
8

Setting Up Configuration Spaces and Experiments

Summary. This chapter discusses the issues relative to so-called configuration spaces
that need to be set up before initiating the search for a solution. It starts by introduc-
ing some basic concepts, such as discrete and continuous subspaces. Then it discusses
certain criteria that help us to determine whether the given configuration space is (or
is not) adequate for the tasks at hand. One important topic which is addressed here
is hyperparameter importance, as it helps us to determine which hyperparameters have
a high influence on the performance and should therefore be optimized. This chapter
also discusses some methods for reducing the configuration space. This is important as
it can speed up the process of finding the potentially best workflow for the new task.
One problem that current systems face nowadays is that the number of alternatives in
a given configuration space can be so large that it is virtually impossible to gather com-
plete metadata. This chapter discusses the issue of whether the system can still function
satisfactorily even when the metadata is incomplete. The final part of this chapter dis-
cusses some strategies that can be used for gathering metadata that originated in the
area of multi-armed bandits, including, for instance, SoftMax, upper confidence bound
(UCB) and pricing strategies.

8.1 Introduction

The configuration space includes all possible workflows (pipelines) that can be con-
structed by combining the given set of base-level algorithms with all admissible configu-
rations of their hyperparameters.

The search space is of great influence to the result of the hyperparameter optimiza-
tion algorithm (Yu et al., 2020; Yang et al., 2020). Designing this configuration space
too small can be harmful, as the search procedure might not yield good workflows for
some datasets. On the other hand, designing this configuration space too large can also
be problematic, as the search procedure might require a lot of time before it converges
to something good. This chapter aims to address the issue of how to set up an adequate
configuration space.

Organization of this chapter

Section 8.2 clarifies some basic notions that are useful when discussing configuration
spaces. First, it discusses the difference between discrete and continuous subspaces. Then

© The Author(s) 2022
P. Brazdil et al., Metalearning, Cognitive Technologies,
https://doi.org/10.1007/978-3-030-67024-5_8

143

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67024-5_8&domain=pdf

the issue of sampling the continuous subspaces is taken up. Finally, we address the issue
of how configuration spaces can be described.

Section 8.3 discusses certain criteria that enable us to affirm whether the given con-
figuration space is (or is not) adequate for the tasks at hand.

Section 8.4 discusses the notion of hyperparameter importance. This notion helps us
to determine which hyperparameters have a high influence on performance and should
therefore be optimized. Hyperparameters that have a relatively small influence on per-
formance could potentially be neglected, or else, less resources could be allocated to
them.

Section 8.5 discusses some methods for reducing the configuration space. This is
important as it can speed up the process of finding the potentially best workflow for
each new task. This is simply because the system does not need to consider the alterna-
tives that do not make a difference. Having a simple set up also has other advantages.
Many users may want to know why a given recommendation system has come up with
a particular solution, following the trend called explainable AI (Došilovič et al., 2018).
Obviously, if the system is simpler, so are the explanations that can be given.

The success of a particular recommendation system also depends on the datasets
used in the process of generating metadata. The issue of which datasets are needed is
discussed in Section 8.7. One problem that current systems face nowadays is that the
number of alternatives in a given configuration space can be so large that it is virtually
impossible to gather complete metadata.

Section 8.8 discusses the issue of whether the system can still function satisfactorily
even when the metadata is incomplete.

The final section (Section 8.9) discusses some strategies that can be used for gather-
ing metadata that originated in the area of multi-armed bandits.

8.2 Types of Configuration Spaces

The term configuration space is used here to refer to the search space associated with
a particular metalearning task. In this context we can distinguish among the following
metalearning tasks:

• algorithm selection
• hyperparameter optimization and the combined hyperparameter optimization and

algorithm selection (CASH) problem
• workflow design

Each of these tasks involves certain configuration space. The details on each are given in
the following subsections.

8.2.1 Configuration spaces associated with algorithm selection

The configuration space associated with base-level algorithm selection consists of a set
of base-level algorithms, which is usually referred to as a portfolio. The number of items
in this portfolio determines the size of this space. In practical applications, there is a
finite number of possibilities. As such, this is a discrete search space. Typically, there is
only a finite number of values that can be transferred from one situation to another.

Chapters 2 and 5 described different ways of searching through this space. Sec-
tion 8.5 describes a method for reducing this space, which is done by eliminating certain
algorithms form the existing portfolio.

144 8 Setting Up Configuration Spaces and Experiments

8.2.2 Configuration spaces associated with hyperparameter optimization
and CASH

Base-level algorithms typically involve hyperparameters. Each algorithms has specific
hyperparameters.

Types of hyperparameters

Some hyperparameters are categorical and hence discrete. Some examples of this type
are: the type of SVM kernel, the sampling method of a random forest, or the distance
function in a k-NN classifier.

Other hyperparameters are continuous. Some examples of continuous hyperparame-
ters are: the kernel width of a SVM, the learning rate of a neural network, or the number
of trees in a random forest.

Some algorithms include both categorical/discrete and continuous hyperparameters.
In many systems, categorical and continuous hyperparameters are mixed together, as is
done, for example, in the configuration space of Auto-sklearn (Feurer et al., 2015, 2019).

Continuous versus discrete spaces

The type of hyperparameter determines what kind of configuration space is involved in
the associated task.

Discrete spaces consist of a fixed number of configurations, whereas continuous
spaces consist potentially of an infinite number of configurations. Continuous spaces
can be discretized. This has an advantage that it is relatively easy to gather metaknowl-
edge on previous experiments, as there is only a finite number of configurations. The
choice regarding whether to discretize (or not) is usually made by the designer of the
configuration space.

So, typically we could say that hyperparameter optimization involves both discrete
and continuous spaces.

Conditional hyperparameters and spaces

Sometimes, a set of hyperparameters is dependent on the specific value of another hyper-
parameter. These hyperparameters are called conditional hyperparameters. For example,
many hyperparameters of support vector machines that control the kernel will only be
relevant if a certain kernel is selected. As a more complex example, consider the Auto-
sklearn search space (Feurer et al., 2015, 2019), where the set of hyperparameters is the
union of the hyperparameters of all algorithms involved, plus additional hyperparame-
ters determining which algorithms and preprocessing operators should be selected. All
the hyperparameters are conditional on the values of the latter ones.

Sampling of continuous subspaces

Let us address a few issues that are relevant when dealing with numeric hyperparame-
ters:

1. Type of sampling (uniform, log scale or other)
2. Level of detail

8.2 Types of Configuration Spaces 145

Continuous spaces are often sampled according to a chosen probability distribution.
Some hyperparameters can be sampled uniformly, while others are sampled on a log
scale, which seems more appropriate for others. For example, let us consider the task of
selecting the number of trees for a gradient boosting classifier. We note that the change
from 10 to 20 trees might produce a significant effect on performance, while the change
from 1000 to 1010 trees would hardly lead to a significant effect. So this justifies the
adoption of log-scale sampling for this parameter, which can form part of the set up.
Snoek et al. (2014) proposed a method that determines what the optimal sampling rate
is for every hyperparameter, freeing the user from this task.

Regarding the level of detail, numeric hyperparameters are often specified by the
interval between the minimum and maximum value. Supposing we opt for uniform sam-
pling in this range, the question is whether we should admit all possible values in this
range or just some of them. On the one hand, we want to have a sufficiently fine resolu-
tion, so that we could observe all effects in performance. On the other hand, using too
fine a resolution can complicate the search for the best setting.

Since the sampling is done according to a given probability distribution, sampling
methods can keep running until a given time budget has been exhausted. The meth-
ods based on multi-armed bandits discussed in Chapter 8 (Section 8.9) provide other
alternatives.

8.2.3 Configuration spaces associated with workflow design

Workflows (pipelines) are often defined as collections of steps (e.g., pre-processing steps,
base-level algorithm) chained together. It is important to keep the size of this config-
uration space manageable. In general, certain formal structures including ontologies,
grammars, or planning systems with operators can be used for this purpose (see Chapter
7). Each of these formal structures defines a configuration space. We note that Auto-
sklearn (Feurer et al., 2015, 2019) uses a certain ontology that dictates the order and
applicability of operators to include in a workflow (pipeline).

The aim is to design this space so that it would include all the required alternatives
(here alternative workflows). It should not be unnecessarily “too big”, as this could make
the search for potentially best solution (here workflow) more difficult. This issue regard-
ing whether the given configuration space is adequate for a given set of tasks is discussed
in the next section.

8.3 Adequacy of Configuration Spaces for Given Tasks

Let TC represent the tasks that can be solved adequately by a system that has access
to configuration space C. Similarly, let TR represent various tasks that we expect to
encounter in the near future. Let us suppose, that to solve them in an adequate way, we
would need configuration space R.

Note that R is a hypothetical concept meant for illustrative purposes. We can never
know the exact contents of R, as we will not know what tasks we will encounter in the
future. But we may know some instances of R, namely the tasks we have encountered
until now. Having the knowledge of some instances enables us to make a guess regarding
the underlying distribution of tasks. This way may cover also future tasks under the
assumption of stationarity, i.e. that the distribution will not change in the future. The
following situations can arise:

146 8 Setting Up Configuration Spaces and Experiments

• R ≡ C
• R ⊂ C
• C ⊂ R
• ExCond ∧ C ∩R 6= �

where ExCond guarantees that the three above cases are excluded. This condition can
be defined as ExCond = (R 6= C) ∧ (R 6⊂ C) ∧ (C 6⊂ R).

Let us analyze each case separately.
Case R ≡ C: If this case occurs, then we are well prepared for TR. Nothing needs to

be done.
Case R ⊂ C: If this case arises, at first sight it seems that everything is fine, as

in principle we could solve all the required tasks. However, as not all elements in C
may be needed, time may be wasted in the search for the right algorithm. For instance,
if the required task is to distinguish between two classes only and the configuration
space includes methods suitable for any number of classes, it is possible to pre-select the
appropriate subset.

However, our configuration space may also include algorithms that have sub-standard
performance (non-competitive algorithms), or algorithms with good performance but
which are redundant. So, the objective here is to identify a reduced configuration space
C′ which can still solve all the required tasks, namely (R ≡ C′) ∧ (C′ ⊂ C). Reducing
the configuration space is beneficial in general, as it reduces the time required in the
search for the potentially best solution. However, this process incurs certain risks. If it is
reduced too much, the optimal method (e.g., classifier) may be missed out. Section 8.5
discusses the reduction method in detail.

Case C ⊂ R: In this case the problem is more serious, as we are unable to solve all
the required tasks with recourse to the algorithms in the current configuration space. For
instance, if our configuration space includes only methods for classification tasks and the
required tasks include both classification and regression, then it is necessary to extend
the current portfolio by the inclusion of appropriate methods.

Case ExCond ∧C ∩R 6= �: Let us call this intersection C′. This means that only
some problems in R can be solved with C′ (as in case C ⊂ R). This means that only
some problems in R can be solved with C′ (as in case C ⊂ R). Moreover, C′ includes
some algorithms that are not really needed for R (as in case R ⊂ C).

8.3.1 General principles for the constitution of configuration spaces

It is possible to define a set of general principles that should be followed in the constitu-
tion of discrete configuration spaces. For continuous configurations, the situation is a bit
different as it is defined by ranges, rather than a set of configurations.

Let us assume that a set of datasets and tasks is given. Let us consider a configuration
space containing the following set of alternatives C = c1, . . . cm, where each ci repre-
sents a workflow with some specific hyperparameter settings. The general principles for
including an element ci are:

1. Minimal relevance: For most datasets there should be a ci that obtains better per-
formance than a suitable baseline. A baseline is a simple method which establishes
a reference for minimally acceptable results. In supervised learning problems, for
instance, it consists of predicting the most frequent class.

2. Positive marginal contribution/individual relevance: Each item ci should pro-
vide some marginal contribution to the set C without Ci (C − ci). Effectively this
means that ci should be the best option for at least one task.

8.3 Adequacy of Configuration Spaces for Given Tasks 147

3. Impossibility to improve on marginal contribution: Given some preselected set
C, the results cannot be further significantly improved by adding additional ele-
ments cj to it.

4. Impossibility to improve on individual relevance: For every ci there should not
exist a cj such that the performance of ci is never significantly better than that of cj
for all tasks considered.

We note that the principles are oriented towards the available datasets and tasks. In other
words, as we do not know the tasks that we will encounter, this is usually established for
the metadata of previously seen tasks. If we want to be well prepared for future datasets,
it is advisable to relax somewhat the last two principles. Some competitive algorithms
may be useful in future tasks, even if they have not been included in the best equivalence
group on any past dataset.

Some of these issues are taken up again in subsequent subsections, where we discuss
specific methods for constructing portfolios of algorithms (workflows).

8.4 Hyperparameter Importance and Marginal Contribution

In this section we cover the marginal contribution of certain elements in a given configu-
ration space. Subsection 8.4.1 discusses the marginal contribution of algorithms (work-
flows), while Subsection 8.4.2 is oriented towards hyperparameter importance for a
specific dataset. Subsection 8.4.3 generalizes the notion of hyperparameter importance
across datasets.

8.4.1 Marginal contribution of algorithms (workflows)

Some researchers have investigated the issue of assessing the complementarity of algo-
rithms. Xu et al. (2012), for instance, have defined a notion of marginal contribution to
the performance, i.e., how much the performance of an existing portfolio is improved
by adding a new algorithm to it. This approach has the disadvantage of being depen-
dent on a fixed portfolio. A broader view of an algorithm contribution, which extends
the marginal contribution analysis, involves a so-called Shapley value (Fréchette et al.,
2016). This value determines the marginal contribution of an algorithm to any subset
of the algorithm portfolio.

Shapley values come from the area of cooperative game theory. The setup involves
a coalition of players who cooperate and obtain a certain overall gain from that cooper-
ation. As some players may contribute more to the coalition than others or may possess
different bargaining power (for example, threatening to destroy the whole surplus), a
question arises of how important each player is to the overall cooperation and what the
payoff is. The Shapley value provides one possible answer to this question.

The techniques described in this section work on continuous configuration spaces.

8.4.2 Determining hyperparameter importance on a given dataset

The problem of how to automatically optimize hyperparameters of algorithms has drawn
a lot of attention in recent years. The reader can consult Chapter 6, where some of the
more important methods are discussed. Most of these techniques require that the rele-
vant hyperparameters for each algorithm are given and accompanied by a specification

148 8 Setting Up Configuration Spaces and Experiments

of the possible settings that can be considered. This can be done either by specifying the
intervals of values or simply by enumerating all possible settings.

Various techniques exist that enable to identify, for a given dataset and algorithm,
the most important hyperparameters. These include approaches using

• Forward selection (Hutter et al., 2013)
• functional ANOVA (Sobol, 1993; Hutter et al., 2014)
• Ablation analysis (Biedenkapp et al., 2017; Fawcett and Hoos, 2016)

The three techniques described further on enable us to determine the importance of
hyperparameters for a given dataset. All require metadata about configurations and the
corresponding performance values on the particular dataset. Note that these techniques
operate on a continuous configuration space.

Forward selection

Forward selection (Hutter et al., 2013) trains a surrogate model to map hyperparameter
values to performance values. The work assumes that including important hyperparam-
eters as input to the surrogate model has a high positive impact on performance. This
setting is similar to the experiment of Breiman (2001) on feature importance.

The method starts with an empty set, and greedily adds the hyperparameter that has
the highest impact on the predictive performance of the surrogate model. This process
continues in an iterative manner until no further improvement can be made. This yields
a ranking of hyperparameters ordered by importance to this surrogate model.

Ablation analysis

Ablation analysis (Fawcett and Hoos, 2016) calculates a so-called ablation trace. The
method first executes the default configuration on the dataset and establishes its per-
formance. Afterwards, it determines the optimal hyperparameter setting using an op-
timization procedure, such as sequential model-based optimization (SMBO) discussed
in Chapter 6 (Section 6.8). The goal is to determine which of the hyperparameters in-
fluence performance the most when changing the value from the default setting to the
optimal setting. It starts with the optimal configuration, and considers all configurations
that can be reached from the optimal configuration by switching one hyperparameter
value to the default value. It continues in that fashion until all hyperparameters have
been switched and the default configurations has been reached. This results in a ranking
of hyperparameters in decreasing importance. This is called the ablation trace. Note that
this method requires that, after the optimal hyperparameters have been determined, sev-
eral models along the ablation trace are trained. This makes the procedure potentially
time consuming. Biedenkapp et al. (2017) show how surrogate models can be used to
avoid this and run ablation analysis faster.

Functional ANOVA

Hutter et al. (2014) apply functional ANOVA (Sobol, 1993) to establish hyperparam-
eter importance. Functional ANOVA determines how much each hyperparameter (and
each combination of hyperparameters) contributes to the variance of the performance.
It works on the concept of the marginal of a hyperparameter. In the context of machine

8.4 Hyperparameter Importance and Marginal Contribution 149

learning, a marginal reflects the relation between the value of an hyperparameter and
the performance of that algorithm. Specifically, for each value for that hyperparameter,
it reflects how the algorithm would perform, averaged over all possible combinations
of the other hyperparameters and their settings. This might not seem feasible, as there
are an exponential number of combinations. However, Hutter et al. (2014) showed how
this can be calculated efficiently using tree-based surrogate models trained on the perfor-
mance data of configurations on the dataset. Hyperparameters that have a large variance
across the marginal are deemed important. The opposite is also true: hyperparameters
that have a low variance are considered unimportant. Note that functional ANOVA de-
termines the importance of hyperparameters globally; the conclusions that are drawn do
not depend on specific values of other hyperparameters.

8.4.3 Establishing hyperparameter importance across datasets

All three aforementioned techniques are post hoc techniques; i.e., when confronted with
a new dataset, they do not reveal which hyperparameters are important prior to experi-
menting on that particular dataset. In this subsection, we describe efforts made towards
establishing hyperparameter importance across datasets.

In order to gain a better understanding about which hyperparameters are important
in general, van Rijn and Hutter (2018) and Probst et al. (2019) apply the following
procedure:
1. Determine a suitable set of datasets;
2. Gather ample configurations and their performance on these datasets;
3. Apply a hyperparameter importance framework on it;
4. Aggregate the results in a human-understandable format.

For determining a suitable set of datasets, there are several considerations to take
into account. On the one hand, it would be interesting to consider a broad set of datasets.
For example, the OpenML-CC18 (Bischl et al., 2021) seems a suitable choice. However, in
some specific studies, it makes sense to consider only a subset of datasets. For instance,
Probst et al. (2019) are specifically interested in binary classification and hence use a
subset of the “OpenML-100” with a binary target. Similarly, Sharma et al. (2019) are
interested in image classification, and therefore define a set of ten image datasets.

As most methods for establishing hyperparameter importance rely on the use of a
surrogate model, we need to have ample data gathered on the given datasets. The data
consist of pairs of items, namely a configuration and the corresponding measure of per-
formance. As surrogates become increasingly more accurate when trained on a larger
number of configuration and performance pairs, we need a sufficient number of such
pairs. As for the methods for establishing hyperparameter importance, all the aforemen-
tioned techniques (forward selection, ablation analysis, and functional ANOVA) can be
used. However, all these methods are based on certain assumptions, and as such, the re-
sults may differ depending on which choice was made. Still, a quick investigation of the
results shows that the methods based on tunability and functional ANOVA discussed ear-
lier seem to agree on the most important hyperparameters (van Rijn and Hutter, 2018;
Probst et al., 2019). Chapter 17 looks at this in more detail.

Regarding the aggregation of results, one could simply aggregate the results per
hyperparameter and per dataset into a boxplot. Functional ANOVA returns a clear and
interpretable fraction, representing the contribution to the overall variance. For ablation
analysis and forward selection, the outcome is in the form of a ranking of hyperparame-
ters according to their importance. Then a ranking-based aggregation can be used, which
can lead to critical distance plots, as suggested by Demšar (2006).

150 8 Setting Up Configuration Spaces and Experiments

8.5 Reducing Configuration Spaces

8.5.1 Reducing portfolios of algorithms/configurations

The issue of how to identify and eliminate certain algorithms (configurations, work-
flows) from a given portfolio and evaluate the effects was addressed by Brazdil et al.
(2001) and Abdulrahman et al. (2019). The method involves two steps. The aim of the
first step is to identify competitive algorithms. The non-competitive algorithms are ef-
fectively dropped at this stage. The aim of the second step is to seek a small number of
specialists/experts for each dataset. This step results in the elimination of many poten-
tially redundant algorithms.

More details on both steps are given in the following subsections. Both methods are
defined for discrete configuration spaces.

Identifying competitive algorithms

The assumption followed here is that the non-competitive algorithms have little chance
to achieve a competitive result on the new target dataset. This is done by applying Algo-
rithm 8.1, which calls Algorithm 8.2.

input : Datasets Ds
Portfolio of algorithms Ain

output: Portfolio of competitive algorithms Ac
1: Initialize Ac to empty list
2: for all di ∈ Ds do
3: Aci ← Identify competitive algorithm (Ain,di)
4: Ac ← Ac +Aci
5: end for
Algorithm 8.1: Identifying competitive algorithms for all datasets

Algorithm 8.1 requires as input the datasets Ds and a set of algorithms Ain and outputs
a subset of algorithms Ac. The for-loop (lines 2–5) includes a call to Algorithm 8.2 (on
line 3), which returns list Aci representing the most competitive algorithms of Ain for
the dataset di. Any performance measure can be used to identify such algorithms. It
can be, for instance, accuracy, or as Abdulrahman et al. (2019) have shown, a combined
measure of accuracy and runtime. This list includes the topmost algorithm in the average
ranking and all algorithms with equivalent performance. Finally, list Aci is added (using
the operator +) to the Ac, representing a list of lists.

Algorithm 8.2 works as follows: First, Aci is initialized to an empty list. Then the
ranking Rdi is constructed on the basis of the test results of the algorithms of Ain on
dataset di. There is no need to conduct tests, as the test results can be simply retrieved
from the meta-database. The next goal is to initialize abest to be the topmost algorithm
in Rdi .

The method proceeds by identifying all algorithms (aeq) with an equivalent perfor-
mance (e.g., a combined measure of accuracy and runtime) to abest. This is done by
processing all algorithms (configurations) aj ∈ Ain, and conducting a statistical test

8.5 Reducing Configuration Spaces 151

input : Algorithms Ain, Dataset di
output: Competitive algorithms Aci
1: Initialize Aci to empty list
2: Construct a ranking Rdi of algorithm in Ain on di
3: Identify the topmost algorithm abest in Rdi
4: Use a statistical test to identify algorithms in aeq with equivalent performance
5: Aci ← abest + aeq

Algorithm 8.2: Identify competitive algorithms for a specific dataset

(e.g., Wilcoxon signed-rank test with a confidence level of 95% (Demšar, 2006)) to de-
termine whether the performance of aj is equivalent to abest. This test is done on the
basis of fold information of the cross-validation procedure that is available in the meta-
database. All algorithms that have an equivalent performance to abest are included in the
candidate set Aci . When all pairs of algorithms have been processed, list Aci is returned.

Example

To explain how the non-competitive algorithms are removed from the ranking, as de-
tailed in Algorithm 8.1, we show an example. For simplicity, our example includes only
six algorithms (a1,a2,...,a6) and six datasets (D1,D2,...,D6) (see Table 8.1). The algo-
rithms in dark-grey slots represent the topmost algorithms (abest) identified for each
dataset.

The topmost algorithm for each dataset is then compared with the other algorithms
in the ranking. For example, when dealing with RD1 , algorithm a2 is identified as abest.
It is compared with a6, a4, a3, a5, and a1 using the Wilcoxon signed-rank test. Any
algorithm that has a similar performance to the topmost algorithm is maintained in the
ranking, while all the others are dropped. In Table 8.1 the algorithms that have been
maintained are shown in grey slots.

This process is repeated for all datasets used in the experiment, and the compet-
itive algorithms for each dataset are identified. In our example the competitive set of

Table 8.1: Competitive algorithms (in gray) identified using statistical test

Rank RD1 RD2 RD3 RD4 RD5 RD6

1 a2 a5 a4 a6 a4 a1
2 a6 a1 a2 a5 a2 a2
3 a4 a3 a1 a1 a3 a4
4 a3 a6 a5 a2 a5 a5
5 a5 a4 a3 a3 a6 a3
6 a1 a2 a6 a4 a1 a6

algorithms includes

Ac = {(a2)(a5, a1)(a4, a2, a1)(a6, a5, a1)(a4, a2)(a1)}. (8.1)

152 8 Setting Up Configuration Spaces and Experiments

If we eliminate the duplicates, we obtain

Ac = {a2, a5, a1, a4, a5}. (8.2)

A question arises as to whether all these algorithms are needed or whether we can still
drop some. This issue is covered in the next section.

Using covering algorithm to select “non-redundant” algorithms

If a portfolio is constructed by adding various algorithms to it, it could include various
versions of the same algorithm with very similar performance. Their inclusion in the
algorithm portfolio may not really be desirable.

The issue of whether two algorithms (configurations) have similar performance can
be determined on a macro- or micro-level. Comparisons on a macro-level involve mea-
sures (e.g., accuracy or area under the ROC curve) on the whole dataset. They represent
aggregated measures across different examples. One approach that uses this notion of
similarity is discussed in the next subsection.

Alternatively, it is possible to exploit the notion of similarity on a micro-level, i.e., by
taking into account the performance on individual examples. This approach is discussed
further on.

Both approaches seek to “cover” each dataset by at least one algorithm. The term
“algorithm covers a dataset” is used here to indicate that the algorithm appears in the
subset of the algorithms with the best performance. All algorithms identified as “similar”
are dropped.

In addition, both approaches give preference to algorithms that cover preferably
many datasets. This is based on the assumption, that by assembling a set of algorithms
that work well for many past datasets, it is likely that one of these will be a good choice
for the new datasets.

Using covering algorithm with macro-level similarity

This approach of Abdulrahman et al. (2019) followed a covering approach and a hill-
climbing strategy. In the first step, the algorithm that covers the largest number of
datasets is selected. This approach assumes that it is sufficient to cover each dataset using
just one algorithm. All other algorithms with a similar macro-level performance are not
considered and hence effectively dropped from further consideration. All datasets cov-
ered are eliminated from further consideration. The process is repeated in an iterative
manner until all datasets have been covered. The authors have shown that a particu-
lar metalearning system, AR* (see Chapter 2), can identify well-performing algorithms
sooner with a reduced portfolio than similar metalearning systems that use a full (unre-
duced) portfolio.

We note that this approach may eliminate algorithms that appear similar on a macro-
level but are rather different on a micro-level. This shortcoming can be avoided by adopt-
ing micro-level in the detection of similarity.

Using a covering algorithm with micro-level similarity

One good measure to detect micro-level similarity is classifier output difference (COD)
(Peterson and Martinez, 2005), which determines the proportion of cases on which two
classifiers differ in their predictions. It is defined as follows:

8.5 Reducing Configuration Spaces 153

COD(i, j, d) =
|x ∈ d s.t. f̂i(x) 6= f̂j(x)|

|d| . (8.3)

Here, d is the dataset at hand and x represents an instance (example) from d. The two
classifiers that are being compared are denoted by i and j, and their predictions on a
given instance x are denoted by f̂i(x) and f̂j(x), respectively. So if this measure is 0
(or very near to this value) it indicates that the two classifiers generate virtually the
same predictions on the given dataset. Lee and Giraud-Carrier (2011) use this measure
to determine a set of different classifiers, which would complement each other in a
portfolio.

8.5.2 A reduction method oriented towards a combination of measures

The reduction method described above works with the combined measure of accuracy
and time. However, we note that the relative importance of accuracy and runtime is
fixed. This is done by setting the value of the parameter Q (see Eq. 2.3 in Chapter 2).
So this represents a certain limitation, as only a certain region of points on the so-called
Pareto front is considered important.

The concept of Pareto front (or frontier) comes from the area of multiobjective opti-
mization (Miettinen, 1999). A solution is called nondominated, Pareto optimal, if none of
the objective functions can be improved without degrading some of the other objective
values. A set of Pareto-optimal solutions constitutes the Pareto front.

So a question arises as to how to extend the method discussed in the previous sub-
section to cover the algorithms on the Pareto front (or in its vicinity). We describe two
approaches in the following subsections.

Approach based on an envelopment curve

This approach tries to identify points (algorithms) on the envelopment curve or in its
vicinity. Each point (algorithm) is characterized by two coordinates: runtime and ac-
curacy. Various methods exist that can identify the points on the envelopment curve.
Brazdil and Cachada (2018) have used a relatively simple method that led to quite sat-
isfactory results. This method first orders all points (algorithms) by their runtime. Then
all points are examined one by one, and if the accuracy of the successor is higher than
that of all its predecessor, it is assumed to represent a competitive algorithm. Only the
competitive algorithms are returned.

Figure 8.1 shows an example of both an unreduced set of algorithms (blue points)
and the corresponding reduced set (red triangles) for one dataset.

This approach can be regarded as a simple solution for a rather complex problem.
Although it can identify the points on the Pareto front, it does not use any notion of an
uncertainty band below this front.

8.6 Configuration Spaces in Symbolic Learning

Version spaces

T. Mitchell has defined so-called version spaces in the context of concept learning
(Mitchell, 1980, 1982, 1990, 1997). The version space contains all possible hypothe-
ses consistent with the given positive and negative examples and shows that all these

154 8 Setting Up Configuration Spaces and Experiments

Fig. 8.1: Example of an unreduced set (blue points) and the corresponding
reduced set (red triangles) of algorithms for one dataset

hypotheses can be organized in a lattice.1 Thus, it is possible to follow the links from
more specific to more general (or vice versa). Besides, as was shown, it is possible to
define the general boundary G and the specific boundary S. Concept learning that ex-
ploits the version space proceeds by reducing the version space as each new example is
analyzed.

Various researchers have considered the conditions needed by a given concept learn-
ing system so that it can generate the target hypothesis. In this context, the term bias was
often used (Mitchell, 1990; Russell and Grosof, 1990b,a; Gordon and desJardins, 1995).
Mitchell (1990) distinguishes between weak and strong bias, depending on whether
weak or strong assumptions need to be made to be able to generate a model capable
of classifying well all examples.

Controlling the domain-specific language bias

Various researchers have proposed to control the language bias in various ways. For in-
stance, these included determinations (Davies and Russell, 1987), relational clichés (Sil-
verstein and Pazzani, 1991), clause schemata (Kramer and Widmer, 2001), metapredi-
cates that define a translation between a metafact and a domain-level rule (Morik et al.,
1993), and topologies (Morik et al., 1993), representing abstracted graphs of rules. Other

1A lattice consists of a partially ordered set of points in which every two elements
have a unique supremum (also called a least upper bound) and a unique infimum (also
called a greatest lower bound).

8.6 Configuration Spaces in Symbolic Learning 155

researchers have proposed various approaches based on grammars, including, for in-
stance, the proposal of Cohen (1994). Some of these grammar-based approaches restrict
the concepts that can be introduced (e.g., Jorge and Brazdil (1996)); Others impose
restrictions on the variables also, such as the DLAB formalism (De Raedt and Dehaspe,
1997). Grammar-based formalisms were discussed in Chapter 7.

Although many proposals have been made in the past, to the best of our knowl-
edge, no large-scale comparative studies have been carried out to determine which rep-
resentation would be the best one. The areas of AutoML and metalearning open new
possibilities, so it is conceivable that new comparative studies will be carried out in the
future.

Extending the domain-specific language bias

In concept learning, when the version space has shrunk and the resulting version space is
empty, it can be taken as an indication that something must be altered. Mitchell (1990)
suggests that, for instance, the representation language should be changed to also al-
low, for instance, disjunctive concepts apart from disjunctive ones. As was pointed out,
this analysis is applicable only to noise-free data. However, it can be extended to noisy
settings by assuming that the data may contain a certain given proportion of noisy ex-
amples, as, for instance, Mitchell (1977) and Hirsh (1994) have shown.

Here, we are concerned with enriching the descriptive language. Too many errors can
be taken as a sign that the descriptors of cases should be extended and, consequently, it
is possible to arrive at the required target concept. This was already suggested by Russell
and Grosof (1990b):

“It is important to note that the deductive process needs to be under some higher-level
control in order to handle the case of the collapse of the version space when the observations
are inconsistent with the initial concept language bias. In such contexts it becomes necessary
to weaken the concept language bias, by relaxing the constraints on the form of concept
definitions, or by extending the allowed predicate vocabulary”.

8.7 Which Datasets Are Needed?

In Section 8.3 we discussed the relationship between tasks TC that can be solved by a
given system that can exploit the configuration space C and tasks TR that we expect to
encounter in the future. The main issue there was whether the given set of algorithms is
adequate to solve TR. Basically, we wish to have TR ⊂ TC .

We note that metalearning approaches require not only a set of algorithms, but also
metaknowledge containing information regarding the performance on different datasets
associated with particular task. As was shown in some of the previous chapters (e.g.,
Chapters 2 and 5), the metaknowledge is used to provide recommendations on the new
dataset. This approach is successful if the new dataset and some dataset encountered in
the past deal with the same task, such as classification that involves an unbalanced class
distribution. In addition, the two datasets should be sufficiently similar. So, we need a
sufficient number of datasets for each type of task we may encounter in the future.

Researchers and practitioners working in this area have used various strategies to
come up with an answer to this problem. Some strategies that have been considered in
the past are:

• Relying on existing repositories of datasets

156 8 Setting Up Configuration Spaces and Experiments

• Generating synthetic datasets
• Generating variants of existing datasets
• Segmenting a large dataset or data stream
• Searching for datasets with discriminatory power

All the alternatives above are discussed in more detail in the following subsections.

8.7.1 Relying on existing dataset repositories

Currently, various dataset repositories exist from which different datasets may be re-
trieved. Some well-known repositories are:

• University of California at Irvine (UCI) Machine Learning Repository (Asuncion and
Newman, 2007)

• OpenML (Vanschoren et al., 2014)
• UCI Knowledge Discovery in Databases Archive (Hettich and Bay, 1999)
• University of California at Riverside (UCR) Time Series Data Mining Archive
• UCR Time Series Data Mining Archive (Keogh and Folias, 2002)

among others. In the UCI repository, there are several hundred datasets. Although this
is sufficient for many purposes, it is not much for metalearning. We cannot expect to
obtain a general model for such a complex problem as algorithm recommendation using
a limited number of datasets. Also, there is no guarantee that the datasets constitute a
representative sample for each possible task we may encounter in future.

Dataset repositories are discussed in more detail in Chapter 16.

8.7.2 Generating synthetic datasets

The generation of synthetic datasets could be regarded as a natural way to extend the
number of datasets needed in metalearning. In the proposal by Vanschoren and Blockeel
(2006), new datasets are generated by varying a set of characteristics that describe the
concepts to be represented in the data. The characteristics include the concept model and
the size of the model. The datasets generated should have similar properties to natural
(i.e., real-world) data.

Vanschoren and Blockeel (2006) propose the use of existing techniques for exper-
imental design as an inspiration to guide dataset generation for metalearning studies.
However, they recognize that building such a generator is a challenging task. Partial so-
lutions have been proposed, in which the correlation between features and concepts is
obtained by recursive partitioning on the space of features (Scott and Wilkins, 1999).

Given that it is difficult to make sure that the datasets generated are similar to natural
ones, this approach is more suitable for understanding algorithm behavior than for the
purpose of algorithm recommendation.

8.7.3 Generating variants of existing datasets

An alternative method to obtain more metadata is to generate new datasets by manip-
ulating existing ones. This may be done either by changing the values of a particular
feature, which may affect its distribution, or by changing the structure of the data (e.g.,
adding irrelevant or noisy features) (Aha, 1992; Hilario and Kalousis, 2000). Usually
the changes are done separately on independent features and on a dependent one (i.e.,

8.7 Which Datasets Are Needed? 157

the target feature) by, for instance, adding noise. Usually the changes are focused on
a certain aspect of the behavior of the given algorithms. For instance, the addition of
redundant features can be used to investigate the resilience of some algorithms to re-
dundancy.

Soares (2009) proposed a method to obtain a larger number of datasets using a
simple transformation of the existing datasets. The new datasets generated are referred
to as datasetoids. The author tested the approach on the problem of using metalearning
to predict when to prune decision trees. The results show a significant improvement
when using datasetoids.

However, the increase in the number of datasets raises a problem, as it is necessary
to estimate the performance of the algorithms on these datasets. Running all candidate
algorithms on all new datasets can be computationally very expensive. Prudêncio et al.
(2011) have proposed to use active learning, which in this context represents active
metalearning. The authors have shown that it is possible to significantly reduce the com-
putational cost not only without loss of metalearning accuracy but with potential gains.

8.7.4 Segmenting a large dataset or data stream

New datasets may be generated by segmenting a large dataset or data stream. In the
area referred to as extreme data mining (Fogelman-Soulié, 2006), a large database is
segmented into a number of subsets (e.g., by customer or product) and different models
are generated for each subset.

In massive data streams, large volumes of data are continuously available. Some data
streams include a concept shift, where some aspect of the data changes. Such a data
stream can be used to generate different datasets corresponding to somewhat diverse
portions of the data.

More details about algorithm recommendation for data streams can be found in
Chapter 11.

8.7.5 Searching for datasets with discriminatory power

In this subsection we discuss two different approaches. The first one uses dataset charac-
teristics and algorithm performance to obtain so-called 2D footprints. The authors show
that many algorithms have overlapping footprints. The second approach uses pairs of
rankings to characterize the diversity of both datasets and algorithms.

Using datasets characteristics and 2D footprints

In order to guarantee good performance of a metalearning system relying on a given
portfolio, we need sufficiently diverse datasets that enable to discriminate well between
different alternatives so as to provide the best possible recommendation for each case.
This problem was addressed by Muñoz et al. (2018).

Their study included 235 datasets in total, most of which were from the UCI.2 The
methodology proposed relies on a good characterization of all datasets, so the authors
have considered quite a large number of features (509) for this task. Their aim was to
select a small subset that would characterize well the hardness of the classification task.

2The authors refer to the datasets as instances.

158 8 Setting Up Configuration Spaces and Experiments

The details regarding the selection process are described in their paper. This way the
authors identified just ten features is discussed in Section 4.7.

In the next step, the ten-dimensional space was projected onto a two-dimensional
space, thus enabling to visualize classification datasets as points in a two-dimensional
space. This reveals pockets of hard and easy datasets in an area in the 2D space, referred
to as a footprint, where a particular algorithm is expected to do well. Quantitative met-
rics capturing, for instance, the area of the footprint provide objective measures of the
relative advantage of an algorithm across the given set of datasets.

The results presented in this paper demonstrate the lack of diversity of the given test
datasets, as most algorithms have similar footprints. This may be due to three possible
reasons: (1) the algorithms are all essentially rather similar, (2) the datasets are not
revealing the strengths and weaknesses of each algorithm as much as is desired, or (3)
the features used may not be sufficiently discriminative.

The authors have proposed a method to generate new test datasets, aiming to enrich
the diversity of datasets. The proposed method uses a Gaussian mixture model (GMM),
which can be tuned. The sample from GMM is characterized by fS . The method requires
defining the target vector of features, which drives the tuning process. As the authors
have shown, this process can lead to datasets covering well the 2D space. Future work
should show that the richer metadata is useful and indeed facilitates the process of
selecting algorithms for new datasets.

Using correlation of rankings to characterize diversity

Abdulrahman et al. (2018) have proposed to characterize a given metalearning problem
in the following way. They have observed that, if two datasets are very similar, the algo-
rithm rankings will also be similar and, consequently, the pairwise correlation coefficient
will be near 1. On the other hand, if the two datasets are quite different, the correlation
will be low. In the extreme case, it will be –1 if one ranking is the inverse of the other. So
the distribution of pairwise correlation coefficients provides an estimate of how difficult
the metalearning task is for a given portfolio of algorithms.

Figure 8.2 shows a histogram of correlation values, reproduced from Abdulrahman
et al. (2018). The histogram can be characterized by its median value and appropriate
percentiles (e.g., 25% and 75%). A metalearning task can be considered easy if the
median value is high and if the inter-percentile range is small. Let us consider why this
is so. If we select any dataset and consider it similar to the target dataset, many other
datasets are similar to it. So we can reuse the metaknowledge acquired on these datasets.

However, we note that this method can be used only if the new target datasets are
of the same kind as the datasets analyzed so far (i.e., those used to construct the distri-
bution).

8.8 Complete versus Incomplete Metadata

In Chapters 1, 2, and 5 we have presented a basic scheme of metalearning, which in-
volves the following steps: generation of metadata, generation of meta-model, and ap-
plication of the meta-model to the target dataset. The first step involves running experi-
ments of some algorithms (or workflows) on some of the available datasets. If we were
to run all algorithms (or workflows) on all available datasets, we would obtain complete
results and hence complete metadata.

8.7 Which Datasets Are Needed? 159

Histogram of correlation

correlation

F
re

qu
en

cy

−0.5 0.0 0.5 1.0

0
50

10
0

15
0

20
0

Fig. 8.2: Spearman’s rank correlation coefficient between rankings for pairs of
datasets

Incomplete results would arise if, for some pair (or pairs) of datasets and algorithms
(or workflows), the performance result would not be available. The aim of this section
is to address the following questions:

• Is it possible to obtain complete metadata?
• Is it necessary to have complete metadata?
• Does the order of the tests matter?
• How can we exploit the ideas from multi-armed bandits to schedule tests?
• Should we delegate the responsibility of gathering test results to the community?

The questions above are addressed in subsequent sections. The last one is discussed in a
separate chapter (Chapter 16).

8.8.1 Is it possible to obtain complete metadata?

The answer to the above question is, in general, negative. A complete set of results
could only be obtained in situations that involve a limited number of algorithms and
datasets. Our answer is negative for various reasons that are explained in the following
subsections.

There may be too many experiments to carry out

The number of experiments depends on the size of the search space. When dealing
with continuous configuration spaces, there is an infinite number of configurations. As
such, there is no way to enumerate all possible configurations or store them, unless the
configuration space is discretized in some way. Even in the domain of discrete search
spaces, if we were to deal with a modest number of 100 algorithms, each with 100

160 8 Setting Up Configuration Spaces and Experiments

different hyperparameter settings, and conducted tests on 100 datasets, we would have
to conduct 1003 (i.e., 106) tests.

This number would grow further if we were to consider different preprocessing op-
erations. If we decided, for practical reasons, to conduct a subset of these tests, the
metadata can be incomplete.

Some experiments may result in failure

Some experiments result in failure or do not terminate in a given time budget. Failures
do sometimes occur in the execution of base-level algorithms. In some cases, it is possible
to recover from such failures (e.g., insufficient memory), but there are cases where the
performance of an algorithm on a dataset cannot be obtained (e.g., software bug). If an
algorithm fails to run on a dataset, its performance is not quantifiable, although it is not
missing. One approach to deal with this issue is to penalize such algorithms in some way.
The simplest strategy could be to use the appropriate default strategy, which is normally
based on simple statistics of the data. In classification, this would be predicting the
most frequent class, and in regression, it would be predicting the mean target value. The
estimated performance of this default strategy would be used to replace the performance
of the algorithms that fail.

New dataset(s) have been introduced

It can be expected that extending our set up with a new dataset and the corresponding
metadata could somewhat improve the ability of the system to provide good recommen-
dations for the new problems. Therefore, it is important to carry out such extensions
whenever new datasets become available. However, whenever new datasets have been
introduced into our set up, the metadata becomes incomplete. This requires that all the
available algorithms are run on the new dataset. This may be computationally rather
expensive, particularly if the dataset is large and the number of alternatives to test is
large too (the number of algorithms or workflows and its variants).

When a new base-level algorithm becomes available, it is necessary to update the
metaknowledge so that the system could consider it in the recommendations provided.
For that purpose, the metadata describing the performance of algorithms on known
datasets (i.e., meta-examples) must be extended with information concerning the new
algorithm. It is therefore necessary to run it on those datasets, which may require signif-
icant computational effort. One approach is to run all experiments off-line and update
the metadata only after the results become available.

Using estimates instead of real values

The process of obtaining test results is computationally expensive, and so different strate-
gies exist to try to alleviate the problem. This can be done in two ways. Firstly, it can be
used to generate estimates of the performance and use them as substitutes for the true
performance until the true performance becomes available. Curiously enough, this idea
was mentioned in the first edition of this book. A similar idea was followed in the area
of hyperparameter optimization, where the estimates were provided by surrogate models
(see Chapter 6 for details).

8.8 Complete versus Incomplete Metadata 161

8.8.2 Is it necessary to have complete metadata?

To answer this question satisfactorily, it is necessary to consider different systems and
determine what this system can (cannot) do when the metadata is incomplete. Not many
systems are accompanied by such study, so it is difficult to provide an all-encompassing
answer to this question here.

We will limit this exposition to one study carried out by Abdulrahman et al. (2018)
which involves the average ranking method AR*, discussed in Chapter 2. The authors
have shown that the performance of this method was not affected even by 50% of omis-
sions in the metadata. However, as was shown, it was necessary to modify the aggrega-
tion method so that it would cater for incomplete rankings.

8.8.3 Does the order of tests matter?

In Chapter 6, we discussed various approaches including random search on the one
hand and various “more informed” methods, such as sequential model-based optimiza-
tion (SMBO), on the other hand. Various authors have shown that the more informed
methods achieve, in general, better results than uninformed ones (e.g., random search).
This is done by reordering the tests on the basis of information that has been gathered
in previous tests. Further details on this topic are given in the following section.

8.9 Exploiting Strategies from Multi-armed Bandits to
Schedule Experiments

This section addresses some ideas for how to obtain performance results of algorithms on
earlier datasets. As argued, there is a large number of possibilities, and smart planning
might improve the quality of the metadata. The process of gathering test results can
be compared to the process of gathering knowledge about different “arms” in multi-
armed bandit (MAB) problems. The MAB problem includes a gambler whose aim is to
decide which arm of a k-slot machine to pull to maximize his total reward in a series
of trials (Katehakis and Veinott, 1987; Vermorel and Mohri, 2005). The aim is to find a
good compromise between exploration (i.e., examining different arms) and exploitation
(using the best arm(s) for the target problem).

Many real-world learning and optimization problems can be modeled using this
paradigm, and algorithm selection/configuration is one of them. Different workflows
(pipelines) configurations can be compared to different arms. In consequence, the solu-
tion to the MAB problem can inspire new effective solutions to the problem of algorithm
selection/configuration.

8.9.1 Some concepts and strategies of MAB

One important notion in this area is the concept of reward, which is received after an
arm has been pulled. The difference from the optimal is often referred to as the regret
or loss. Typically, the aim is to maximize the accumulated reward, which is equivalent to
minimizing the accumulated loss, as different arms have been pulled. Table 8.2 shows
the correspondence of some terms used in the area of MAB and the terms used in the area
of algorithm selection/configuration and metalearning. Some common MAB strategies
are discussed in the following subsections.

162 8 Setting Up Configuration Spaces and Experiments

Table 8.2: Correspondence of terms in MAB and this book

N levers N algorithms
Pulling a lever Evaluating an algorithm (configuration, workflow)
Reward Performance (e.g., accuracy)
Regret Loss
Accumulated regret Area under the loss curve
Horizon Time budget
Contextual MAB Metalearning problem that exploits features

Strategy ε-greedy

This strategy chooses a random lever with frequency ε, where ε ∈ (0, 1) is set by the user.
For the remaining (1− ε) proportion of cases, the best arm is chosen.

Strategy ε-first

This strategy can be seen as a variant of ε-greedy. It carries out all the exploration at the
beginning. For a given number εT ∈ N of rounds, the levers are randomly pulled during
the T first rounds. This pure exploration phase is followed by an exploitation phase. That
is, during the remaining (1 − ε)T rounds, the lever with the highest estimated mean is
selected.

Strategy ε-decreasing

This variant is similar to ε-greedy except that the value of ε decreases as the experiment
progresses, resulting in high exploration in the initial rounds, while exploitation is pre-
ferred later. This can be captured by εt = min(1, εt/t), where t is the index of the current
round.

Probability matching method (SoftMax)

The SoftMax strategy was discussed already by Luce (1959), but many variants of this
method were described later. This strategy exploits a random choice from Gibbs distri-
bution. The lever k is chosen with probability

pk = eµ̂k/τ/

n∑
i=1

eµ̂i/τ (8.4)

where µ̂k is the estimated mean of the rewards brought by pulling lever k and τ is a
parameter called the temperature, which is set by the user.

This method belongs to the so-called probability matching methods, as the choice is
made according to a probability distribution, reflecting how likely the choice is optimal.
The SoftMax strategy is sometimes also called Boltzmann exploration. One variant of
SoftMax is referred to as decreasing SoftMax. In this variant, the temperature decreases
with the number of rounds played.

8.9 Exploiting Strategies from Multi-armed Bandits to Schedule Experiments 163

Interval estimation and upper confidence bound (UCB) methods

The interval estimation method attributes to each lever an optimistic reward estimate
within a certain confidence interval and then chooses the lever with the highest op-
timistic mean (Kaelbling, 1993). Unobserved or infrequently observed levers have an
over-valued reward mean, which stimulates further exploration. The more frequently a
lever is pulled, the closer its optimistic reward estimate will be to the true reward mean.
The original approach of Kaelbling (1993) was applied to Boolean awards. Vermorel
and Mohri (2005) have applied it to real values and assumed that rewards are normally
distributed. The upper bound estimate is based on that assumption. Assuming that a
lever is observed n times with µ̂ as the empirical mean and σ̂ as the empirical standard
deviation, the upper bound is defined by

uα = µ̂+
σ̂√
n
c−1(1− α), (8.5)

where c is the cumulative normal distribution function.
The upper confidence bound algorithms (Agrawal, 1995; Auer et al., 2002; Lai

and Robbins, 1985) work in a similar way. Specifically, in each trial t, these algo-
rithms estimate both the mean payoff |µ̂t,a| of each arm a as well as a corresponding
confidence interval ct,a, so that |µ̂t,a − µa| < ct,a holds with high probability. They
then select the arm that achieves the highest upper confidence bound (UCB), namely
at = argmaxa(|µ̂t,a + ct,a).

Pricing strategies (POKER)

Pricing strategies establish a price for each lever. The approach of Vermorel and Mohri
(2005), called Price of Knowledge and Estimated Reward (Poker), relies on three main
ideas: pricing uncertainty capturing value of information, the lever distribution and hori-
zon.

The idea behind pricing uncertainty is to assign a value to the knowledge gained
while pulling a particular lever. The notion of value of information or exploration bonuses
has been studied in various domains and in the bandit literature (Meuleau and Bourgine,
1999). The objective is to quantify the uncertainty in the same units as the rewards.

The second idea is that the properties of unobserved levers could potentially be
estimated, to a certain extent, from the levers already observed. This is particularly useful
when there are many more levers than rounds.

The third observation is that the strategy should explicitly take into account the hori-
zon H, that is, the number of rounds that remain to be played. The amount of exploration
clearly depends on H. If, for instance, the play is reaching the horizon (H=1), it does
not make sense to explore more, and the strategy should be to rely on pure exploitation,
i.e., choosing the lever with the highest estimated reward. So the horizon value affects
the estimate of the value of the knowledge that could be acquired.

Contextual-bandit problem

Some researchers have introduced the so-called contextual-bandit problem, where differ-
ent arms are characterized by features. These are represented in the form of a feature
vector (context vector).

The agent uses these context vectors together with the rewards of the arms played
in the past to make the choice of the arm to play in the current iteration. Over time,
the learner’s aim is to collect enough information about how the context vectors and

164 8 Setting Up Configuration Spaces and Experiments

rewards relate to each other, so that it can predict the next best arm to play by looking
at the feature vectors (Langford and Zhang, 2007).

This approach has been applied, for instance, to personalized recommendation of
news articles (Li et al., 2010). The learning algorithm sequentially selects articles for
users based on contextual information about the users and articles, while simultaneously
adapting its article selection strategy based on user-click feedback.

Contextual approaches can be compared to metalearning approaches that exploit
dataset features and tests.

8.10 Discussion

In this chapter, we addressed two components from the framework of Rice (1976), i.e.,
the problem space and the algorithm space. The algorithm space is commonly known as
the configuration space. In traditional metalearning systems, the configuration space is
often a discrete set of algorithms or workflows, whereas in AutoML systems, often a con-
tinuous set is considered. While these representations are similar on some level, they also
require different approaches and invoke different biases. Both of these representations
have been studied extensively.

For discrete spaces, Abdulrahman et al. (2019) aimed to reduce the configuration
space, so that the search for the best algorithm or workflow would converge faster. For
continuous spaces, various authors have tried to determine which hyperparameters are
generally important.

Recently, the neural architecture search community started to address the problem
of search space construction (Yu et al., 2020; Yang et al., 2020). In order to keep this
chapter focused towards traditional metalearning approaches, we did not go into details
here, but the interested reader might find the references a good starting point.

Finally, this chapter looked at various aspects regarding the problem space, in partic-
ular, which datasets should be included in the metadata, how many experiments should
be carried out, and in which order, and terminated with the discussion of the multi-
armed bandit methods, which suggest some answers to the last issue.

References

Abdulrahman, S., Brazdil, P., van Rijn, J. N., and Vanschoren, J. (2018). Speeding up
algorithm selection using average ranking and active testing by introducing runtime.
Machine Learning, 107(1):79–108.

Abdulrahman, S., Brazdil, P., Zainon, W., and Alhassan, A. (2019). Simplifying the algo-
rithm selection using reduction of rankings of classification algorithms. In ICSCA ’19,
Proceedings of the 2019 8th Int. Conf. on Software and Computer Applications, Malaysia,
pages 140–148. ACM, New York.

Agrawal, R. (1995). Sample mean based index policies with O(log n) regret for the
multi-armed bandit problem. Advances in Applied Probability, 27(4):1054–1078.

Aha, D. W. (1992). Generalizing from case studies: A case study. In Sleeman, D. and Ed-
wards, P., editors, Proceedings of the Ninth International Workshop on Machine Learning
(ML92), pages 1–10. Morgan Kaufmann.

Asuncion, A. and Newman, D. (2007). UCI machine learning repository.
Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-time analysis of the multiarmed

bandit problem. Machine Learning, 47(2-3):235–256.
Biedenkapp, A., Lindauer, M., Eggensperger, K., Fawcett, C., Hoos, H., and Hutter, F.

(2017). Efficient parameter importance analysis via ablation with surrogates. In
Thirty-First AAAI Conference on Artificial Intelligence, pages 773–779.

References 165

Bischl, B., Casalicchio, G., Feurer, M., Gijsbers, P., Hutter, F., Lang, M., Mantovani, R. G.,
van Rijn, J. N., and Vanschoren, J. (2021). OpenML benchmarking suites. In Proceed-
ings of the Neural Information Processing Systems Track on Datasets and Benchmarks,
NIPS’21.

Brazdil, P. and Cachada, M. (2018). Simplifying the algorithm portfolios with a method
based on envelopment curves (working notes).

Brazdil, P., Soares, C., and Pereira, R. (2001). Reducing rankings of classifiers by elim-
inating redundant cases. In Brazdil, P. and Jorge, A., editors, Proceedings of the 10th
Portuguese Conference on Artificial Intelligence (EPIA2001). Springer.

Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.
Cohen, W. W. (1994). Grammatically biased learning: Learning logic programs using an

explicit antecedent description language. Artificial Intelligence, 68(2):303–366.
Davies, T. R. and Russell, S. J. (1987). A logical approach to reasoning by analogy. In

McDermott, J. P., editor, Proceedings of the 10th International Joint Conference on Arti-
ficial Intelligence, IJCAI 1987, pages 264–270, Freiburg, Germany. Morgan Kaufmann.

De Raedt, L. and Dehaspe, L. (1997). Clausal discovery. Machine Learning, 26:99–146.
Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. The

Journal of Machine Learning Research, 7:1–30.
Došilovič, F., Brčič, M., and Hlupič, N. (2018). Explainable artificial intelligence: A sur-

vey. In Proc. of the 41st Int. Convention on Information and Communication Technology,
Electronics and Microelectronics MIPRO.

Fawcett, C. and Hoos, H. (2016). Analysing differences between algorithm configura-
tions through ablation. Journal of Heuristics, 22(4):431–458.

Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., and Hutter, F. (2015).
Efficient and robust automated machine learning. In Cortes, C., Lawrence, N., Lee,
D., Sugiyama, M., and Garnett, R., editors, Advances in Neural Information Processing
Systems 28, NIPS’15, pages 2962–2970. Curran Associates, Inc.

Feurer, M., Klein, A., Eggensperger, K., Springenberg, J. T., Blum, M., and Hutter, F.
(2019). Auto-sklearn: Efficient and robust automated machine learning. In Hutter,
F., Kotthoff, L., and Vanschoren, J., editors, Automated Machine Learning: Methods,
Systems, Challenges, pages 113–134. Springer.

Fogelman-Soulié, F. (2006). Data mining in the real world: What do we need and what
do we have? In Ghani, R. and Soares, C., editors, Proceedings of the Workshop on Data
Mining for Business Applications, pages 44–48.

Fréchette, A., Kotthoff, L., Rahwan, T., Hoos, H., Leyton-Brown, K., and Michalak, T.
(2016). Using the Shapley value to analyze algorithm portfolios. In 30th AAAI Con-
ference on Artificial Intelligence.

Gordon, D. and desJardins, M. (1995). Evaluation and selection of biases in machine
learning. Machine Learning, 20(1/2):5–22.

Hettich, S. and Bay, S. (1999). The UCI KDD archive. http://kdd.ics.uci.edu.
Hilario, M. and Kalousis, A. (2000). Quantifying the resilience of inductive classification

algorithms. In Zighed, D. A., Komorowski, J., and Zytkow, J., editors, Proceedings of
the Fourth European Conference on Principles of Data Mining and Knowledge Discovery,
pages 106–115. Springer-Verlag.

Hirsh, H. (1994). Generalizing version spaces. Machine Learning, 17(1):5–46.
Hutter, F., Hoos, H., and Leyton-Brown, K. (2013). Identifying key algorithm parameters

and instance features using forward selection. In Proc. of International Conference on
Learning and Intelligent Optimization, pages 364–381.

Hutter, F., Hoos, H., and Leyton-Brown, K. (2014). An efficient approach for assessing
hyperparameter importance. In Proceedings of the 31st International Conference on
Machine Learning, ICML’14, pages 754–762.

166 8 Setting Up Configuration Spaces and Experiments

Jorge, A. M. and Brazdil, P. (1996). Architecture for iterative learning of recursive def-
initions. In De Raedt, L., editor, Advances in Inductive Logic Programming, volume 32
of Frontiers in Artificial Intelligence and applications. IOS Press.

Kaelbling, L. P. (1993). Learning in Embedded Systems. MIT Press.
Katehakis, M. N. and Veinott, A. F. (1987). The multi-armed bandit problem: Decompo-

sition and computation. Mathematics of Operations Research, 12(2):262–268.
Keogh, E. and Folias, T. (2002). The UCR time series data mining archive.

http://www.cs.ucs.edu/˜eamonn/TSDMA/index.html. Riverside CA. University of
California – Computer Science & Engineering Department.

Kramer, S. and Widmer, G. (2001). Inducing classification and regression trees in first
order logic. In Džeroski, S. and Lavrač, N., editors, Relational Data Mining, pages
140–159. Springer.

Lai, T. L. and Robbins, H. (1985). Asymptotically efficient adaptive allocation rules.
Advances in Applied Mathematics, 6(1):4–22.

Langford, J. and Zhang, T. (2007). The epoch-greedy algorithm for contextual multi-
armed bandits. In Advances in Neural Information Processing Systems 20, NIPS’07,
page 817–824. Curran Associates, Inc.

Lee, J. W. and Giraud-Carrier, C. (2011). A metric for unsupervised metalearning. Intel-
ligent Data Analysis, 15(6):827–841.

Li, L., Chu, W., and Schapire, R. E. (2010). A contextual-bandit approach to personalized
news article recommendation. In Proceedings of the International Conference on World
Wide Web (WWW).

Luce, D. (1959). Individual Choice Behavior. Wiley.
Meuleau, N. and Bourgine, P. (1999). Exploration of multi-state environments: Local

measures and back-propagation of uncertainty. Machine Learning, 35(2):117–154.
Miettinen, K. (1999). Nonlinear Multiobjective Optimization. Springer.
Mitchell, T. (1977). Version spaces: A candidate elimination approach to rule learning.

PhD thesis, Electrical Engineering Department, Stanford University.
Mitchell, T. (1980). The need for biases in learning generalizations. Technical Report

CBM-TR-117, Rutgers Computer Science Department.
Mitchell, T. (1982). Generalization as Search. Artificial Intelligence, 18(2):203–226.
Mitchell, T. (1990). The need for biases in learning generalizations. In Shavlik, J. and

Dietterich, T., editors, Readings in Machine Learning. Morgan Kaufmann.
Mitchell, T. M. (1997). Machine Learning. McGraw-Hill.
Morik, K., Wrobel, S., Kietz, J., and Emde, W. (1993). Knowledge Acquisition and Machine

Learning: Theory, Methods and Applications. Academic Press.
Muñoz, M., Villanova, L., Baatar, D., and Smith-Miles, K. (2018). Instance Spaces for

Machine Learning Classification. Machine Learning, 107(1).
Peterson, A. H. and Martinez, T. (2005). Estimating the potential for combining learning

models. In Proc. of the ICML Workshop on Meta-Learning, pages 68–75.
Probst, P., Boulesteix, A.-L., and Bischl, B. (2019). Tunability: Importance of hyper-

parameters of machine learning algorithms. Journal of Machine Learning Research,
20(53):1–32.

Prudêncio, R. B. C., Soares, C., and Ludermir, T. B. (2011). Combining meta-learning
and active selection of datasetoids for algorithm selection. In Corchado, E., Kurzyński,
M., and Woźniak, M., editors, Hybrid Artificial Intelligent Systems. HAIS 2011., volume
6678 of LNCS, pages 164–171. Springer.

Rice, J. R. (1976). The algorithm selection problem. Advances in Computers, 15:65–118.
Russell, S. and Grosof, B. (1990a). Declarative bias: An overview. In Benjamin, P., editor,

Change of Representation and Inductive Bias. Kluwer Academic Publishers.

References 167

Russell, S. and Grosof, B. (1990b). A sketch of autonomous learning using declarative
bias. In Brazdil, P. and Konolige, K., editors, Machine Learning, Meta-Reasoning and
Logics. Kluwer Academic Publishers.

Scott, P. D. and Wilkins, E. (1999). Evaluating data mining procedures: techniques for
generating artificial data sets. Information & Software Technology, 41(9):579–587.

Sharma, A., van Rijn, J. N., Hutter, F., and Müller, A. (2019). Hyperparameter impor-
tance for image classification by residual neural networks. In Kralj Novak, P., Šmuc,
T., and Džeroski, S., editors, Discovery Science, pages 112–126. Springer International
Publishing.

Silverstein, G. and Pazzani, M. J. (1991). Relational clichés: Constraining induction
during relational learning. In Birnbaum, L. and Collins, G., editors, Proceedings of
the Eighth International Workshop on Machine Learning (ML’91), pages 203–207, San
Francisco, CA, USA. Morgan Kaufmann.

Snoek, J., Swersky, K., Zemel, R., and Adams, R. (2014). Input warping for Bayesian opti-
mization of non-stationary functions. In Xing, E. P. and Jebara, T., editors, Proceedings
of the 31st International Conference on Machine Learning, volume 32 of ICML’14, pages
1674–1682, Bejing, China. JMLR.org.

Soares, C. (2009). UCI++: Improved support for algorithm selection using datasetoids.
In Proceedings of Pacific-Asia Conference on Knowledge Discovery and Data Mining.

Sobol, I. M. (1993). Sensitivity estimates for nonlinear mathematical models. Mathe-
matical Modelling and Computational Experiments, 1(4):407–414.

van Rijn, J. N. and Hutter, F. (2018). Hyperparameter importance across datasets. In
KDD ’18: The 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining. ACM.

Vanschoren, J. and Blockeel, H. (2006). Towards understanding learning behavior. In
Proceedings of the Fifteenth Annual Machine Learning Conference of Belgium and the
Netherlands.

Vanschoren, J., van Rijn, J. N., Bischl, B., and Torgo, L. (2014). OpenML: networked
science in machine learning. ACM SIGKDD Explorations Newsletter, 15(2):49–60.

Vermorel, J. and Mohri, M. (2005). Multi-armed bandit algorithms and empirical evalu-
ation. In Machine Learning: ECML-94, European Conference on Machine Learning, LNAI
3720). Springer.

Xu, L., Hutter, F., Hoos, H., and Leyton-Brown, K. (2012). Evaluating component solver
contributions to portfolio-based algorithm selectors. In Cimatti, A. and Sebastiani, R.,
editors, Theory and Applications of Satisfiability Testing – SAT 2012, pages 228–241.
Springer Berlin Heidelberg.

Yang, A., Esperança, P. M., and Carlucci, F. M. (2020). NAS evaluation is frustratingly
hard. In International Conference on Learning Representation, ICLR 2020.

Yu, K., Sciuto, C., Jaggi, M., Musat, C., and Salzmann, M. (2020). Evaluating the search
phase of neural architecture search. In International Conference on Learning Represen-
tation, ICLR 2020.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

168 8 Setting Up Configuration Spaces and Experiments

http://creativecommons.org/licenses/by/4.0/

	8 Setting Up Configuration Spaces and Experiments
	8.1 Introduction
	8.2 Types of Configuration Spaces
	8.3 Adequacy of Configuration Spaces for Given Tasks
	8.4 Hyperparameter Importance and Marginal Contribution
	8.5 Reducing Configuration Spaces
	8.6 Configuration Spaces in Symbolic Learning
	8.7 Which Datasets Are Needed?
	8.8 Complete versus Incomplete Metadata
	8.9 Exploiting Strategies from Multi-armed Bandits to Schedule Experiments
	8.10 Discussion
	References

