Skip to main content

BiGlobal Stability Analysis of Swept-Wing Boundary Layers with Forward and Backward Facing Steps

  • Conference paper
  • First Online:
IUTAM Laminar-Turbulent Transition

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 38))

  • 1481 Accesses

Abstract

The temporal stability characteristics of generic, swept-wing boundary-layer flows of practical engineering significance with a smooth, isolated backward-facing step or a forward-facing step are investigated. A streamwise BiGlobal analysis is undertaken on previously computed steady-state, Mach 0.3 Navier-Stokes solutions that had been obtained for four spanwise invariant step heights and at two chordwise locations on an infinite swept-wing geometry. Temporal instability is detected for heights exceeding 25 % of the undisturbed boundary-layer thickness, or one unit of the undisturbed displacement thickness at the step chordwise location. Forward-facing steps with the greatest height are not found to be temporally unstable in contrast to backward-facing steps. Unstable modes feature localised regions of large streamwise and spanwise perturbation velocity magnitude near the lower corner of the backward-facing step or just downstream of the forward-facing step. Wave-like modes are found to arise from the deepest backward-facing step.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang, Y.X., Gaster, M.: Effect of surface steps on boundary layer transition. Exp. Fluids 39(4), 679–686 (2005). https://doi.org/10.1007/s00348-005-1011-7

    Article  Google Scholar 

  2. Crouch, J.D., Kosorygin, V.S., Ng, L.L.: Modeling the effects of steps on boundary-layer transition. In: R. Govindarajan (ed.) IUTAM Symposium on Laminar-Turbulent Transition, Fluid Mechanics and Its Applications, vol. 78, pp. 37–44. Springer (2006). https://doi.org/10.1007/1-4020-4159-4_4

  3. Tufts, M.W., Reed, H.L., Crawford, B.K., Duncan, G.T., Saric, W.S.: Computational investigation of step excrescence sensitivity in a swept-wing boundary layer. J. Aircr. 54(2), 602–626 (2017). https://doi.org/10.2514/1.C033892

    Article  Google Scholar 

  4. Rius Vidales, A.F., Kotsonis, M., Antunes, A.P., Cosin, R.: Effect of two-dimensional surface irregularities on swept wing transition: forward facing steps (2018). https://doi.org/10.2514/6.2018-3075. AIAA Paper 2018-3075 presented at the 2018 Fluid Dynamics Conference, Atlanta, 25-29 June 2018

  5. Dellar, O.J., Jones, B.L.: Dynamically correct formulations of the linearised Navier-Stokes equations. Int. J. Numer. Methods Fluids 85(1), 3–29 (2017). https://doi.org/10.1002/fld.4370

    Article  MathSciNet  Google Scholar 

  6. Appel, T., Mughal, S., Ashworth, R.: Global stability analysis of a boundary layer with surface indentations (2019). https://doi.org/10.2514/6.2019-3537. AIAA Paper 2019-3537 presented at the AIAA Aviation 2019 Forum, Dallas, 17-21 June 2019

  7. Theofilis, V.: Advances in global linear instability analysis of nonparallel and three-dimensional flows. Prog. Aerosp. Sci. 39(4), 249–315 (2003). https://doi.org/10.1016/S0376-0421(02)00030-1

    Article  Google Scholar 

  8. Sunderland, R., Sawyers, D.: Evaluation of AERAST large scale wind-tunnel test results. Tech. Rep. RP0905747, Airbus (2009)

    Google Scholar 

  9. Cooke, E., Mughal, S., Sherwin, S., Ashworth, R., Rolston, S.: Destabilisation of stationary and travelling crossflow disturbances due to steps over a swept wing (2019). https://doi.org/10.2514/6.2019-3533. AIAA Paper 2019-3533 presented at the AIAA Aviation 2019 Forum, Dallas, 17-21 June 2019

  10. Saeed, T.I., Mughal, M.S., Morrison, J.: The interaction of a swept-wing boundary layer with surface excrescences (2016). https://doi.org/10.2514/6.2016-2065. AIAA Paper 2016-2065 presented at the 54th AIAA Aerospace Sciences Meeting, San Diego, 4-8 January 2016

  11. Kroll, N., Langer, S., Schwöppe, A.: The DLR flow solver TAU - status and recent algorithmic developments (2014). https://doi.org/10.2514/6.2014-0080. AIAA Paper 2014-0080 presented at the 52nd Aerospace Sciences Meeting, National Harbor, 13-17 January 2014

  12. Cantwell, C.D., Moxey, D., Comerford, A., Bolis, A., Rocco, G., Mengaldo, G., De Grazia, D., Yakovlev, S., Lombard, J.E., Ekelschot, D., Jordi, B., Xu, H., Mohamied, Y., Eskilsson, C., Nelson, B., Vos, P., Biotto, C., Kirby, R.M., Sherwin, S.J.: Nektar++: An open-source spectral/hp element framework. Comput. Phys. Commun. 192, 205–219 (2015). https://doi.org/10.1016/j.cpc.2015.02.008

    Article  MATH  Google Scholar 

  13. Hermanns, M., Hernández, J.A.: Stable high-order finite-difference methods based on non-uniform grid point distributions. Int. J. Numer. Methods Fluids 56(3), 233–255 (2007). https://doi.org/10.1002/fld.1510

    Article  MathSciNet  MATH  Google Scholar 

  14. Malik, M.R.: Numerical methods for hypersonic boundary layer stability. J. Comput. Phys. 86(2), 376–413 (1990). https://doi.org/10.1016/0021-9991(90)90106-B

    Article  MATH  Google Scholar 

  15. Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Dener, A., Eijkhout, V., Gropp, W.D., Karpeyev, D., Kaushik, D., Knepley, M.G., May, D.A., McInnes, L.C., Mills, R.T., Munson, T., Rupp, K., Sanan, P., Smith, B.F., Zampini, S., Zhang, H., Zhang, H.: PETSc users manual. Tech. Rep. ANL-95/11 - Revision 3.13, Argonne National Laboratory, Lemont, IL, USA (2020)

    Google Scholar 

  16. Roman, J.E., Campos, C., Romero, E., Tomás, A.: SLEPc users manual. Tech. Rep. DSIC-II/24/02 - Revision 3.13, D. Sistemes Informàtics i Computació, Universitat Politècnica de València, Spain (2020)

    Google Scholar 

  17. Amestoy, P.R., Duff, I.S., L’Excellent, J.Y., Koster, J.: A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23(1), 15–41 (2001). https://doi.org/10.1137/s0895479899358194

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the SSeMID Innovative Training Network, which has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowoska-Curie grant agreement No. 675008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thibaut Appel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Appel, T., Cooke, E., Mughal, S., Ashworth, R. (2022). BiGlobal Stability Analysis of Swept-Wing Boundary Layers with Forward and Backward Facing Steps. In: Sherwin, S., Schmid, P., Wu, X. (eds) IUTAM Laminar-Turbulent Transition. IUTAM Bookseries, vol 38. Springer, Cham. https://doi.org/10.1007/978-3-030-67902-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67902-6_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67901-9

  • Online ISBN: 978-3-030-67902-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics