Skip to main content

The Role of Receptivity in Prediction of High-Speed Laminar-Turbulent Transition

  • Conference paper
  • First Online:
IUTAM Laminar-Turbulent Transition

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 38))

Abstract

Receptivity plays a crucial role in the physics-base methodology for prediction of the transition onset location in the boundary-layer flows. A major stumbling block for developing of this methodology is sensitivity of transition to the initial and boundary conditions. In the case of relatively small free-stream and body-induced disturbances, the transition onset can be predicted by the amplitude method, where receptivity and instability growth stages are simulated using the linear theory. In this framework, receptivity affects the instability amplitude at the transition onset via the three major factors: the location of receptivity region, the coherence of external forcing and the spectral content of external disturbances. The role of these factors in the transition prediction methodology is estimated for the boundary-layer flows past a supersonic compression corner and a flat plate in supersonic and hypersonic free streams. In particular, it is shown that large uncertainty in atmospheric turbulence gives marginal error in the transition onset location. This finding encourages further developments of the physics-based amplitude method for transition prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Reshotko, E.: Transition issues for atmospheric entry. J. Spacecraft Rockets 45(2), 161–164 (2008)

    Article  Google Scholar 

  2. Morkovin, M.V., Reshotko, E., Herbert, T.: Transition in open flow systems: a reassessment. Bull. APS 39(9), 1–31 (1994)

    Google Scholar 

  3. Fedorov, A.: Transition and stability of high-speed boundary layers. Annu. Rev. Fluid Mech. 43, 79–95 (2011)

    Article  MathSciNet  Google Scholar 

  4. Berry, S., Daryabeigi, K., Wurster, K., Bittner, R.: Boundary layer transition on X-43A. AIAA Pap. 2008–3736 (2008)

    Google Scholar 

  5. Zhong, X., Wang, X.: Direct numerical simulation on the receptivity, instability, and transition of hypersonic boundary layers. Annu. Rev. Fluid Mech. 44, 527–561 (2012)

    Article  MathSciNet  Google Scholar 

  6. Mack, LM.: Transition and laminar instability. NASA-CP-153203, Jet Propulsion Lab., Pasadena, California (1977)

    Google Scholar 

  7. Fedorov, A.V.: Applications of the mack amplitude method to transition predictions in high-speed flows. NATO RTO-MP-AVT-200 (2012)

    Google Scholar 

  8. Balakumar, P., Chou, A.: Transition prediction in hypersonic boundary layers using receptivity and freestream spectra. AIAA J. 56(1), 1–16 (2017)

    Google Scholar 

  9. Stetson, K.F.: Comments on hypersonic boundary-layer transition. WRDC-TR-90–3057, Wright Research and Development Center (1990)

    Google Scholar 

  10. Chuvakhov, P.V., Fedorov, A.V., Obraz, A.O.: Numerical modelling of supersonic boundary-layer receptivity to solid particulates. J. Fluid Mech. 859, 949–971 (2019)

    Article  MathSciNet  Google Scholar 

  11. Fedorov, A.V, Averkin, A.N.: Receptivity of a compressible boundary layer to kinetic fluctuations. In: Schlatter, P., Henningson, D.S. (eds.) In: Proceedings of the Seventh IUTAM Symposium on Laminar-Turbulent Transition. IUTAM Bookseries, vol. 18, pp. 485–488 (2010)

    Google Scholar 

  12. Fedorov, A.V.: Prediction and control of laminar-turbulent transition in high-speed boundary-layer flows. IUTAM ABCM Symposium on Laminar-Turbulent Transition, Procedia IUTAM 14, 3–14 (2015)

    Google Scholar 

  13. Fedorov, A., Tumin, A.: Receptivity of high-speed boundary layers to kinetic fluctuations. AIAA J. 55(7), 2335–2348 (2017)

    Article  Google Scholar 

  14. Fedorov, AV.: Prediction of cross-flow dominated transition on a supersonic swept wing. AIAA Pap. 2012–0920 (2012)

    Google Scholar 

  15. Balakumar, P., Zhao, H., Atkins, H.: Stability of hypersonic boundary layers over a compression corner. AIAA Pap. 2002–2848 (2002)

    Google Scholar 

  16. Sivasubramanian, J., Fasel, H.: Transition initiated by a localized disturbance in a hypersonic flat-plate boundary layer. AIAA Paper 2011–374 (2011)

    Google Scholar 

  17. Bushnell, D.: Notes on initial disturbances fields for the transition problem. In: Hussaini, M.Y., Voigt, R.G. (eds.) Instability and Transition, vol. 1, pp. 217–232. Springer–Verlag, Berlin (1990)

    Google Scholar 

  18. Fedorov, A.V.: Receptivity of a supersonic boundary layer to solid particulates. J. Fluid Mech. 737, 105–131 (2013)

    Article  MathSciNet  Google Scholar 

  19. Pugach, M.A., Ryzhov, A.A., Fedorov, A.V.: Estimation of the effect of free-stream turbulence and solid particulates on the laminar-turbulent transition at hypersonic speeds. TsAGI Science J. 47(1), 15–28 (2016)

    Article  Google Scholar 

  20. Hocking, W.K.: Measurement of turbulent energy dissipation rates in the middle atmosphere by radar techniques: A review. Radio Science 20(6), 1403–1422 (1985)

    Article  Google Scholar 

  21. Pao, Y.H.: Structure of turbulent velocity and scalar fields at large wavenumbers. Phys. Fluids 8, 1063–1075 (1965)

    Article  Google Scholar 

  22. Haak, A., Gerdin, M., Lübken, F.-J.: Characteristics of stratospheric turbulent layers measured by LITOS and their relation to the Richardson number. J. Geophys. Res. Atmos. 119, 605–618 (2014)

    Google Scholar 

  23. Li, F., Choudhari, M., Chang, C.L., Kimmel, R., Adamczak, D., Smith, M.: Transition analysis for the HIFiRE-1 flight experiment. AIAA Pap. 2011–3414 (2011)

    Google Scholar 

  24. Johnson, HB., Candler, GV.: Hypersonic boundary layer stability analysis using PSE-Chem. AIAA Paper 2005–5023 (2005)

    Google Scholar 

  25. Malik, M.R.: Hypersonic flight transition data analysis using parabolized stability equations with chemistry effects. J. Spacecraft Rockets 40(3), 332–344 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been carried out at Moscow Institute of Physics and Technology (National Research University) with financial support of the Russian Science Foundation (project No. 19-19-00470 – section 2; project No. 19-79-10132 – section 4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Novikov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Egorov, I.V., Fedorov, A.V., Novikov, A.V., Chuvakhov, P.V. (2022). The Role of Receptivity in Prediction of High-Speed Laminar-Turbulent Transition. In: Sherwin, S., Schmid, P., Wu, X. (eds) IUTAM Laminar-Turbulent Transition. IUTAM Bookseries, vol 38. Springer, Cham. https://doi.org/10.1007/978-3-030-67902-6_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67902-6_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67901-9

  • Online ISBN: 978-3-030-67902-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics