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Combining Base-Learners into Ensembles

Christophe Giraud-Carrier

Summary. This chapter discusses ensembles of classification or regression models, be-
cause they represent an important area of machine learning. They have become popular
as they tend to achieve high performance when compared with single models. Besides,
they also play an essential role in data-streaming solutions. This chapter starts by in-
troducing ensemble learning and presents an overview of some of its most well-known
methods. These include bagging, boosting, stacking, cascade generalization, cascading,
delegating, arbitrating and meta-decision trees.

9.1 Introduction

Model combination consists of creating a single learning system from a collection of
learning algorithms. In some sense, model combination may be viewed as a variation
on the theme of combining data mining operations discussed in Chapter 7. There are
two basic approaches to model combination. The first one exploits variability in the
application’s data and combines multiple copies of a single learning algorithm applied
to different subsets of that data. The second one exploits variability among learning
algorithms and combines several learning algorithms applied to the same application’s
data.

The main motivation for combining models is to reduce the probability of misclassi-
fication based on any single induced model by increasing the system’s area of expertise
through combination. Indeed, one of the implicit assumptions of model selection in met-
alearning is that there exists an optimal learning algorithm for each task. Although this
clearly holds in the sense that, given a task φ and a set of learning algorithms {Ak},
there is a learning algorithm Aφ in {Ak} that performs better than all of the others on
φ, the actual performance of Aφ may still be poor. In some cases, one may mitigate the
risk of settling for a suboptimal learning algorithm by replacing single model selection
with model combination.

Because it draws on information about base-level learning — in terms of either the
characteristics of various subsets of data or the characteristics of various learning algo-
rithms — model combination is often considered a form of metalearning. This chapter
is dedicated to a brief overview of model combination. We limit our presentation to a
description of each individual technique and leave it to the interested reader to follow
the references and other relevant literature for discussions of comparative performance
among them.
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To help with understanding and to motivate the organization of this chapter, Table
9.1 summarizes, for each combination technique, the underlying philosophy, the type of
base-level information used to drive the combination at the meta level (i.e., metadata),
and the nature of the metaknowledge generated, whether explicitly or implicitly. Further
details are in the corresponding sections.

Table 9.1: Model combination techniques summary

Technique Philosophy Metadata Metaknowledge

Bagging Variation in data Implicit in voting scheme
Boosting Errors (updated distribution) Voting scheme’s weights
Stacking Variation among learners

(multi-expert)
Class predictions or probabili-
ties

Mapping from metadata to
class predictions

Cascade gen-
eralization

Class probabilities and base-
level attributes

Mapping from metadata to
class predictions

Cascading Variation among learners
(multistage)

Confidence on predictions
(updated distribution)

Implicit in selection scheme

Delegating Confidence on predictions Implicit in delegation scheme
Arbitrating Variation among learners (ref-

ereed)
Correctness of class predic-
tions, base-level attributes,
and internal propositions

Mappings from metadata to
correctness (one for each
learner)

Meta-decision
trees

Variation in data and among
learners

Class distribution properties
(from samples)

Mapping from metadata to
best model

9.2 Bagging and Boosting

Perhaps the most well-known techniques for exploiting variation in data are bagging
and boosting. Both bagging and boosting combine multiple models built from a single
learning algorithm by systematically varying the training data.

9.2.1 Bagging

Bagging, which stands for bootstrap aggregating, is due to Breiman (1996). Given a
learning algorithm A and a set of training data T , bagging first draws N samples
S1, . . . , SN , with replacement, from T . It then applies A independently to each sample
to induce N models h1, . . . , hN .1 When classifying a new query instance q, the induced
models are combined via a simple voting scheme, where the class assigned to the new
instance is the class that is predicted most often among the N models, as illustrated in
Figure 9.1. The bagging algorithm for classification is shown in Figure 9.2.

Bagging is easily extended to regression by replacing the voting scheme of line 5 of
the algorithm by an average of the models’ predictions:

Value(q) =

∑N
i=1 hi(q)

N
.

1To be consistent with the literature, note that we shall use the term model rather
than hypothesis throughout this chapter. However, we shall retain our established math-
ematical notation and denote a model by h.
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Fig. 9.1: Bagging

Algorithm Bagging(T , A, N , d)
1. For k = 1 to N
2. Sk = random sample of size d drawn from T , with replacement
3. hk = model induced by A from Sk
4. For each new query instance q
5. Class(q) = argmaxy∈Y

∑N
k=1 δ(y, hi(q))

where:
T is the training set
A is the chosen learning algorithm
N is the number of samples or bags, each of size d, drawn from T
Y is the finite set of target class values
δ is the generalized Kronecker function (δ(a, b) = 1 if a = b; 0 otherwise)

Fig. 9.2: Bagging algorithm for classification

Bagging is most effective when the base-learner is unstable. A learner is unstable if
it is highly sensitive to data, in the sense that small perturbations in the data cause large
changes in the induced model. One simple example of instability is order dependence,
where the order in which training instances are presented has a significant impact on
the learner’s output.
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Bagging typically increases accuracy. However, if A produces interpretable models
(e.g., decision trees, rules), that interpretability is lost when bagging is applied to A.

9.2.2 Boosting

Boosting is due to Schapire (1990). While bagging exploits data variation through a
learner’s instability, boosting tends to exploit it through a learner’s weakness. A learner
is weak if it generally induces models whose performance is only slightly better than
random. Boosting is based on the observation that finding many rough rules of thumb
(i.e., weak learning) can be a lot easier than finding a single, highly accurate prediction
rule (i.e., strong learning). Boosting then assumes that a weak learner can be made
strong by repeatedly running it on various distributions Di over the training data T (i.e.,
varying the focus of the learner), and then combining the weak classifiers into a single
composite classifier, as illustrated in Figure 9.3.

Fig. 9.3: Boosting

Unlike bagging, boosting tries actively to force the (weak) learning algorithm to
change its induced model by changing the distribution over the training instances as
a function of the errors made by previously generated models. The initial distribution
D1 over the dataset T is uniform, with each instance assigned a constant weight, i.e.,
probability of being selected for training, of 1/|T |, and a first model is induced. At each
subsequent iteration, the weights of misclassified instances are increased, thus focusing
the next model’s attention on them. This procedure goes on until either a fixed number
of iterations has been performed or the total weight of the misclassified instances ex-
ceeds 0.5. The popular AdaBoost.M1 boosting algorithm for classification (Freund and
Schapire, 1996b) is shown in Figure 9.4.
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Algorithm AdaBoost.M1(T , A, N)
1. For k = 1 to |T |
2. D1(xk) = 1

|T |
3. For i = 1 to N
4. hi = model induced by A from T with distribution Di
5. εi =

∑
k:hi(xk)6=yk

Di(xk)

6. If εi > .5
7. N = i− 1
8. Abort loop
9. βi = εi

1−εi
10. For k = 1 to |T |

11. Di+1(xk) = Di(xk)
Zi

×
{
βi if hi(xk) = yk
1 otherwise

12. For each new query instance q
13. Class(q) = argmaxy∈Y

∑
i:hi(q)=y

log 1
βi

where:
T is the training set
A is the chosen learning algorithm
N is the number of iterations to perform over T
Y is the finite set of target class values
Zi is a normalization constant, chosen so that Di+1 is a distribution

Fig. 9.4: Boosting algorithm for classification (AdaBoost.M1)

The class of a new query instance q is given by a weighted vote of the induced
models. The case of regression is more complex. The regression version of AdaBoost,
known as AdaBoost.R, is based on decomposition into infinitely many classes. The reader
is referred to the paper of Freund and Schapire (1996a) for details.

Although the argument for boosting originated with weak learners, boosting may
actually be successfully applied to any learner.

9.3 Stacking and Cascade Generalization

While bagging and boosting exploit variation in the data, stacking and cascade gener-
alization exploit differences among learners. They make explicit two levels of learning:
the base level where learners are applied to the task at hand, and the meta level where
a new learner is applied to data obtained from learning at the base level.

9.3.1 Stacking

The idea of stacked generalization is due to Wolpert (1992). Stacking takes a number
of learning algorithms {A1, . . . , AN} and runs them against the dataset T under con-
sideration (i.e., base-level data) to produce a series of models {h1, . . . , hN}. Then, a
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new dataset T is constructed by replacing the description of each instance in the base-
level dataset by the predictions of each base-level model for that instance.2 This new
metadataset is in turn presented to a new learner Ameta that builds a metamodel hmeta
mapping the predictions of the base-level learners to target classes, as illustrated in Fig-
ure 9.5. The stacking algorithm for classification is shown in Figure 9.6.

Fig. 9.5: Stacking

A new query instance q is first run through all the base-level learners to compose
the corresponding query meta-instance q′, which serves as input to the metamodel to
produce the final classification for q.

Note that the base-level models’ predictions in line 5 (Figure 9.6) are obtained by
running each instance through the models induced from the base-level dataset (lines 1
and 2). Alternatively, more statistically reliable predictions could be obtained through
cross-validation as proposed in Efron (1983). In this case, lines 1 through 6 are replaced
with the following:

1. For i = 1 to N
2. For k = 1 to |T |

2In some versions of stacking, the base-level description is not replaced by the pre-
dictions, but rather the predictions are appended to the base-level description, resulting
in a kind of hybrid meta-example.
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Algorithm Stacking(T , {A1, . . . , AN}, Ameta)
1. For i = 1 to N
2. hi = model induced by Ai from T
3. T = ∅
4. For k = 1 to |T |
5. Ek =< h1(xk), h2(xk), . . . , hN (xk), yk >
6. T = T ∪ {Ek}
7. hmeta = model induced by Ameta from T
8. For each new query instance q
9. Class(q) = hmeta(< h1(q), h2(q), . . . , hN (q) >)

where:
T is the base-level training set
N is the number of base-level learning algorithms
{A1, . . . , AN} is the set of base-level learning algorithms
Ameta is the chosen meta-level learner

Fig. 9.6: Stacking algorithm

3. Ek[i] = hi(xk) obtained by cross-validation
4. T = ∅
5. For k = 1 to |T |
6. T = T ∪ {Ek}

A variation on stacking is proposed in Ting and Witten (1997), where the predic-
tions of the base-level classifiers in the metadataset are replaced by class probabilities.
A meta-level example thus consists of a set of N (the number of base-level learning
algorithms) vectors of m = |Y| (the number of classes) coordinates, where pij is the
posterior probability, as given by learning algorithm Ai, that the corresponding base-
level example belongs to class j. Other forms of stacking, based on using partitioned
data rather than full datasets, or using the same learning algorithm on multiple, inde-
pendent data batches, have also been proposed (e.g., see Chan and Stolfo (1997); Ting
and Low (1997)).

The transformation applied to the base-level dataset, whether through the addition
of predictions or class probabilities, is intended to give information about the behav-
ior of the various base-level learners on each instance, and thus constitutes a form of
metaknowledge.

9.3.2 Cascade generalization

Gama and Brazdil (2000) proposed another model combination technique known as
cascade generalization that also exploits differences among learners. In cascade gen-
eralization, the classifiers are used in sequence rather than in parallel as in stacking.
Instead of the data from the base-level learners feeding into a single meta-level learner,
each base-level learner Ai+1 (except for the first one, i.e., i > 0) also acts as a kind of
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meta-level learner for the base-level learner Ai that precedes it. Indeed, the inputs to
Ai+1 consist of the inputs to Ai together with the class probabilities produced by hi,
the model induced by Ai. A single learner is used at each step, and there is, in prin-
ciple, no limit on the number of steps, as illustrated in Figure 9.7. The basic cascade
generalization algorithm for two steps is shown in Figure 9.8.

Fig. 9.7: Cascade generalization

This two-step algorithm is easily extended to an arbitrary number of steps — defined
by the number of available classifiers — through successive invocation of the Extend-
Dataset function, as illustrated in Figure 9.9, where the recursive algorithm begins with
i = 1.3

A new query instance q is first extended into a meta-instance q′ as it gathers metadata
through the steps of the cascade. The final classification is then given by the output of
the last model in the cascade on q′.

3To use this N -step version of cascade generalization for classification, it may be
advantageous to implement it iteratively rather than recursively, so that intermediate
models may be stored and used when extending new queries.
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Algorithm CascadeGeneralization({A1, A2}, T )
1. h1 = model induced by A1 from T
2. T1 = ExtendDataset(h1, T )
3. h2 = model induced by A2 from T1

4. For each new query instance q
5. q′ = ExtendDataset(h1, {q})
6. Class(q) = h2(q′)

where:
T is the original base-level training set
A1 and A2 are base level learning algorithms

Algorithm ExtendDataset(h, T )
1. newT = ∅
2. For each e = (x, y) ∈ T
3. For j = 1 to |Y|
4. pj = probability that e belongs to yj according to h
5. e′ = (x, p1, . . . , p|Y|, y)
6. newT = newT ∪ {e′}
7. Return newT

where:
h is a model induced by a learning algorithm
T is the dataset to be extended with data generated from h
Y is the finite set of target class values

Fig. 9.8: Cascade generalization algorithm (two steps)

9.4 Cascading and Delegating

Like stacking and cascade generalization, cascading and delegating exploit differences
among learners. However, whereas the former produce multi-expert classifiers (all con-
stituent base classifiers are used for classification), the latter produce multistage classi-
fiers in which not all base classifiers need be consulted when predicting the class of a
new query instance. Hence, classification time is reduced.

9.4.1 Cascading

Alpaydin and Kaynak (1998) and Kaynak and Alpaydin (2000) developed the idea of
cascading, which may be viewed as a kind of multilearner version of boosting. Like
boosting, cascading varies the distribution over the training instances, here as a function
of the confidence of the previously generated models.4 Unlike boosting, however, cascad-

4This is a generalization of boosting’s function of the errors of the previously gener-
ated models. Rather than biasing the distribution to only those instances the previous

9.3  Stacking and Cascade Generalization      177



Algorithm CascadeGeneralizationN({A1, . . . , AN}, T , i)
1. h = model induced by Ai from T
2. If (i == N)
3. Return h
4. T ′ = ExtendDataset(h, T )
5. CascadeGeneralizationN({A1, . . . , AN}, T ′, i+ 1)

where:
T is the original base-level training set
N is the number of steps in the cascade
{A1, . . . , AN} is the set of base-level learning algorithms

Fig. 9.9: Cascade generalization for arbitrary number of steps

ing does not strengthen a single learner but uses a small number of different classifiers
of increasing complexity, in a cascade-like fashion, as shown in Figure 9.10.

Fig. 9.10: Cascading

layers misclassify, cascading biases the distribution to those instances the previous layers
are uncertain about.
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Algorithm Cascading(T , {A1, . . . , AN})
1. For k = 1 to |T |
2. D1(xk) = 1

|T |
3. For i = 1 to N − 1
4. hi = model induced by Ai from T with distribution Di
5. For k = 1 to |T |
6. Di+1(xk) = 1−δi(xk)∑|T |

m=1 1−δi(xm)

7. hN = k-NN
8. For each new query instance q
9. i = 1
10. While i < N and δi(q) < Θi
11. i = i + 1
12. If i = N Then
13. Class(q) = hN (q)
14. Else
15. Class(q) = argmaxy∈YP (y|q, hi)

where:
T is the base-level training set
N is the number of base-level learning algorithms
A1, . . . , AN are the base-level learning algorithms
Θi is the confidence threshold associated with Ai, s.t. Θi+1 ≥ Θi
Y is the finite set of target class values
δi(x) = maxy∈Y P (y|x, hi) is the confidence function for model hi

Fig. 9.11: Cascading algorithm

The initial distribution D1 over the dataset T is uniform, with each training instance
assigned a constant weight of 1/|T |, and a model h1 is induced with the first base-
level learning algorithm A1. Then, each base-level learner Ai+1 is trained from the same
dataset T , but with a new distribution Di+1, determined by the confidence of the base-
level learner Ai that precedes it. The confidence of the model hi, induced by Ai, on a
training instance x is defined as δi(x) = maxy∈Y P (y|x, hi). At step i+ 1, the weights of
instances whose classification is uncertain under hi (i.e., below a predefined confidence
threshold) are increased, thus making them more likely to be sampled when training
Ai+1. Early classifiers are generally semi-parametric (e.g., multilayer perceptrons) and
the final classifier is always non-parametric (e.g., k-nearest-neighbor). Thus, a cascading
system can be viewed as creating rules, which account for most instances, in the early
steps, and catching exceptions at the final step. The generic cascading algorithm is shown
in Figure 9.11.

When classifying a new query instance q, the system sends q to all of the models and
looks for the first model, hk, from 1 to N , whose confidence on q is above the confidence
threshold. If hk is an intermediate model in the cascade, the class of the new query
instance is the class with highest probability (line 15, Figure 9.11). If hk is the final
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(non-parametric) model in the cascade, the class of the new query instance is the output
of hk(q) (line 13, Figure 9.11).

Although the weighted iterative approach is similar, cascading differs from boosting
in several significant ways. First, cascading uses different learning algorithms at each
step, thus increasing the variety of the ensemble. Second, the final k-NN step can be
used to place a limit on the number of steps in the cascade, so that a small number of
classifiers is used to reduce complexity. Finally, when classifying a new instance, there is
no vote across the induced models; only one model is used to make the prediction.

9.4.2 Delegating

A cautious, delegating classifier is a classifier that provides classifications only for in-
stances above a predefined confidence threshold, and passes (or delegates) other in-
stances to another classifier. The idea of delegating classifiers comes from Ferri et al.
(2004). It is similar in spirit to cascading. In cascading, however, all instances are
(re)weighted and processed at each step. In delegating, the next classifier is special-
ized to those instances for which the previous one lacks confidence, through training
only on the delegated instances, as illustrated in Figure 9.12. The delegation stops either
when there are no instances left to delegate or when a predefined number of delegation
steps has been performed. The delegating algorithm is shown in Figure 9.13.

Fig. 9.12: Delegating
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Algorithm Delegating(T , {A1, . . . , AN}, N , Rel)
1. T1 = T
2. i = 0
3. Repeat
4. i = i+ 1
5. hi = model induced by Ai from Ti
6. If (Rel = True and i > 1) Then
7. τi = getThreshold(hi, Ti−1)
8. Else
9. τi = getThreshold(hi, T )
10. T>hi = {e ∈ Ti : hCONFi (e) > τi}
11. T≤hi = {e ∈ Ti : hCONFi (e) ≤ τi}
12. Ti+1 = T≤hi
13. Until T>hi = ∅ or i > N

14. For each new query instance q
15. m = mink{hk(q) ≥ τk}
16. Class(q) = hm(q)

where:
T is the base-level training set
N is the maximum number of delegating stages
A1, . . . , AN are the base-level learning algorithms
hCONFi (e) is the confidence of the prediction of model hi for example e
Rel is a Boolean flag (true if τi is to be computed relative to delegated examples)
getThreshold(h, T ) returns a confidence threshold for classifier h relative to T

Fig. 9.13: Delegating algorithm

The function getThreshold(h, T ) may be implemented in two different ways as fol-
lows:

• Global percentage. τ = max{t : |{e ∈ T : hCONF (e) > t| ≥ ρ.|T |}, where ρ is a
user-defined fraction.

• Stratified percentage. For each class c, τ c = max{t : |{e ∈ Tc : hPROBc(e) > t| ≥
ρ.|Tc|}, where hPROBc(e) is the probability of class c under model h for example e,
and Tc is the set of examples of class c in T .

Note that there are actually four ways to compute the threshold, based on the value of
the parameter Rel. When Rel is true (i.e., each threshold is computed relative to the
examples delegated by the previous classifier), the approaches are called global relative
percentage and stratified relative percentage, respectively; and when Rel is false, they
are called global absolute percentage and stratified absolute percentage, respectively.

When classifying a new query instance q, the system first sends q to h1 and produces
an output for q based on one of several delegation mechanisms, generally taken from
the following alternatives:
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• Round-rebound (only applicable to two-stage delegation): h1 defers to h2 when its
confidence is too low, but h2 rebounds to h1 when its own confidence is also too
low.

• Iterative delegation: h1 defers to h2, which in turn defers to h3, which in turn defers
to h4, and so on until a model hk is found whose confidence on q is above threshold
or hN is reached. The algorithm of Figure 9.13 implements this mechanism (lines
14 to 16).

Delegation may be viewed as a generalization of divide-and-conquer methods (e.g.,
see Frank and Witten (1998); Fürnkranz (1999)), with a number of advantages includ-
ing:

• Improved efficiency: each classifier learns from a decreasing number of examples,
• No loss of comprehensibility: there is no combination of models; each instance is

classified by a single classifier, and
• Possibility to simplify the overall multi-classifier: see, for example, the notion of

grafting for decision trees (Webb, 1997).

9.5 Arbitrating

A mechanism for combining classifiers by way of arbitration, originally introduced as
model applicability induction, has been proposed by Ortega (1996); Ortega et al. (2001).5

As with delegating, the basic intuition behind arbitrating is that various classifiers have
different areas of expertise (i.e., portions of the input space on which they perform well).
However, unlike in delegating, where successive classifiers are specialized to instances
for which previous classifiers lack confidence, all classifiers in arbitrating are trained on
the full dataset T and specialization is performed at run time when a query instance is
presented to the system. At that time, the classifier whose confidence is highest in the
area of input space close to the query instance is selected to produce the classification.
The process is illustrated in Figure 9.14.

The area of expertise of each classifier is learned by its corresponding referee. The
referee, although it can be any learned model, is typically a decision tree which predicts
whether the associated classifier is correct or incorrect on some subset of the data, and
with what reliability. The features used in building the referee decision tree consist of at
least the primitive attributes that define the base-level dataset, possibly augmented by
computed features (e.g., activation values of internal nodes in a neural network, condi-
tions at various nodes in a decision tree) known as internal propositions, which assist
in diagnosing examples for which the base-level classifier is unreliable (see Ortega et al.
(2001) for details). The basic idea is that a referee holds meta-information on the area of
expertise of its associated classifier and can thus tell when that classifier reliably predicts
the outcome. Several classifiers are then combined through an arbitration mechanism,
in which the final prediction is that of the classifier whose referee is the most reliably
correct. The arbitrating algorithm is shown in Figure 9.15.

Interestingly, the neural network community has also proposed techniques that em-
ploy referee functions to arbitrate among the predictions generated by several classifiers.
These are generally known as mixture of experts (e.g., see Jacobs et al. (1991); Jordan
and Jacobs (1994); Waterhouse and Robinson (1994)).

5Interestingly, two other sets of researchers developed very similar arbitration mech-
anisms independently. See Koppel and Engelson (1997) and Tsymbal et al. (1998).
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Fig. 9.14: Arbitrating

Finally, note that a different approach to arbitration was proposed by Chan and Stolfo
(1993, 1997), where there is generally a unique arbiter for the entire set of N base-level
classifiers. The arbiter is just another classifier learned by some learning algorithm on
training examples that cannot be reliably predicted by the set of base-level classifiers. A
typical rule for selecting training examples for the arbiter is as follows: select example
e if none of the target classes gather a majority vote (i.e., > N/2 votes) for e. The
final prediction for a query example is then generally given by a plurality of votes on
the predictions of the base-level classifiers and the arbiter, with ties being broken by
the arbiter. An extension involving the notion of an arbiter tree is also discussed, where
several arbiters are built recursively in a tree-like structure. In this case, when a query
example is presented, its prediction propagates upward in the tree from the leaves (base
learners) to the root, with arbitration taking place at each level along the way.

9.6 Meta-decision Trees

Another approach to combining inductive models is found in the work of Todorovski
and Džeroski (2003) on meta-decision trees (MDTs). The general idea in MDT is similar
to stacking in that a metamodel is induced from information obtained using the results
of base-level learning, as shown in Figure 9.16. However, MDTs differ from stacking in
the choice of what information to use, as well as in the metalearning task. In particular,
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Algorithm Arbitrating(T , {A1, . . . , AN})
1. For i = 1 to N
2. hi = model induced by Ai from T
3. Ri = LearnReferee(hi, T )
4. For each new query instance q
5. For i = 1 to N
6. ci = correctness of hi on q as per Ri
7. ri = reliability of hi on q as per Ri
8. h? = argmaxhi:ciis“correct′′ri
9. Class(q) = h?(q)

where:
T is the base-level training set
N is the number of base-level learning algorithms
A1, . . . , AN are the base-level learning algorithms
LearnReferee(A, T ) returns a referee for learner A and dataset T

Function LearnReferee(h, T )
1. Tc = examples in T correctly classified by h
2. Ti = examples in T incorrectly classified by h
3. Select a set of features, including the attributes defining the examples

and class, as well as additional features
4. Dt = pruned decision tree induced from T
5. For each leaf L in Dt
6. Nc(L) = number of examples in Tc classified to L
7. Ni(L) = number of examples in Ti classified to L
8. r = max(|Nc(L),Ni(L)|)

|Nc(L)|+|Ni(L)|+ 1
2

9. If |Nc(L)| > |Ni(L)| Then
10. L’s correctness is “correct”
11. Else
12. L’s correctness is “incorrect”
13. Return Dt

Fig. 9.15: Arbitrating algorithm

MDTs build decision trees where each leaf node corresponds to a classifier rather than
a classification. Hence, given a new query example, a meta-decision tree indicates the
classifier that appears most suitable for predicting the example’s class label. The MDT
building algorithm is shown in Figure 9.17.

Class distribution properties are extracted from examples using the base-level learn-
ers on different subsets of the data (lines 7 to 9, Figure 9.17). These properties, in turn,
become the attributes of the metalearning task. Unlike metalearning for algorithm se-
lection, where these attributes are extracted from complete datasets (and thus there
is one meta-example per dataset), MDTs have one meta-example per base-level exam-
ple, simply substituting the base-level attributes with the new computed properties. The
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Fig. 9.16: Meta-decision tree

metamodel MDT is induced from these meta-examples, TMDT , with a metalearning
algorithm A. Typically, A is MLC4.5, an extension of the well-known C4.5 decision tree
learning algorithm (Quinlan, 1993).

Interestingly, in addition to improving accuracy, MDTs, being comprehensible, also
provide some insight about base-level learning. In some sense, each leaf of the MDT
captures the relative area of expertise of one of the base-level learners (e.g., C4.5, LTree,
CN2, k-NN, and näıve Bayes).

9.7 Discussion

The list of methods presented in this chapter is not intended to be exhaustive. Methods
included have been selected because they represent classes of model combination ap-
proaches and are most closely connected to the subject of metalearning. A number of
so-called ensemble methods have been proposed that combine many algorithms into a
single learning system (e.g., see Kittler et al. (1998); Opitz and Maclin (1999); Caru-
ana et al. (2004); Brown (2005)). The interested reader is referred to the literature for
descriptions and evaluations of other combination and ensemble methods.

Because it uses results at the base level to construct a classifier at the meta level,
model combination may clearly be regarded as a form of metalearning. However, its mo-
tivation is generally rather different from that of traditional metalearning. Whereas met-
alearning explicitly attempts to derive knowledge about the learning process itself, model
combination focuses almost exclusively on improving base-level accuracy. Although they
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Algorithm MDTBuilding(T , {A1, . . . , AN}, m)
1. {T1, . . . , Tm} = StratifiedPartition(T , m)
2. TMDT = ∅
3. For i = 1 to m
4. For j = 1 to N
5. hj = model induced by Aj from T − Ti
6. For each x ∈ Ti
7. maxprob(x) = maxy∈Y Phj (y|x)
8. entropy(x) = −

∑
y∈Y Phj (y|x) logPhj (y|x)

9. weight(x) = fraction of training examples used by hj to
estimate the class distribution of x

10. Ej(x) =< maxprob(x), entropy(x), weight(x) >
11. Ej = ∪x∈TiEj(x)
12. TMDT = TMDT∪ joinNj=1Ej
13.MDT = model induced by MLC4.5 from TMDT

14. Return MDT
15. For each new query instance q
16. Class(q) = MDT (< E1(q), E2(q), . . . , EN (q) >)

where:
T is the base-level training set
N is the number of base-level learning algorithms
A1, . . . , AN are the base-level learning algorithms
m is the number of disjoint subsets into which T is partitioned
StratifiedPartition(T , m) returns a stratified partition of T into m

equally sized subsets

Fig. 9.17: Meta-decision tree building algorithm

do learn at the meta level, most model combination methods fail to produce any real
generalizable insight about learning, except in the case of arbitrating and meta-decision
trees, where new metaknowledge is explicitly derived in the combination process. As
stated in Vilalta et al. (2004),

“by learning or explaining what causes a learning system to be successful or not
on a particular task or domain, [metalearning seeks to go] beyond the goal of
producing more accurate learners to the additional goal of understanding the
conditions (e.g., types of example distributions) under which a learning strategy
is most appropriate.”
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Todorovski, L. and Džeroski, S. (2003). Combining classifiers with meta-decision trees.
Machine Learning, 50(3):223–249.

Tsymbal, A., Puuronen, S., and Terziyan, V. (1998). A technique for advanced dynamic
integration of multiple classifiers. In Proceedings of the Finnish Conference on Artificial
Intelligence (STeP’98), pages 71–79.

Vilalta, R., Giraud-Carrier, C., Brazdil, P., and Soares, C. (2004). Using meta-learning to
support data-mining. International Journal of Computer Science Applications, I(1):31–
45.

Waterhouse, S. R. and Robinson, A. J. (1994). Classification using hierarchical mixtures
of experts. In IEEE Workshop on Neural Networks for Signal Processing IV, pages 177–
186.

Webb, G. I. (1997). Decision tree grafting. In Proceedings of the Fifteenth International
Joint Conference on Artificial Intelligence, pages 846–851.

Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5(2):241–259.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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