Skip to main content

Sensitivity of Boundary-Layer Stability and Transition to Thermochemical Modeling

  • Conference paper
  • First Online:
IUTAM Laminar-Turbulent Transition

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 38))

  • 1422 Accesses

Abstract

The presence of transitional flow in the hypersonic regime, and the difficulty of accurately predicting the point of transition, is a major source of uncertainty, particularly for predicting wall heating. Potential applications of improved hypersonic boundary layer stability and transition prediction include reentry vehicles, hypersonic transports, and defense applications. Boundary layer transition in these applications particularly impacts heat transfer, affecting material compliance and ablation rates, and potentially leads to either failure of the vehicle or reduced performance due to overdesigned heat shielding. Chemical and thermal nonequilibrium effects are relevant to hypersonic boundary layer stability and transition, where molecular dissociation, chemical reactions, and thermal nonequilibrium may occur. To accurately model the aerothermodynamics and boundary layer stability of such boundary layer flows, the chemical and thermal nonequilibrium effects can be taken into account in the mean flow and in the stability equations. The LAngley Stability and TRansition Analysis Code (LASTRAC) version 3.0 accommodates a variety of models for thermochemical and transport properties, and the gas model can be varied to either include or neglect chemical reactions and thermal nonequilibrium, independent of the mean flow solution. These capabilities are used to investigate the sensitivity of boundary layer stability and transition location with respect to a selection of parameters controlling the gas model, freestream conditions, and fluid properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bose, D., Brown, J.L., Prabhu, D.K., Gnoffo, P., Johnston, C.O., Hollis, B.: Uncertainty assessment of hypersonic aerothermodynamics prediction capability. J. Spacecr. Rocket. 50(1), 12–18 (2013). https://doi.org/10.2514/1.A32268. January

    Article  Google Scholar 

  2. Edquist, K.T., Hollis, B.R., Johnston, C.O., Bose, D., White, T.R., Mahzari, M.: Mars science laboratory heat shield aerothermodynamics: design and reconstruction. J. Spacecr. Rocket. 51(4), 1106–1124 (2014). https://doi.org/10.2514/1.A32749. July

    Article  Google Scholar 

  3. Zanus, L., Miró Miró, F., Pinna, F.: Nonlinear parabolized stability analysis of hypersonic flows in presence of curvature effects. In: 2018 AIAA Aerospace Sciences Meeting, AIAA SciTech Forum (AIAA Paper 2018-2087), January 2018 (2018). https://doi.org/10.2514/6.2018-2087

  4. Unnikrishnan, S., Gaitonde, D.V.: Kovasznay-type analysis of transition modes in a hypersonic boundary layer. In: 2018 AIAA Aerospace Sciences Meeting, AIAA SciTech Forum (AIAA Paper 2018-2086), January 2018 (2018). https://doi.org/10.2514/6.2018-2086

  5. Lakebrink, M.T., Paredes, P., Borg, M.P.: Toward robust prediction of crossflow-wave instability in hypersonic boundary layers. Comput. Fluids 144, 1–9 (2017). https://doi.org/10.1016/j.compfluid.2016.11.016

    Article  MathSciNet  MATH  Google Scholar 

  6. Moyes, A.J., Paredes, P., Kocian, T.S., Reed, H.L.: Secondary instability analysis of crossflow on a hypersonic yawed straight circular cone. J. Fluid Mech. 812, 370–397 (2017). https://doi.org/10.1017/jfm.2016.793

    Article  MathSciNet  MATH  Google Scholar 

  7. Chang, C.-L., Choudhari, M., Hollis, B., Li, F.: Transition analysis for the Mars Science Laboratory entry vehicle. In: 41st AIAA Thermophysics Conference (AIAA Paper 2009-4076) (2009). https://doi.org/10.2514/6.2009-4076

  8. Miró Miró, F., Pinna, F., Beyak, E.S., Barbante, P., Reed, H.L.: Diffusion and chemical non-equilibrium effects on hypersonic boundary-layer stability. In: 2018 AIAA Aerospace Sciences Meeting, AIAA SciTech Forum (AIAA Paper 2018-1824), January 2018 (2018). https://doi.org/10.2514/6.2018-1824

  9. Knisely, C.P., Zhong, X.: Supersonic modes in hot-wall hypersonic boundary layers with thermochemical nonequilibrium effects. In: 2018 AIAA Aerospace Sciences Meeting, AIAA SciTech Forum (AIAA Paper 2018-2085), January 2018 (2018). https://doi.org/10.2514/6.2018-2085

  10. Wang, X.: Passive control of hypersonic non-equilibrium boundary layers using regular porous coating. In: 47th AIAA Fluid Dynamics Conference, AIAA AVIATION Forum (AIAA Paper 2017-4519), June 2017 (2017). https://doi.org/10.2514/6.2017-4519

  11. Wang, X.: Non-equilibrium effects on the stability of a Mach 10 flat-plate boundary layer. In: 8th AIAA Theoretical Fluid Mechanics Conference, AIAA AVIATION Forum (AIAA Paper 2017-3162), June 2017 (2017). https://doi.org/10.2514/6.2017-3162

  12. Johnson, H., Candler, G.: Hypersonic boundary layer stability analysis using PSE-Chem. In: 35th AIAA Fluid Dynamics Conference and Exhibit (AIAA Paper 2005-5023) (2005). https://doi.org/10.2514/6.2005-5023

  13. Malik, M.R.: Hypersonic flight transition data analysis using parabolized stability equations with chemistry effects. J. Spacecr. Rocket. 40(3), 332–344 (2003). https://doi.org/10.2514/2.3968

    Article  Google Scholar 

  14. Chang, C.-L., Vinh, H., Malik, M.: Hypersonic boundary-layer stability with chemical reactions using PSE. In: 28th Fluid Dynamics Conference (AIAA Paper 1997-2012) (1997). https://doi.org/10.2514/6.1997-2012

  15. Kline, H., Chang, C.-L., Li, F.: Hypersonic chemically reacting boundary-layer stability using LASTRAC. In: 2018 Fluid Dynamics Conference (AIAA Paper 2018-3699) (2018). https://doi.org/10.2514/6.2018-3699

  16. Stemmer, C., Birrer, M., Adams, N.A.: Hypersonic boundary-layer flow with an obstacle in thermochemical equilibrium and nonequilibrium. J. Spacecr. Rocket. 54(4), 899–915 (2017). https://doi.org/10.2514/1.A32984

    Article  Google Scholar 

  17. Johnson, H., Candler, G.: PSE analysis of reacting hypersonic boundary layer transition. In: 30th Fluid Dynamics Conference (AIAA Paper 1999-3793) (1999). https://doi.org/10.2514/6.1999-3793

  18. MacLean, M., Mundy, E., Wadhams, T., Holden, M., Johnson, H., Candler, G.: Comparisons of transition prediction using PSE-Chem to measurements for a shock tunnel environment. In: 37th AIAA Fluid Dynamics Conference and Exhibit (AIAA Paper 2007-4490) (2007). https://doi.org/10.2514/6.2007-4490

  19. Johnson, H., Candler, G.: Analysis of laminar-turbulent transition in hypersonic flight using PSE-Chem. In: 36th AIAA Fluid Dynamics Conference and Exhibit (AIAA Paper 2006-3057), June 2006 (2006). https://doi.org/10.2514/6.2006-3057

  20. Chang, C.-L.: Langley Stability and Transition Analysis Code (LASTRAC) Version 1.2 User Manual. NASA TM- 2004-213233, NASA, June 2004 (2004). https://ntrs.nasa.gov/search.jsp?R=20040082550

  21. Kline, H.L., Chang, C.-L., Li, F.: Boundary layer stability and transition in a chemically reacting martian atmosphere using lastrac. In: 22nd AIAA International Space Planes and Hypersonics Systems and Technologies Conference (AIAA Paper 2018-5206) (2018). https://doi.org/10.2514/6.2018-5206

  22. Kline, H., Chang, C.-L., Li, F.: Multiple boundary layer instability modes with nonequilibrium and wall temperature effects using lastrac. In: AIAA Aviation 2019 Forum (AIAA Paper 2019-2850) (2019)

    Google Scholar 

  23. McBride, B.J., Gordon, S., Reno, M.A.: Coefficients for calculating thermodynamic and transport properties of individual species. NASA TM- 4513, NASA (1993)

    Google Scholar 

  24. Blottner, F.G., Johnson, M., Ellis, M.: Chemically reacting viscous flow program for multi-component gas mixtures. SC-RR- 70-754, Sandia Labs., Albuquerque, NM (1971). https://doi.org/10.2172/4658539

  25. Park, C.: Problems of rate chemistry in the flight regimes of aeroassisted orbital transfer vehicles. In: AIAA, vol. 96, pp. 511–537 (1985). https://ntrs.nasa.gov/search.jsp?R=19990067211

  26. McBride, B.J., Zehe, M.J., Gordon, S.: Nasa glenn coefficients for calculating thermodynamic properties of individual species. NASA TP- 2002-211556, NASA (2002). https://ntrs.nasa.gov/search.jsp?R=20020085330

  27. Chemical equilibrium with applications (2016). https://www.grc.nasa.gov/www/CEAWeb/. Accessed 02 July 2018

  28. Park, C.: Assessment of two-temperature kinetic model for ionizing air. J. Thermophys. Heat Transf. 3(3), 233–244 (1989)

    Article  Google Scholar 

  29. Park, C., Howe, J.T., Jaffe, R.L., Candler, G.V.: Review of chemical-kinetic problems of future NASA missions. II - Mars entries. J. Thermophys. Heat Transf. 8(1), 9–23 (1994). https://doi.org/10.2514/3.496

    Article  Google Scholar 

  30. Park, C., Howe, J., Jaffe, R., Candler, G.: Chemical-kinetic problems of future NASA missions. In: 29th Aerospace Sciences Meeting (AIAA Paper 1991-464) (1991)

    Google Scholar 

  31. Dunn, M.G., Kang, S.: Theoretical and experimental studies of reentry plasmas. NASA CR- 2232, NASA, April 1973 (1973). https://ntrs.nasa.gov/search.jsp?R=19730013358

  32. Millikan, R.C., White, D.R.: Systematics of vibrational relaxation. J. Chem. Phys. 39(12), 3209–3213 (1963). https://doi.org/10.1063/1.1734182

    Article  Google Scholar 

  33. Wartemann, V., Wagner, A., Wagnild, R., Pinna, F., Miró Miró, F., Tanno, H., Johnson, H.: High-enthalpy effects on hypersonic boundary-layer transition. J. Spacecr. Rocket. 56(2), 347–356 (2018). https://doi.org/10.2514/1.A34281

    Article  Google Scholar 

  34. White, J.A., Morrison, J.H.: Pseudo-temporal multi-grid relaxation scheme for solving the parabolized Navier-Stokes equations. In: 14th Computational Fluid Dynamics Conference (AIAA Paper 99-3360), June 1999 (1999). https://doi.org/10.2514/6.1999-3360

  35. Baurle, R.A.: Analysis of facility thermodynamic non-equilibrium effects on HIFiRE ground tests. In: 2014 JANNAF CS/APS/PSHS Joint Meeting, December 2014 (2014)

    Google Scholar 

  36. Park, C.: Review of chemical-kinetic problems of future NASA missions. I-Earth entries. J. Thermophys. Heat Transf. 7(3), 385–398 (1993). https://doi.org/10.2514/3.431

    Article  Google Scholar 

  37. Gupta, R.N., Yos, J.M., Thompson, R.A., Lee, K.-P.: A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K. NASA-RP- 1232, NASA (1990). https://ntrs.nasa.gov/search.jsp?R=19900017748

  38. Miró Miró, F., Beyak, E.S., Mullen, D., Pinna, F., Reed, H.L.: Ionization and dissociation effects on hypersonic boundary-layer stability. In: 31st Congress of the International Council of the Aeronautical Sciences (2018)

    Google Scholar 

  39. Miró Miró, F., Beyak, E.S., Pinna, F., Reed, H.L.: High-enthalpy models for boundary-layer stability and transition. Phys. Fluids 31(4), 044101 (2019). https://doi.org/10.1063/1.5084235

    Article  Google Scholar 

  40. MATLAB. version 9.6.0 (R2019a). The MathWorks Inc., Natick, Massachusetts (2019)

    Google Scholar 

Download references

Acknowledgements

This work was funded under NASA contract number NNL13A08B, task orders NNL17AA56T and 80LARC18F0084, supported by the Hypersonics Technology Project in the NASA Aeronautics Mission Directorate. I would also like to thank Pedro Paredes, Robert Baurle, Kyle Thompson, Elizabeth Lee-Rausch, and Jeff White for their input and fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.-L. Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kline, H.L., Chang, CL., Li, F. (2022). Sensitivity of Boundary-Layer Stability and Transition to Thermochemical Modeling. In: Sherwin, S., Schmid, P., Wu, X. (eds) IUTAM Laminar-Turbulent Transition. IUTAM Bookseries, vol 38. Springer, Cham. https://doi.org/10.1007/978-3-030-67902-6_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67902-6_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67901-9

  • Online ISBN: 978-3-030-67902-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics