): Synthesis, Properties and Applications. Elsevier, pp 45–108

    Google Scholar 

  12. Elkodous MA, Hassaan A, Ghoneim A, Abdeen Z (2018) C-dots dispersed macro-mesoporous TiO2 photocatalyst for effective waste water treatment. Charact Appl Nanomater 1(2):1–9

    Google Scholar 

  13. Asiya SI, Pal K, El-Sayyad GS, Elkodous MA, Demetriades C, Kralj S, Thomas S (2019) Reliable optoelectronic switchable device implementation by CdS nanowires conjugated bent-core liquid crystal matrix. Org Electron 82:105592

    Google Scholar 

  14. Jeevanandam J, Sundaramurthy A, Sharma V, Murugan C, Pal K, Abdel Kodous MH, Danquah MK (2020) Chapter 4—Sustainability of One-Dimensional Nanostructures: Fabrication and Industrial Applications. In: G Szekely, A Livingston (eds) Sustainable Nanoscale Engineering. Elsevier, pp 83–113

    Google Scholar 

  15. Elkhenany H, Abd Elkodous M, Ghoneim NI, Ahmed TA, Ahmed SM, Mohamed IK, El-Badri N (2020) Comparison of different uncoated and starch-coated superparamagnetic iron oxide nanoparticles: Implications for stem cell tracking. Int J Biol Macromol 143:763–774

    Article  CAS  Google Scholar 

  16. Fouad OA, Ali GAM, El-erian MAI, Makhlouf SA (2012) Humidity sensing properties of cobalt oxide/silica nanocomposites prepared aia sol–gel and related routes. NANO 07(05):1250038

    Article  CAS  Google Scholar 

  17. Ghawanmeh AA, Ali GAM, Algarni H, Sarkar SM, Chong KF (2019) Graphene oxide-based hydrogels as a nanocarrier for anticancer drug delivery. Nano Res 12(5):973–990

    Google Scholar 

  18. Kohle FF, Hinckley JA, Li S, Dhawan N, Katt WP, Erstling JA, Werner-Zwanziger U, Zwanziger J, Cerione RA, Wiesner UB (2019) Amorphous Quantum Nanomaterials. Adv Mater 31(5):1806993

    Article  CAS  Google Scholar 

  19. Liu P, Williams JR, Cha JJ (2019) Topological nanomaterials. Nature Reviews Materials:1

    Google Scholar 

  20. Varghese RJ, Parani S, Thomas S, Oluwafemi OS, Wu J (2019) Introduction to nanomaterials: synthesis and applications. In: Nanomaterials for Solar Cell Applications. Elsevier, pp 75–95

    Google Scholar 

  21. Lee SP, Ali GAM, Algarni H, Chong KF (2019) Flake size-dependent adsorption of graphene oxide aerogel. J Mol Liq 277:175–180

    Article  CAS  Google Scholar 

  22. Hegde G, Abdul Manaf SA, Kumar A, Ali GAM, Chong KF, Ngaini Z, Sharma KV (2015) Biowaste Sago Bark Based Catalyst Free Carbon Nanospheres: Waste to Wealth Approach. ACS Sustainable Chem Eng 3(9):2247–2253

    Google Scholar 

  23. Hochella MF, Mogk DW, Ranville J, Allen IC, Luther GW, Marr LC, McGrail BP, Murayama M, Qafoku NP, Rosso KM, Sahai N, Schroeder PA, Vikesland P, Westerhoff P, Yang Y (2019) Natural, incidental, and engineered nanomaterials and their impacts on the Earth system. Science 363(6434):eaau8299

    Google Scholar 

  24. Hochella MF, Mogk DW, Ranville J, Allen IC, Luther GW, Marr LC, McGrail BP, Murayama M, Qafoku NP, Rosso KM (2019) Natural, incidental, and engineered nanomaterials and their impacts on the Earth system. Science 363(6434):eaau8299

    Google Scholar 

  25. Damiati S, Haslam C, Awan S, Kodzius R, Sleytr U, Schuster B (2019) Natural Nanomaterials as Building Blocks for Designing Biosensors

    Google Scholar 

  26. Xie M, Xu M, Chen X, Li Y (2019) Recent progress of supercritical carbon dioxide in producing natural nanomaterials. Mini Rev Med Chem 19(6):465–476

    Article  CAS  Google Scholar 

  27. Madkour LH (2019) Where are Nanomaterials (Nms) Found? In: Nanoelectronic Materials. Springer, pp 91–100

    Google Scholar 

  28. Radwan IMO (2019) Fate of Nanomaterials in the Environment: Effects of Particle Size, Capping agent and Surface Cleaning Products on the Stability of Silver Nanomaterials. In: Colloidal Consumer Products. University of Cincinnati

    Google Scholar 

  29. Ghio A, Soukup J, Madden M, Berntsen J, Hays M, Gonzalez D, Paulson S (2019) Fulvic Acid Participates in the Biological Effects of Cigarette and Wood Smoke Particles. In: A50. Molecular mechanisms of environmental and occupational lung diseases. American Thoracic Society. p A1823

    Google Scholar 

  30. Abd Elkodous M, El-Sayyad GS, Abdelrahman IY, El-Bastawisy HS, Mohamed AE, Mosallam FM, Nasser HA, Gobara M, Baraka A, Elsayed MA, El-Batal AI (2019) Therapeutic and diagnostic potential of nanomaterials for enhanced biomedical applications. Colloids Surf, B 180:411–428

    Article  CAS  Google Scholar 

  31. Pal K, Sajjadifar S, Abd Elkodous M, Alli YA, Gomes F, Jeevanandam J, Thomas S, Sigov A (2019) Soft, Self-Assembly Liquid Crystalline Nanocomposite for Superior Switching. Electron Mater Lett 15(1):84–101

    Article  CAS  Google Scholar 

  32. Thirugnanasambandan T, Pal K, Elkodous MA, Prasath H, Kulasekarapandian K, Ayeshamariam A, Jeevanandam J (2018) Aggrandize efficiency of ultra-thin silicon solar cell via topical clustering of silver nanoparticles. Nano-Structures & Nano-Objects 16:224–233

    Article  CAS  Google Scholar 

  33. Abd Elkodous M, El-Sayyad GS, Nasser HA, Elshamy AA, Morsi M, Abdelrahman IY, Kodous AS, Mosallam FM, Gobara M, El-Batal AI (2019) Engineered Nanomaterials as Potential Candidates for HIV Treatment: Between Opportunities and Challenges. J Cluster Sci 30(3):531–540

    Article  CAS  Google Scholar 

  34. Pal K, Elkodous MA, Mohan MLNM (2018) CdS nanowires encapsulated liquid crystal in-plane switching of LCD device. J Mater Sci: Mater Electron 29(12):10301–10310

    CAS  Google Scholar 

  35. Khan ST, Malik A (2019) Engineered nanomaterials for water decontamination and purification: From lab to products. J Hazard Mater 363:295–308

    Article  CAS  Google Scholar 

  36. Ali GAM, Tan LL, Jose R, Yusoff MM, Chong KF (2014) Electrochemical performance studies of MnO2 nanoflowers recovered from spent battery. Mater Res Bull 60:5–9

    Article  CAS  Google Scholar 

  37. Ali GAM, Yusoff MM, Shaaban ER, Chong KF (2017) High performance MnO2 nanoflower supercapacitor electrode by electrochemical recycling of spent batteries. Ceram Int 43:8440–8448

    Article  CAS  Google Scholar 

  38. Aboelazm EAA, Ali GAM, Algarni H, Yin H, Zhong YL, Chong KF (2018) Magnetic Electrodeposition of the Hierarchical Cobalt Oxide Nanostructure from Spent Lithium-Ion Batteries: Its Application as a Supercapacitor Electrode. J Phys Chem C 122(23):12200–12206

    Article  CAS  Google Scholar 

  39. Ali GAM, Yusoff MM, Algarni H, Chong KF (2018) One-step electrosynthesis of MnO2/rGO nanocomposite and its enhanced electrochemical performance. Ceram Int 44(7):7799–7807

    Google Scholar 

  40. Hu Y, Yang J, Tian J, Jia L, Yu J-S (2014) Green and size-controllable synthesis of photoluminescent carbon nanoparticles from waste plastic bags. RSC Advances 4(88):47169–47176

    Article  CAS  Google Scholar 

  41. Rajarao R, Ferreira R, Sadi SHF, Khanna R, Sahajwalla V (2014) Synthesis of silicon carbide nanoparticles by using electronic waste as a carbon source. Mater Lett 120:65–68

    Article  CAS  Google Scholar 

  42. Myakonkaya O, Hu Z, Nazar MF, Eastoe J (2010) Recycling functional colloids and nanoparticles. Chemistry–A Eur J 16(39):11784–11790

    Google Scholar 

  43. Myakonkaya O, Guibert C, Eastoe J, Grillo I (2010) Recovery of nanoparticles made easy. Langmuir 26(6):3794–3797

    Article  CAS  Google Scholar 

  44. Li C, Liu C, Wang W, Mutlu Z, Bell J, Ahmed K, Ye R, Ozkan M, Ozkan CS (2017) Silicon derived from glass bottles as anode materials for lithium ion full cell batteries. Scientific reports 7(1):917

    Article  CAS  Google Scholar 

  45. Sugumaran P, Susan VP, Ravichandran P, Seshadri S (2012) Production and characterization of activated carbon from banana empty fruit bunch and Delonix regia fruit pod. J Sustain Energy & Environ 3(3):125–132

    Google Scholar 

  46. Van Thuan T, Quynh BTP, Nguyen TD, Bach LG (2017) Response surface methodology approach for optimization of Cu2+, Ni2+ and Pb2+ adsorption using KOH-activated carbon from banana peel. Surf Interfaces 6:209–217

    Google Scholar 

  47. Subramanian V, Luo C, Stephan AM, Nahm KS, Thomas S, Wei B (2007) Supercapacitors from Activated Carbon Derived from Banana Fibers. J Phys Chem C 111(20):7527–7531

    Article  CAS  Google Scholar 

  48. Ali GAM, Abdul Manaf SA, Kumar A, Chong KF, Hegde G (2014) High performance supercapacitor using catalysis free porous carbon nanoparticles. J Phys D-Appl Phys 47(49):495307–495313

    Article  CAS  Google Scholar 

  49. Ali GAM, Manaf SAA, Chong KF, Hegde, G (2016) Superior supercapacitive performance in porous nanocarbons. J Energy Chem 25(4):734–739

    Article  Google Scholar 

  50. Bello A, Manyala N, Barzegar F, Khaleed AA, Momodu DY, Dangbegnon JK (2016) Renewable pine cone biomass derived carbon materials for supercapacitor application. Rsc Advances 6(3):1800–1809

    Article  CAS  Google Scholar 

  51. Ali GAM, Habeeb OA, Algarni H, Chong KF (2018) CaO impregnated highly porous honeycomb activated carbon from agriculture waste: symmetrical supercapacitor study. J Mater Sci 54:683–692

    Article  CAS  Google Scholar 

  52. Habeeb OA, Ramesh K, Ali GAM, Yunus RM, Olalere OA (2017) Kinetic, Isotherm and Equilibrium Study of Adsorption of Hydrogen Sulfide From Wastewater Using Modified Eggshells. IIUM Eng J 18(1):13–25

    Article  Google Scholar 

  53. Blaschek HP, Ezeji TC, Scheffran J (2010) Biofuels from agricultural wastes and byproducts: an introduction. Biofuels from agricultural wastes and byproducts. Wiley, Ames:3–10

    Google Scholar 

  54. Wang Z, Shen D, Wu C, Gu S (2018) State-of-the-art on the production and application of carbon nanomaterials from biomass. Green Chem 20(22):5031–5057

    Article  CAS  Google Scholar 

  55. Scarlat N, Dallemand J-F, Monforti-Ferrario F, Nita V (2015) The role of biomass and bioenergy in a future bioeconomy: Policies and facts. Environ Dev 15:3–34

    Article  Google Scholar 

  56. Derbyshire F, Jagtoyen M, Andrews R, Rao A, Martin-Gullon I, Grulke EA (2001) Carbon materials in environmental applications. Chemistry and physics of carbon:1–66

    Google Scholar 

  57. Gadipelli S, Guo ZX (2015) Graphene-based materials: Synthesis and gas sorption, storage and separation. Prog Mater Sci 69:1–60

    Article  CAS  Google Scholar 

  58. Cornejo A (2013) The Thermo-catalytic Decomposition of Methane for Economical and Emission-free Hydrogen Production. University of Western Australia

    Google Scholar 

  59. Fernandes E, Pires R, Reis R (2017) Cork biomass biocomposites: Lightweight and sustainable materials. In: Lignocellulosic Fibre and Biomass-Based Composite Materials. Elsevier, pp 365–385

    Google Scholar 

  60. Hegde G, Abdul Manaf SA, Kumar A, Ali GAM, Chong KF, Ngaini Z, Sharma KV (2015) Biowaste sago bark based catalyst free carbon nanospheres: waste to wealth approach. ACS Sustain Chem & Eng 5(9):2247–2253

    Article  CAS  Google Scholar 

  61. Endes C, Camarero-Espinosa S, Mueller S, Foster E, Petri-Fink A, Rothen-Rutishauser B, Weder C, Clift M (2016) A critical review of the current knowledge regarding the biological impact of nanocellulose. J Nanobiotechnology 14(1):78

    Article  CAS  Google Scholar 

  62. Guo S, Dong S (2011) Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem Soc Rev 40(5):2644–2672

    Article  CAS  Google Scholar 

  63. Joshi M, Bhattacharyya A (2011) Nanotechnology—a new route to high-performance functional textiles. Textile Progress 43(3):155–233

    Article  Google Scholar 

  64. Ampomah EO (2009) Efficacy of Four Botanicals and Two Chemical Fungicides In The Control of Crown Rot Disease of Banana (Musa Spp AAAA) Cv. Medium Cavendish

    Google Scholar 

  65. Weis AJ, Weis T (2007) The global food economy: The battle for the future of farming. Zed Books

    Google Scholar 

  66. Ilham IF (2018) Efektivitas Pemberian Kompos Daun Sirih Hutan (Piper aduncum L.) dan Pupuk Kandang Sapi Terhadap Pertumbuhan Bibit Pisang FHIA-17

    Google Scholar 

  67. Ku Hamid KH (2013) A preliminary study of banana stem juice as a plant-based coagulant for treatment of spent coolant wastewater. J Chem 2013(165057). https://doi.org/10.1155/2013/165057

  68. Robinson JC, Saúco VG (2010) Bananas and plantains, vol 19. Cabi

    Google Scholar 

  69. Taer E, Kurniawan P, Taslim R, Agustino A, Afrianda A (2018) Carbon electrode based on durian shell: effects concentration of chemical activator agent (Potassium hydroxide).J Phys: Conf Ser. IOP Publishing

    Google Scholar 

  70. Noremberg BS, Silva RM, Paniz OG, Alano JH, Gonçalves MR, Wolke SI, Labidi J, Valentini A, Carreño NL (2017) From banana stem to conductive paper: A capacitive electrode and gas sensor. SensS Actuators B: Chem 240:459–467

    Article  CAS  Google Scholar 

  71. Madhu R, Veeramani V, Chen S-M (2014) Heteroatom-enriched and renewable banana-stem-derived porous carbon for the electrochemical determination of nitrite in various water samples. Sci Rep 4:4679

    Article  CAS  Google Scholar 

  72. Taer E, Susanti Y, Awitdrus, Sugianto, Taslim R, Setiadi R, Bahri S, Agustino, Dewi P, Kurniasih B (2018) The effect of CO2 activation temperature on the physical and electrochemical properties of activated carbon monolith from banana stem waste. In: AIP Conference Proceedings. AIP Publishing LLC

    Google Scholar 

  73. Ghosh S, Santhosh R, Jeniffer S, Raghavan V, Jacob G, Nanaji K, Kollu P, Jeong SK, Grace AN (2019) Natural biomass derived hard carbon and activated carbons as electrochemical supercapacitor electrodes. Sci Rep 9(1):1–15

    Article  Google Scholar 

  74. Tan YH, Davis JA, Fujikawa K, Ganesh NV, Demchenko AV, Stine KJ (2012) Surface area and pore size characteristics of nanoporous gold subjected to thermal, mechanical, or surface modification studied using gas adsorption isotherms, cyclic voltammetry, thermogravimetric analysis, and scanning electron microscopy. J Mater Chem 22(14):6733–6745

    Article  CAS  Google Scholar 

  75. Calvo E, Lufrano F, Staiti P, Brigandì A, Arenillas A, Menéndez J (2013) Optimizing the electrochemical performance of aqueous symmetric supercapacitors based on an activated carbon xerogel. J Power Sources 241:776–782

    Article  CAS  Google Scholar 

  76. Stirling DA (2018) Nanotechnology Applications. In: The Nanotechnology Revolution, Pan Stanford, pp 281–434

    Google Scholar 

  77. Tibbals HF (2010) Medical nanotechnology and nanomedicine. CRC Press

    Google Scholar 

  78. Mohajeri M, Behnam B, Sahebkar A (2019) Biomedical applications of carbon nanomaterials: drug and gene delivery potentials. J Cell Physiol 234(1):298–319

    Article  CAS  Google Scholar 

  79. Gupta H, Bhandari D, Sharma A (2009) Recent trends in oral drug delivery: a review. Recent Pat Drug Deliv Formul 3(2):162–173

    Article  CAS  Google Scholar 

  80. Sahoo SK, Misra R, Parveen S (2017) Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. In: Nanomedicine in cancer. Pan Stanford, pp 73–124

    Google Scholar 

  81. Saxena T, Rumyantsev S, Dutta P, Shur M (2014) CdS based novel photo-impedance light sensor. Semicond Sci Technol 29(2):025002

    Article  CAS  Google Scholar 

  82. Nair R, Mohamed MS, Gao W, Maekawa T, Yoshida Y, Ajayan PM, Kumar DS (2012) Effect of carbon nanomaterials on the germination and growth of rice plants. J Nanosci Nanotechnol 12(3):2212–2220

    Article  CAS  Google Scholar 

  83. Lin S, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA, Rao AM, Luo H, Ke PC (2009) Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 5(10):1128–1132

    CAS  Google Scholar 

  84. Lahiani MH, Dervishi E, Chen J, Nima Z, Gaume A, Biris AS, Khodakovskaya MV (2013) Impact of carbon nanotube exposure to seeds of valuable crops. ACS Appl Mater Interfaces 5(16):7965–7973

    Article  CAS  Google Scholar 

  85. Verma SK, Das AK, Patel MK, Shah A, Kumar V, Gantait S (2018) Engineered nanomaterials for plant growth and development: A perspective analysis. Sci Total Environ 630:1413–1435

    Article  CAS  Google Scholar 

  86. Servin A, Elmer W, Mukherjee A, De la Torre-Roche R, Hamdi H, White JC, Bindraban P, Dimkpa C (2015) A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. J Nanopart Res 17(2):92

    Article  CAS  Google Scholar 

  87. Prajitha N, Athira S, Mohanan P (2019) Bio-interactions and risks of engineered nanoparticles. Environ Res 172:98–108

    Google Scholar 

  88. Lahiani MH, Dervishi E, Ivanov I, Chen J, Khodakovskaya M (2016) Comparative study of plant responses to carbon-based nanomaterials with different morphologies. Nanotechnology 27(26):265102

    Article  CAS  Google Scholar 

  89. Verma SK, Das AK, Gantait S, Kumar V, Gurel E (2019) Applications of carbon nanomaterials in the plant system: A perspective view on the pros and cons. Sci Total Environ 667:485–499

    Article  CAS  Google Scholar 

  90. Guo Y, Qi J, Jiang Y, Yang S, Wang Z, Xu H (2003) Performance of electrical double layer capacitors with porous carbons derived from rice husk. Mater Chem Phys 80(3):704–709

    Article  CAS  Google Scholar 

  91. Abioye AM, Ani FN (2015) Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: a review. Renew Sustain Energy Rev 52:1282–1293

    Article  CAS  Google Scholar 

  92. Tan I, Ahmad A, Hameed B (2008) Optimization of preparation conditions for activated carbons from coconut husk using response surface methodology. Chem Eng J 137(3):462–470

    Article  CAS  Google Scholar 

  93. Balathanigaimani M, Shim W-G, Lee M-J, Kim C, Lee J-W, Moon H (2008) Highly porous electrodes from novel corn grains-based activated carbons for electrical double layer capacitors. Electrochem Commun 10(6):868–871

    Article  CAS  Google Scholar 

  94. Rufford TE, Hulicova-Jurcakova D, Khosla K, Zhu Z, Lu GQ (2010) Microstructure and electrochemical double-layer capacitance of carbon electrodes prepared by zinc chloride activation of sugar cane bagasse. J Power Sources 195(3):912–918

    Article  CAS  Google Scholar 

  95. Li X, Xing W, Zhuo S, Zhou J, Li F, Qiao S-Z, Lu G-Q (2011) Preparation of capacitor’s electrode from sunflower seed shell. Biores Technol 102(2):1118–1123

    Article  CAS  Google Scholar 

  96. Ismanto AE, Wang S, Soetaredjo FE, Ismadji S (2010) Preparation of capacitor’s electrode from cassava peel waste. Biores Technol 101(10):3534–3540

    Article  CAS  Google Scholar 

  97. El Mousadik A, Petit R (1996) High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor Appl Genet 92(7):832–839

    Google Scholar 

  98. Charrouf Z, Guillaume D (2008) Argan oil: Occurrence, composition and impact on human health. Eur J Lipid Sci Technol 110(7):632–636

    Article  CAS  Google Scholar 

  99. Elmouwahidi A, Zapata-Benabithe Z, Carrasco-Marín F, Moreno-Castilla C (2012) Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes. Biores Technol 111:185–190

    Article  CAS  Google Scholar 

  100. Jain A, Balasubramanian R, Srinivasan M (2016) Hydrothermal conversion of biomass waste to activated carbon with high porosity: A review. Chem Eng J 283:789–805

    Article  CAS  Google Scholar 

  101. Quintero J, Montoya M, Sánchez OJ, Giraldo O, Cardona C (2008) Fuel ethanol production from sugarcane and corn: comparative analysis for a Colombian case. Energy 33(3):385–399

    Article  CAS  Google Scholar 

  102. Teixeira SR, Souza A, Peña AFV, Lima R, Miguel ÁG (2011) Use of charcoal and partially pirolysed biomaterial in fly ash to produce briquettes: sugarcane bagasse. Alternative Fuel:346

    Google Scholar 

  103. de Rezende Pinho A, de Almeida MBB, Mendes FL, Ximenes VL (2014) Production of lignocellulosic gasoline using fast pyrolysis of biomass and a conventional refining scheme. Pure Appl Chem 86(5):859–865

    Article  CAS  Google Scholar 

  104. Zhuo C, Alves JO, Tenorio JA, Levendis YA (2012) Synthesis of carbon nanomaterials through up-cycling agricultural and municipal solid wastes. Ind Eng Chem Res 51(7):2922–2930

    Article  CAS  Google Scholar 

  105. Newberry D, Uldrich J (2010) The next big thing is really small: How nanotechnology will change the future of your business. Random House

    Google Scholar 

  106. Sharma VP, Sharma U, Chattopadhyay M, Shukla V (2018) Advance applications of nanomaterials: a review. Mater Today: Proc 5(2):6376–6380

    Google Scholar 

  107. Vanderroost M, Ragaert P, Devlieghere F, De Meulenaer B (2014) Intelligent food packaging: The next generation. Trends Food Sci Technol 39(1):47–62

    Article  CAS  Google Scholar 

  108. Adeleye AS, Conway JR, Garner K, Huang Y, Su Y, Keller AA (2016) Engineered nanomaterials for water treatment and remediation: Costs, benefits, and applicability. Chem Eng J 286:640–662

    Article  CAS  Google Scholar 

  109. Kumar R, Singh RK, Singh DP (2016) Natural and waste hydrocarbon precursors for the synthesis of carbon based nanomaterials: graphene and CNTs. Renew Sustain Energy Rev 58:976–1006

    Article  CAS  Google Scholar 

  110. Awika JM (2011) Major cereal grains production and use around the world. In: Advances in Cereal Science: Implications to Food Processing and Health Promotion. ACS Publications. Chapter 1:1–13. https://doi.org/10.1021/bk-2011-1089.ch001

  111. Wang H, Wang T, Johnson LA (2017) Corn degerming ethanol fermentation processes, Google Patents

    Google Scholar 

  112. Bothast R, Schlicher M (2005) Biotechnological processes for conversion of corn into ethanol. Appl Microbiol Biotechnol 67(1):19–25

    Article  CAS  Google Scholar 

  113. Rosentrater KA, Ileleji K, Johnston DB (2012) Manufacturing of fuel ethanol and distillers grains-current and evolving processes. Distillers grains: Production, properties, and utilization. CRC Press, Boca Raton, FL:73–102

    Google Scholar 

  114. Solomon BD, Barnes JR, Halvorsen KE (2007) Grain and cellulosic ethanol: History, economics, and energy policy. Biomass Bioenerg 31(6):416–425

    Article  Google Scholar 

  115. McAloon A, Taylor F, Yee W, Ibsen K, Wooley R (2000) Determining the cost of producing ethanol from corn starch and lignocellulosic feedstocks. National Renewable Energy Lab, Golden, CO, USA

    Google Scholar 

  116. Rausch KD, Belyea RL (2006) The future of coproducts from corn processing. Appl Biochem Biotechnol 128(1):47–86

    Article  CAS  Google Scholar 

  117. Gardner B (2007) Fuel ethanol subsidies and farm price support. J Agric Food Ind Organ 5(2):1–22

    Google Scholar 

  118. Broer KM, Peterson C (2019) Gasification. Thermochemical Processing of Biomass: Conversion into Fuels, Chemicals and Power:85–123

    Google Scholar 

  119. Herbert GJ, Krishnan AU (2016) Quantifying environmental performance of biomass energy. Renew Sustain Energy Rev 59:292–308

    Article  Google Scholar 

  120. Kumar M, Bhadrecha P, Pirzadah TB, Malik B, Verma A, Kumar V, Prasad R, Pachouri U, Rehman RU (2015) Power reservoirs of jumble-based biomass in Asia. In: Agricultural Biomass Based Potential Materials. Springer, pp 455–470

    Google Scholar 

  121. Zhang L, Xu CC, Champagne P (2010) Overview of recent advances in thermo-chemical conversion of biomass. Energy Convers Manag 51(5):969–982

    Article  CAS  Google Scholar 

  122. Paisley MA (2004) Biomass gasification system and method. Google Patents

    Google Scholar 

  123. Claassen P, Van Lier J, Contreras AL, Van Niel E, Sijtsma L, Stams A, De Vries S, Weusthuis R (1999) Utilisation of biomass for the supply of energy carriers. Appl Microbiol Biotechnol 52(6):741–755

    Article  CAS  Google Scholar 

  124. Van Zwieten L, Kimber S, Morris S, Chan K, Downie A, Rust J, Joseph S, Cowie A (2010) Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327(1–2):235–246

    Article  CAS  Google Scholar 

  125. Pandolfo A, Amini-Amoli M, Killingley J (1994) Activated carbons prepared from shells of different coconut varieties. Carbon (New York, NY) 32(5):1015–1019

    CAS  Google Scholar 

  126. Khalfaoui B, Meniai AH, Borja R (1995) Removal of copper from industrial wastewater by raw charcoal obtained from reeds. J Chem Technol Biotechnol 64(2):153–156

    Article  CAS  Google Scholar 

  127. Balci S, Doǧu T, Yücel H (1994) Characterization of activated carbon produced from almond shell and hazelnut shell. J Chem Technol & Biotechnol: Int Res Process, Environ Clean Technol 60(4):419–426

    Article  CAS  Google Scholar 

  128. Smuthkochorn A, Katunyoo N, Kaewtrakulchai N, Atong D, Soongprasit K, Eiad-ua A (2019) Nanoporous carbon from Cattial leaves for carbon dioxide capture. Mater Today: Proc 17:1240–1248

    CAS  Google Scholar 

  129. Ayea TT, Aye SW, Win MM, Htay HH, Win PP (2019) Preparation and characterization of activated carbon from coconut shell. Prep Charact Act Carbon Coconut Shell 19(1):18

    Google Scholar 

  130. Hu Z, Srinivasan M (1999) Preparation of high-surface-area activated carbons from coconut shell. Microporous Mesoporous Mater 27(1):11–18

    Article  Google Scholar 

  131. Tung MT, Luong VD, Trang PM, Van Tuyen L, Bich Thuy HT, Wu NL (2018) The synthesis and characterization of high purity mixed microporous/mesoporous activated carbon from rice husk. Vietnam J Chem 56(6):684–688

    Article  CAS  Google Scholar 

  132. Zhang J, Zhao X, Li M, Lu H (2018) High-quality and low-cost three-dimensional graphene from graphite flakes via carbocation-induced interlayer oxygen release. Nanoscale 10(37):17638–17646

    Article  CAS  Google Scholar 

  133. Habeeb OA, Ramesh K, Ali GAM, RbM Yunus (2017) Low-cost and eco-friendly activated carbon from modified palm kernel shell for hydrogen sulfide removal from wastewater: adsorption and kinetic studies. Desalination Water Treat 84:205–214

    Article  CAS  Google Scholar 

  134. Habeeb OA, Ramesh K, Ali GAM (2017) Experimental design technique on removal of hydrogen sulfide using CaO-eggshells dispersed onto palm kernel shell activated carbon: Experiment, optimization, equilibrium and kinetic studies. J Wuhan Univ Technol Mater Sci Ed 32(2):305–320

    Google Scholar 

  135. Ali GAM, Manaf SABA, Kumar A, Chong KF, Hegde G (2014) High performance supercapacitor using catalysis free porous carbon nanoparticles. J Phys D Appl Phys 47(49):495307

    Article  CAS  Google Scholar 

  136. Habeeb OA, Kanthasamy R, Ali GAM, bin Mohd R (2017) Optimization of Activated Carbon Synthesis Using Response Surface Methodology to Enhance H2S Removal From Refinery Wastewater. J Chem Eng Ind Biotechnol V1(1):17

    Google Scholar 

  137. Habeeb OA, Ramesh K, Ali GAM, Yunus RBM (2017) Isothermal modelling based experimental study of dissolved hydrogen sulfide adsorption from waste water using eggshell based activated carbon. Malays J Anal Sci 21(2):334–345

    Article  Google Scholar 

  138. Habeeb OA, Ali GAM (2017) Application of Response Surface Methodology for Optimization of Palm Kernel Shell Activated Carbon Preparation Factors for Removal of H2S from Industrial Wastewater. J Teknol (Sci Eng) 79(7):1–10

    Google Scholar 

  139. Nasir S, Hussein MZ, Zainal Z, Yusof NA (2018) Carbon-based nanomaterials/allotropes: A glimpse of their synthesis, properties and some applications. Materials 11(2):295

    Article  CAS  Google Scholar 

  140. Maji IK, Saari MY, Habibullah MS, Utit C (2017) Measuring the economic impacts of recent oil price shocks on oil-dependent economy: evidence from Malaysia. Policy Studies 38(4):375–391

    Article  Google Scholar 

  141. Sivasankari R, Kumaran P, Normanbhay S, Shamsuddin AH. Preliminary experimental results of Sewage Sludge (SS) Co-digestion with Palm Oil Mill Effluent (POME) for Enhanced Biogas Production in Laboratory Scale Anaerobic Digester. In: IOP Conference Series: Earth and Environmental Science. IOP Publishing

    Google Scholar 

  142. Bansal R, Donnet J, Stoeckli F (1988) Active Carbon. Marcel Dekker, New York

    Google Scholar 

  143. Shaikh F, Jadakar S, Kamat R, Pathan H (2018) Activated carbon/transition metal oxides thin films for supercapacitors. Mat Res Found 26:1–30. https://doi.org/10.21741/9781945291579-3

  144. Abnisa F, Daud WMAW (2014) A review on co-pyrolysis of biomass: an optional technique to obtain a high-grade pyrolysis oil. Energy Convers Manag 87:71–85

    Article  CAS  Google Scholar 

  145. Kwiatkowski M, Broniek E (2017) An analysis of the porous structure of activated carbons obtained from hazelnut shells by various physical and chemical methods of activation. Colloids Surf, A 529:443–453

    Article  CAS  Google Scholar 

  146. Ioannidou O, Zabaniotou A (2007) Agricultural residues as precursors for activated carbon production—a review. Renew Sustain Energy Rev 11(9):1966–2005

    Article  CAS  Google Scholar 

  147. Hussein M, Tarmizi RH, Zainal Z, Ibrahim R, Badri M (1996) Preparation and characterization of active carbons from oil palm shells. Carbon (New York, NY) 34(11):1447–1449

    Google Scholar 

  148. Hidayu A, Muda N (2016) Preparation and characterization of impregnated activated carbon from palm kernel shell and coconut shell for CO2 capture. Procedia Engineering 148:106–113

    Google Scholar 

  149. Dungani R, Aditiawati P, Aprilia S, Yuniarti K, Karliati T, Suwandhi I, Sumardi I (2018) Biomaterial from oil palm waste: properties, characterization and applications. Palm Oil 31. https://doi.org/10.5772/intechopen.76412

  150. Zhou K, Zhou X, Liu J, Huang Z (2020) Application of magnetic nanoparticles in petroleum industry: a review. J Pet Sci Eng 106943

    Google Scholar 

  151. Jain A, Ranjan S, Dasgupta N, Ramalingam CJ (2018) Nanomaterials in food and agriculture: an overview on their safety concerns and regulatory issues. Crit Rev Food Sci Nutr 58(2):297–317

    Article  CAS  Google Scholar 

  152. Amin YM, Hawas AM, El-Batal A, Elsayed SHHE (2015) Evaluation of acute and subchronic toxicity of silver nanoparticles in normal and irradiated animals. Br J Pharmacol Toxicol 6(2):22–38

    Article  Google Scholar 

  153. Oberdörster G, Oberdörster E, Oberdörster JJ (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823–839

    Article  CAS  Google Scholar 

  154. Jiang X, Wu Y, Gray P, Zheng J, Cao G, Zhang H, Zhang X, Boudreau M, Croley TR, Chen CJN (2018) Influence of gastrointestinal environment on free radical generation of silver nanoparticles and implications for their cytotoxicity. NanoImpact 10:144–152

    Article  Google Scholar 

  155. Aillon KL, Xie Y, El-Gendy N, Berkland CJ, Forrest ML (2009) Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv Drug Deliv Rev 61(6):457–466

    Article  CAS  Google Scholar 

  156. Choi AO, Cho SJ, Desbarats J, Lovrić J, Maysinger D (2007) Quantum dot-induced cell death involves Fas upregulation and lipid peroxidation in human neuroblastoma cells. J Nanobiotechnology 5(1):1

    Article  CAS  Google Scholar 

  157. Amiri M, Eskandari K, Salavati-Niasari M (2019) Magnetically retrievable ferrite nanoparticles in the catalysis application. Adv Colloid Interface Sci

    Google Scholar 

  158. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomater 26(18):3995–4021

    Google Scholar 

  159. Mornet S, Vasseur S, Grasset F, Veverka P, Goglio G, Demourgues A, Portier J, Pollert E, Duguet E (2006) Magnetic nanoparticle design for medical applications. Prog Solid State Chem 34(2–4):237–247

    Article  CAS  Google Scholar 

  160. Hyeon T (2003) Chemical synthesis of magnetic nanoparticles. Chem Commun 8:927–934

    Article  CAS  Google Scholar 

  161. Lu AH, EeL Salabas, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46(8):1222–1244

    Article  CAS  Google Scholar 

  162. Liu J, Zhao Z, Feng H, Cui F (2012) One-pot synthesis of Ag–Fe 3 O 4 nanocomposites in the absence of additional reductant and its potent antibacterial properties. J Mater Chem 22(28):13891–13894

    Article  CAS  Google Scholar 

  163. Yang B, Wei Y, Liu Q, Luo Y, Qiu S, Shi Z (2019) Polyvinylpyrrolidone functionalized magnetic graphene-based composites for highly efficient removal of lead from wastewater. Colloids Surf, A 582:123927

    Article  CAS  Google Scholar 

  164. Reddy DHK and Yun Y-S (2016) Spinel ferrite magnetic adsorbents: alternative future materials for water purification? Coord Chem Rev 315:90–111

    Article  CAS  Google Scholar 

  165. Tang SC, Lo IM (2013) Magnetic nanoparticles: essential factors for sustainable environmental applications. Water Res 47(8):2613–2632

    Article  CAS  Google Scholar 

  166. Sadegh H, Ali GAM, Makhlouf ASH, Chong KF, Alharbi NS, Agarwal S, Gupta VK (2018) MWCNTs-Fe3O4 nanocomposite for Hg (II) high adsorption efficiency. J Mol Liq 258:345–353

    Article  CAS  Google Scholar 

  167. Fiyadh SS, AlSaadi MA, Jaafar WZB, AlOmar MK, Fayaed SS, Mohd NSB, Hin LS, El-Shafie A (2019) Review on heavy metal adsorption processes by carbon nanotubes. Journal of Cleaner Production

    Google Scholar 

  168. Verma B, Balomajumder C (2019) Surface modification of one-dimensional Carbon Nanotubes: A review for the management of heavy metals in wastewater. Environmental Technology & Innovation:100596

    Google Scholar 

  169. Zhang B, Huang K, Wang Q, Li G, Wu T, Li Y (2020) Highly efficient treatment of oily wastewater using magnetic carbon nanotubes/layered double hydroxides composites. Colloids Surf, A 586:124187

    Article  CAS  Google Scholar 

  170. Mohammadi AA, Dehghani MH, Mesdaghinia A, Yaghmaian K, Es’ haghi Z (2019) Adsorptive removal of endocrine disrupting compounds from aqueous solutions using magnetic multi-wall carbon nanotubes modified with chitosan biopolymer based on response surface methodology: Functionalization, kinetics, and isotherms studies. Int J Biol Macromol 155:1019–1029

    Google Scholar 

  171. Ihsanullah (2019) Carbon nanotube membranes for water purification: Developments, challenges, and prospects for the future. Sep Purif Technol 209:307–337

    Article  CAS  Google Scholar 

  172. Lee J, Jeong S, Liu Z (2016) Progress and challenges of carbon nanotube membrane in water treatment. CritAl Rev Environ Sci Technol 46(11–12):999–1046

    Article  CAS  Google Scholar 

  173. Rizzuto C, Pugliese G, Bahattab MA, Aljlil SA, Drioli E, Tocci E (2018) Multiwalled carbon nanotube membranes for water purification. Sep Purif Technol 193:378–385

    Article  CAS  Google Scholar 

  174. Li S, Liao G, Liu Z, Pan Y, Wu Q, Weng Y, Zhang X, Yang Z, Tsui OK (2014) Enhanced water flux in vertically aligned carbon nanotube arrays and polyethersulfone composite membranes. J Mater Chem A 2(31):12171–12176

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Abd Elkodous or Gharieb S. El-Sayyad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abd Elkodous, M., El-Sayyad, G.S., Gobara, M., El-Batal, A.I. (2021). Recent Trends of Recycled Carbon-Based Nanomaterials and Their Applications. In: Makhlouf, A.S.H., Ali, G.A.M. (eds) Waste Recycling Technologies for Nanomaterials Manufacturing. Topics in Mining, Metallurgy and Materials Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-68031-2_16

Download citation

Publish with us

Policies and ethics