
4

Dataset Characteristics (Metafeatures)

Summary. This chapter discusses dataset characteristics that play a crucial role in many
metalearning systems. Typically, they help to restrict the search in a given configura-
tion space. The basic characteristic of the target variable, for instance, determines the
choice of the right approach. If it is numeric, it suggests that a suitable regression al-
gorithm should be used, while if it is categorical, a classification algorithm should be
used instead. This chapter provides an overview of different types of dataset characteris-
tics, which are sometimes also referred to as metafeatures. These are of different types,
and include so-called simple, statistical, information-theoretic, model-based, complexity-
based, and performance-based metafeatures. The last group of characteristics has the
advantage that it can be easily defined in any domain. These characteristics include, for
instance, sampling landmarkers representing the performance of particular algorithms on
samples of data, relative landmarkers capturing differences or ratios of performance val-
ues and providing estimates of performance gains. The final part of this chapter discusses
the specific dataset characteristics used in different machine learning tasks, including
classification, regression, time series, and clustering.

4.1 Introduction

One of the goals of metalearning is to relate the performance of learning algorithms
to data characteristics, i.e., metafeatures. Therefore, it is necessary to identify which
data characteristics are good good predictors of the relative performance of algorithms
and compute their values from the data. Using the framework of Rice (1976), these
metafeatures can then be used to predict the performance of algorithms across datasets.
This can be seen as a regression, classification, or ranking task (see Chapter 5, Sections
5.2 and 5.3).

What are good dataset features?

The development of metafeatures for metalearning should take the following issues into
account:

Discriminative power. The set of metafeatures should contain information that distin-
guishes between the base-algorithms in terms of their performance. Therefore they
should be carefully selected and represented in an adequate way.

© The Author(s) 2022
P. Brazdil et al., Metalearning, Cognitive Technologies,
https://doi.org/10.1007/978-3-030-67024-5_4

53

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67024-5_4&domain=pdf

Computational complexity. The metafeatures should not be too computationally com-
plex. If this is not the case, the savings obtained by not executing all the candidate
algorithms may not compensate for the cost of computing the measures used to char-
acterize datasets. Pfahringer et al. (2000) argued that the computational complexity
of metafeatures should be at most O (n log n).

Dimensionality. The number of metafeatures should not be too large compared with the
amount of available metadata; otherwise overfitting may occur.

Task- and data-specific characterization

The set of metafeatures suitable for different metalearning problems may vary substan-
tially. The best set of metafeatures for a given metalearning problem depends essentially
on the task, the datasets, and the algorithms. Although this book focuses on metalearn-
ing for the recommendation of algorithms in the machine learning domain, it can be
applied to various other domains. Smith-Miles (2008) discusses how metalearning can
be applied to sorting, forecasting, constraint satisfaction, and optimization. Cunha et al.
(2018b) discuss how metalearning can be applied to recommender systems, and Costa
et al. (2020) to imbalanced domains.

Within machine learning, the most common domains are classification, regression,
time series forecasting, clustering and optimization, among others. In the following sec-
tions we provide more details on the data characteristics used in some of these domains.

Characterization of algorithms

Most metalearning approaches focus on characterizing datasets. However, information
about the algorithms may also be useful. For example, Hilario and Kalousis (2001) use
information concerning type of representation (e.g., type of data they are able to deal
with), approach (e.g., learning strategy, such as lazy or eager), resilience (e.g., sensitiv-
ity to irrelevant attributes, based on experimental studies), and practicality (e.g., easy
parameter handling).

Metafeature development

Developing useful metafeatures is an essential challenge for successful metalearning sys-
tems. In metalearning, similarly to any machine learning task, this challenge is mostly
addressed using (meta)feature engineering approaches, which were not very systematic
initially. Recently, there is a growing interest in more systematic approaches to metafea-
ture development.1 We discuss this issue in more detail in Section 4.6.

4.2 Data Characterization Used in Classification Tasks

Types of Metafeatures

In this section we review the main types of features used in classification tasks. Usually,
they are organized into different groups, depending on the type. Here we consider the
following types:

1 See e.g. https://ieeexplore.ieee.org/abstract/document/8215494
https://ieeexplore.ieee.org/document/7344858
https://www.ijcai.org/Proceedings/2017/0352.pdf .

54 4 Dataset Characteristics (Metafeatures)

1. Simple, statistical, and information-theoretic metafeatures;
2. Model-based metafeatures;
3. Performance-based metafeatures;
4. Concept and complexity metafeatures.

Each of these groups is discussed in more detail in the following subsections. Interested
readers can also consult other sources which include an overview of the most com-
mon dataset features (see, e.g., Muñoz et al. (2018); Vanschoren (2019); Rivolli et al.
(2019)).

4.2.1 Simple, statistical, and information-theoretic (SSI) metafeatures

Various features presented in this section represent data characteristics that are derived
from dependent and/or independent variables of the given dataset.

Simple metafeatures

Typically, this set includes very simple descriptive measures, such as:
• Number of examples (instances), n;
• Number of attributes (features), p;
• Number of classes, c;
• Proportion of discrete attributes;
• Proportion of missing values of feature xi;
• Proportion of outliers of feature xi.

Some of these were used in the earliest metalearning approaches (e.g., Rendell et al.
(1987); Aha (1992); Michie et al. (1994); Kalousis (2002)) and are still among the
most commonly used metafeatures. The metafeature number of classes characterizes the
complexity of the classification task. Some authors use different variants of some of the
metafeatures shown above. For instance, instead of using number of examples, n, some
researchers use log(n). Some ratios of two metafeatures seem rather useful:

• Number of examples per class n/c.
• Number of examples per dimension (feature) n/p.

Normally, we would want the value of the number of examples per class (n/c) to be suf-
ficiently high. It provides an estimate of data density. If the value is low, it indicates that
the data is sparse, and consequently, the classification problem may be more difficult.
Similarly, we would want the value of the number of examples per dimension (n/p) to
be high too. If it is low, it indicates that we have rather too many base-level features to
choose from. Michie et al. (1994) referred to this situation as the curse of dimensionality.

Some metafeatures refer to a particular dataset feature (e.g., proportion of outliers of
feature xi). Aggregation operations across different features are discussed in Section 4.6.

Statistical metafeatures

The most common approach to data characterization consists of the use of descriptive
statistics, typically associated with numeric features.2 Some metafeatures, such as the
ones shown below, focus on a single independent feature (xi) or a class (y).

2These features were used extensively in early works on metalearning (Michie et al.,
1994; Brazdil et al., 1994; Brazdil and Henery, 1994; Gama and Brazdil, 1995; Todor-
ovski and Džeroski, 1999; Lindner and Studer, 1999; Bensusan and Kalousis, 2001;
Kalousis and Theoharis, 1999; Sohn, 1999; Vilalta, 1999; Köpf et al., 2000; Kalousis,
2002).

4.2 Data Characterization Used in Classification Tasks 55

• Skewness of xi;
• Kurtosis of xi;
• Probability of class y.

Skewness and kurtosis characterize the shape of the underlying distribution (e.g., nor-
mality). Other metafeatures characterize the relationship between two or more indepen-
dent features. These include, for instance:

• Correlation of xi and xj , ρ(xi, xj);
• Covariance of xi and xj;
• Concentration of xi and xj .

The first two were discussed by Michie et al. (1994), and concentration was discussed
by Kalousis and Hilario (2001b). These measures provide an estimate of feature interde-
pendence.

The metafeatures shown in this subsection (and other subsections too) can give rise
to different derived metafeatures. For instance, it is possible to apply aggregation op-
erations (e.g., mean, max) to derive new metafeatures, such as mean correlation, from
individual values. Section 4.6 discusses the details of different operations that can be
used to derive new features.

Information-theoretic metafeatures

These metafeatures originated in information theory and are typically associated with
nominal attributes. Some metafeatures apply to just one attribute or the class:

• Feature entropy of xi, H(xi);
• Class entropy of y, H(y).

Class entropy provides an estimate of the difficulty of the classification task (Michie
et al., 1994). It can also provide an estimate of class imbalance. Other metafeatures
characterize the relationship between two or more independent features:

• Mutual information between xi and y, MI (xi, y).

Other metafeatures can be derived from the basic ones above (Michie et al., 1994):

• Intrinsic task dimensionality, H(y)
MI (xi,y))

;

• Noise-signal ratio, H(y)−MI (xi,y)
MI (xi,y)

.

4.2.2 Model-based metafeatures

In this approach a model is induced from the data and the metafeatures are based on
their properties (Bensusan, 1998; Peng et al., 2002). The model used here depends on
the type of task. When dealing with classification tasks, it is possible to use, for instance,
a decision tree. This type of model would obviously not be inappropriate, if we were
dealing with some other ML task (e.g., regression). The model must be related in some
way to the candidate algorithms to provide metafeatures that are useful. Metafeatures
obtained using this approach are only useful for algorithm recommendation if the induc-
tion of the model is sufficiently fast. Some examples of some basic tree-based metafea-
tures reflecting concept complexity are:

• Number of nodes;

56 4 Dataset Characteristics (Metafeatures)

• Number of leaves;
• Branch length.

Other metafeatures can be derived from the basic ones:

• Number of nodes per feature;
• Number of leaves per class;
• Leaves agreement.

Note that, while the SSI metafeatures discussed earlier are computed directly on the
dataset, model-based metafeatures are obtained indirectly through a model.

4.2.3 Performance-based metafeatures

Landmarkers

Yet another approach to data characterization is the use of landmarkers (Bensusan and
Giraud-Carrier, 2000; Pfahringer et al., 2000).3 Landmarkers are quick estimates of al-
gorithm performance on a given dataset. They can be obtained by running simplified
versions of the algorithms.4 For instance, a decision stump, i.e., the root node of a de-
cision tree, can be the landmarker for decision trees. The following landmarkers were
suggested by Pfahringer et al. (2000):

• 1NN, characterizing data sparsity;
• Decision tree (or decision stump), characterizing data separability;
• Linear discriminant, characterizing linear separability;
• Naive Bayes, characterizing feature independence.

Like model-based metafeatures, landmarkers characterize the dataset indirectly. But they
go one step further, by representing the performance of a model on some dataset rather
than representing properties of the model.

Several studies report on comparisons of some of the approaches for data character-
ization discussed here (e.g., Bensusan and Kalousis (2001); Köpf and Iglezakis (2002);
Todorovski et al. (2002)).

Relative landmarkers

Relative landmarkers can also be used to characterize datasets. As in the previous case,
the characterization is indirect. Relative landmarkers are based on a difference (or a
ratio) of the performance of two algorithms. Relative landmarkers were used for probing
the performance of a particular algorithm a, as its performance can be compared with
the performance of other algorithms (Fürnkranz and Petrak, 2001; Soares et al., 2001).
Furthermore, Leite et al. (2012) used relative landmarkers in the so-called active testing
method, discussed in Chapter 5. Finally, Post et al. (2016) used relative landmarkers to
determine whether feature selection should be applied for a given algorithm and dataset
combination.

3The concept of landmarkers can be related to earlier work on yardsticks (Brazdil
et al., 1994).

4Chapter 3 explains how such estimates of performance can be obtained.

4.2 Data Characterization Used in Classification Tasks 57

Subsampling landmarkers and partial learning curves

An alternative way of obtaining quick performance estimates is to run the algorithms
whose performance we wish to estimate on a sample of the data, obtaining the so-called
subsampling landmarkers (Fürnkranz and Petrak, 2001; Soares et al., 2001; Leite and
Brazdil, 2004).

A more informative characteristic is obtained by considering an ordered sequence
of subsampling landmarkers for a single algorithm, representing, in effect, a part of its
learning curve (Leite and Brazdil, 2005). In this case, metalearning can take into account
not only the values of the estimates, but also the shape of the curve.

As with the previous two cases, subsampling landmarkers also characterize the
dataset indirectly. If the performance of the subsampling landmarkers were, in fact, re-
lated to the performance of the base-algorithms, one can expect this approach to be more
successful than the previous ones. Experimental results exist to support this (Leite and
Brazdil, 2007; van Rijn et al., 2015).

Multiple performance landmarkers

As we have pointed out in one of the previous subsections, a landmarker represents the
performance of a particular algorithm on a particular dataset. There is no reason why we
could not associate more than one landmarker with a particular dataset and represent
them in the form of a vector.

4.2.4 Concept and complexity-based metafeatures

In this section we discuss a group of measures that characterize the complexity of the
supervised classification task (Rendell and Seshu, 1990; Ho and Basu, 2002). Some of
these measures can serve as useful metafeatures. Here we consider the following types
of measures:

• Concept variation/roughness in output space;
• Overlap of individual features;
• Separability of classes.

More details about each type are given in the following subsections. Most of the metafea-
tures were discussed by Ho and Basu (2002), unless otherwise stated. Smith et al. (2014)
use similar features, but characterize the complexity of specific instances, rather than the
full dataset.

Concept variation/roughness in output space

Concept variation (Rendell and Seshu, 1990; Perez and Rendell, 1996) captures the
roughness of the target concept in instance space. Irregularity in the output space
occurs when neighboring examples in the input space have different labels. The
measure δ(ei, ej) is 0 if two neighboring examples ei and ej belong to the same
class, and 1 otherwise. The pairs of examples used differed only in one feature. The
values across different pairs were then averaged to obtain the final value.

58 4 Dataset Characteristics (Metafeatures)

Nonlinearity of linear classifier: This measure is sensitive to the smoothness of the clas-
sifier’s decision boundary, and so the aim is similar to the concept variation discussed
earlier. The aim is to slightly alter the input points (examples), use these points as
test points, and investigate the effects on the error rate of the linear classifier. The
new test points are generated by repeatedly picking two points (examples) of the
same class and performing a linear interpolation (with random coefficients) on the
corresponding feature values. The classifier trained on the original training set is
applied to this new test set, and its error represents this measure.

Nonlinearity of 1NN classifier: This measure is obtained in a similar way to the non-
linearity of linear classifier. The new test generated in the way described above is
applied to the 1NN classifier trained on the original training set. The error of this
classifier represents this measure.

Overlap of individual features

Fisher’s discriminant ratio: This is calculated as µ1−µ2
σ1−σ2

, where µ1 and σ1 represent the
mean and standard deviation of feature values associated with class 1. Similarly, µ2

and σ2 are associated with class 2.
Volume overlap region: It is possible to determine a region delimited by the maximum

and minimum values of some feature associated with class 1. This can be repeated
also for class 2. Finally, it is possible to calculate the overlap region.

Feature efficiency: The aim is to characterize how much each feature contributes to-
wards the separation of the two classes. If some feature values can lead to both
classes, the classes are ambiguous in that region of values. It is possible to eliminate
ambiguity progressively. In each pass, the features can be ordered by how many
points are in the nonoverlapping region. The efficiency of each feature is defined as
the fraction of all remaining points separable by that feature.

More details on the above features can be found in the article by Ho and Basu (2002).

Separability of classes

Ho and Basu (2002) proposed two groups of measures. The first one characterizes lin-
ear separability and the second whether the two sets of points (examples) come from
two different distributions. Below we present just one feature from each group. Both
metafeatures provide an estimate about how hard a given classification problem is.

Linear separability: This approach presupposes the application of a linear classifier. One
metafeature is defined as the error rate of the linear classifier.

Fraction of points on the class boundary: The aim is to determine whether two samples
(of class 1 and 2) come from the same distribution. The method uses the concept of
minimum spanning tree (MST) to do this. The MST connects points (data examples)
regardless of the class. Then the number of points connected to the opposite class
represent the points on the class boundary. Figure 4.1 shows an illustrative example.
The fraction of such points is used as one of the measures.

4.2 Data Characterization Used in Classification Tasks 59

Fig. 4.1: A minimum spanning tree connecting points of two classes. The thicker
edges connect two classes. Reproduced from Ho and Basu (2002)

Relationship of some complexity measures to other types

It is interesting to note that some measures discussed in this subsection presuppose a us-
age of a certain model type (linear classifier, NN classifier) and the measures are derived
from their application. One can compare this to the model-based features discussed in
Subsection 4.2.2. Also, as some features are represented by the error rates of a partic-
ular classifier (linear classifier, NN classifier), this approach could be compared to the
landmarker approach discussed in Subsection 4.2.3.

4.3 Data Characterization Used in Regression Tasks

Various researchers have studied the application of metalearning approaches to regres-
sion tasks and consequently also discussed the metafeatures used (Soares et al., 2004;
Lorena et al., 2018). The metafeatures can be divided into the following major groups:

• Simple and statistical metafeatures;
• Complexity-based metafeatures;
• Smoothness metafeatures.

Here we follow rather closely the exposition presented by Lorena et al. (2018), unless
stated otherwise.

4.3.1 Simple and statistical metafeatures

These metafeatures are not too different from the ones discussed in Subsection 4.2.1.
Many of these features can be reused, and for this reason they will not be included here.
However, as the target variable is numeric, all features that involve the target variable
need to be altered. Some features that characterize just one variable are:

• Coefficient of variation of the target variable, σ(y)
µ(y)

;
• Number of outliers of the target variable y.

The coefficient of variation of the target variable is calculated as the ratio of the standard
deviation σ(y) and the mean µ(y) of the target variable (Soares and Brazdil, 2006;
Soares, 2004). Some metafeatures capture the relationship between two variables:

60 4 Dataset Characteristics (Metafeatures)

• Data density, n/p.

The concept of data density is similar to the concept used in classification tasks (see
Subsection 4.2.1). It is calculated as the ratio of the number of examples and features.

Correlation-based metafeatures

• Correlation between feature xi and target y, ρ(xi, y);
• Correlation between feature xi and feature xj , ρ(xi, xj).

Other features can be derived from the basic set using various operations, including, e.g.,
aggregation operations (average, etc.), described in Section 4.6. Two metafeatures seem
particularly important (Lorena et al., 2018):

• Maximum correlation between features and the target, ρmax;
• Average correlation between features and the target variable, ρ̄.

A high value of ρmax indicates that it may be possible to obtain good predictions of the
target using this feature alone.

4.3.2 Complexity-based measures

Maximum individual feature efficiency: This measure can be seen as an adaptation of
feature efficiency defined for classification tasks to regression. The concept of high
effect of feature on separability of classes is substituted by high effect of feature on
correlation to target. For each feature xi the method identifies the smallest number
of examples that must be removed until a high correlation (< 0.9) between feature
xi and the target variable is obtained. The numbers of examples removed are then
converted to proportions. Finally, this measure is equal to the minimum proportion
identified across all features. Small values indicate relatively easy problems.

Collective feature efficiency: This involves an iterative process of identifying the feature
with the highest correlation, carrying out a linear fit, and eliminating examples with
small residual value. This measure corresponds to the proportion of examples that
remain after all features have been examined. Small values indicate relatively easy
problems and higher values more complex ones.

4.3.3 Complexity/model-based measures

Lorena et al. (2018) include the following two features among the complexity-based
measures. However, as they are derived from a particular model (linear regressor), we
could regard them also as model-based features.

Mean absolute value of linear regressor: This measure averages the residuals of a mul-
tiple linear regression. Small values indicate simpler problems.

Variance of residuals of linear regressor: This measure averages the squares of residuals
of a multiple linear regression. Small values indicate simpler problems.

4.3 Data Characterization Used in Regression Tasks 61

4.3.4 Smoothness measures

Similarity of target values for similar examples:5 This metafeature has a similar aim
to concept variation in that it tries to estimate the smoothness/roughness of similar
examples in the output space (see Subsection 4.2.4). The method borrows the idea
of minimum spanning tree (MST) used in the definition of fraction of points on the
boundary. The MST joins the most similar examples in the input (feature) space,
while the edges are weighted by the Euclidean distance. This measure then cap-
tures the mean distance between the target values. Lower values indicate simpler
problems.

Similarity of features for examples with similar targets:6 This measure complements
the measure above. It measures how similar the inputs (features) are for pairs of
examples with similar target values.

Errors of 1NN regressor: This metafeature is an adaptation of a similar metafeature,
namely the 1NN landmarker, defined for classification tasks. A suitable error mea-
sure, such as mean squared error (MSE), needs to be used here.

4.3.5 Nonlinearity measures

Nonlinearity of linear regressor: This metafeature is an adaptation of a similar metafea-
ture defined for classification tasks. First, two examples with similar outputs are se-
lected and both input (feature) and output values are interpolated to generate a new
test data item. This step is repeated. The linear regressor is trained on the original
data and applied to the new test set. The mean squared error (MSE) obtained is used
as the metafeature. Lower values indicated simpler problems.

Nonlinearity of 1NN regressor: This metafeature is an adaptation of a similar metafea-
ture defined for classification tasks. Instead of a linear regressor, the 1NN regressor
is used.

4.4 Data Characterization Used in Time Series Tasks

The issue of how to apply metalearning to time series tasks was investigated by various
researchers in the past (see, e.g., Adya et al. (2001); Prudêncio and Ludermir (2004);
dos Santos et al. (2004); Lemke and Gabrys (2010), etc.). Characterization of time series
data needs to take into account the fact that a time series is an ordered set of values.

Lemke and Gabrys (2010) divided the features into four groups: general statistics,
frequency domain characteristics, autocorrelation characteristics and diversity measures.
Further details about the first three groups are given in the following subsections. The
last group that involves diversity measures is useful in the construction of ensembles.
More details about this issue can be found in Chapter 10.

General statistics (descriptive statistics)

To calculate the descriptive statistics of the time series, Lemke and Gabrys (2010) first
detrended it using polynomial regression. Some of the characteristics used are shown
below:

5Lorena et al. (2018) call this measure the output distribution.
6Lorena et al. (2018) call this measure the input distribution.

62 4 Dataset Characteristics (Metafeatures)

• Length of time series;
• Standard deviation (std) of detrended series;
• Skewness and kurtosis;
• Trend, calculated as std(series)/std(detrended series);
• Number of turning points;
• Number of step changes;
• Estimate of nonlinearity;

The estimate of nonlinearity is obtained by generating a surrogate linear time series and
comparing it with the original one.

Frequency-domain characteristics

Frequency-based features can be derived from the power spectrum which, in turn, is
obtained by applying fast Fourier transform to the time series data. Lemke and Gabrys
(2010), for instance, used the following features:

• Frequencies of three largest values;
• Maximal value indicating the strongest seasonal or cyclic component;
• Number of peaks that have at least 60% of the maximal component.

Autocorrelation-based characteristics

These features provide information about the stationarity and seasonability of time se-
ries. Autocorrelation and partial autocorrelation (Box and Jenkins, 2008) provide im-
portant information about the properties of a time series (Chatfield, 2003). These values
are calculated with respect to data points that include a lag by d positions. Lemke and
Gabrys (2010) used:

• Autocorrelation at lags 1 and 2;
• Partial autocorrelation at lags 1 and 2;
• Partial autocorrelation at lag 7 (or 12) capturing weakly (or monthly) seasonality.

Other metafeatures can be derived from the basic characteristics in a similar way as
discussed earlier. Some examples include the mean absolute value of the first five autocor-
relations (i.e., with d ∈ {1, . . . , 5}) or the statistical significance of the first autocorrelation
coefficients (Prudêncio and Ludermir, 2004; dos Santos et al., 2004).

4.5 Data Characterization Used in Clustering Tasks

In this section we analyze various metafeatures that can be used in clustering. This
problem was addressed by various researchers before (de Souto et al., 2008; Soares
et al., 2009; Ferrari and de Castro, 2015; Pimentel and de Carvalho, 2019).

This area represents a challenge, as it belongs to a group of algorithms referred to as
unsupervised learning. As these tasks do not contain a target variable, fewer descriptive
characteristics are available to describe the data. In the following we describe different
techniques that can be used to respond to this challenge.

In Section 4.2 we presented the main types of metafeatures that tend to be used
in classification tasks. They were divided into four major groups. So a question arises
regarding whether each group can be adapted to clustering tasks and, if so, how. The
following subsections provide details on this topic.

4.4 Data Characterization Used in Time Series Tasks 63

Simple, statistical, and information-theoretic metafeatures

As the data does not include the target variable, it is possible to use only the features
that involve independent variables. Ferrari and de Castro (2015), for instance, used an
appropriate subset of metafeatures, similar to those shown in Subsection 4.2.1. Pimentel
and de Carvalho (2019) proposed metafeatures describing the distribution of rank cor-
relation between examples (not features).

Model-based metafeatures

Interestingly, Ferrari and de Castro (2015) adapted this idea to the task of clustering.
The authors defined a vector d containing pairwise Euclidean distances di,j between all
pairs of objects (data instances) i and j of a given dataset. The vector is then normalized
into an interval [0, 1] and characterized using statistical measures. These can be divided
into three groups discussed next.

The first subgroup includes some simple measures, such as mean, variance, standard
deviation, skewness, and kurtosis. All these characterize the distribution of values in d.

The second subgroup of metafeatures characterizes a histogram constructed on the
basis of distribution of the values in d, following the approach of Kalousis (2002). The
authors used 10 bins (intervals) of equal size. The feature corresponding to bin j includes
the percentage of values contained in this bin.

The third subgroup of metafeatures provides an alternative way of characterizing
the distribution. The authors have first generated z-scores defined by z = x−µ

σ
, where

µ represents the mean and σ standard deviation. The absolute values of z scores were
discretized into four bins: [0, 1), [1, 2), [2, 3), and [3,∞). The corresponding metafeatures
captured the proportion of cases in each bin.

Performance-based metafeatures

Some authors have used internal validation measures in the meta-learning framework for
clustering (Vukicevic et al., 2016; Tomp et al., 2019).

It would seem that various measures that were used in classification tasks, such as
landmarkers and subsampling landmarkers, could be adapted to this domain.

Metalearning vs. optimization on target dataset

This domain provides, however, a challenge to metalearning approaches. It may be diffi-
cult to provide a good recommendation of clustering algorithms (or their configurations)
just by looking at the data. This is because many approaches do not cluster the points in
their original space, but rather use dimensionality reduction first. So, the alternative is
to carry out a search for the best solution on the target concept.

4.6 Deriving New Features from the Basic Set

Generating new features by aggregation

We note that some features, such as skewness, can be calculated for each numeric at-
tribute. Given that the number of attributes varies for different datasets, this implies

64 4 Dataset Characteristics (Metafeatures)

that the number of values describing skewness for different datasets varies. This creates
a problem for metalearning systems that use propositional representation.

The most common approach to solve this problem is to do some form of aggrega-
tion, for instance by calculating mean skewness. However, it should be expected that
important information may be lost by this aggregation. Alternatively, Kalousis and Theo-
haris (1999) used a finer-grained aggregation, where histograms with a fixed number of
bins were used to construct new metafeatures. For instance, the distribution of skewness
values could be represented with three metafeatures corresponding to the number of
attributes with skewness smaller than 0.2, between 0.2 and 0.4, and larger than 0.4.

Generating a complete set of metafeatures

Some researchers (Pinto et al., 2016; Pinto, 2018) have observed that many systems
use a set of dataset features that can be considered incomplete. For instance, entropy
is commonly applied to the target variable, but not to dataset features. Aggregation
operations often involve calculating, for instance, the mean value of all numeric features.
Different aggregation operations (see, e.g., Tukey (1977)) are listed below:

• mean value (µ)
• standard deviation (σ)
• minimum value (min)
• maximum value (max)
• first quartile (q1)
• median value (q2)
• third quartile (q3)

These are often not used. So the authors have proposed to generate a complete set of
features, thus enriching the initial set that was considered. Pinto (2018) has shown that
a metalearning system that uses the complete set achieves better performance than the
initial set. Although feature selection can be used to reduce this set, it was shown that it
could degrade performance.

Generating new features by PCA

Principal component analysis can be used to project features into a low-dimensional
space that includes the principal components. This method was used, for instance, by
Smith-Miles et al. (2014). However, the PCA model was somewhat unsatisfactory to pre-
dict performance, since PCA is only concerned with maximizing the variance explained
by the features.

Transforming features by feature selection and projection

The method used by Smith-Miles et al. (2014), which included 235 dataset instances,
used two steps. In the first one, feature selection was used to reduce a relatively large
set of features (509) to ten features. In the second step, the ten-dimensional space was
projected onto a two-dimensional space. The projection was defined as an optimization
problem, where the aim was to minimize the approximation error, defined in terms of
both true and predicted values of the feature data matrix and performance vector. The
projection revealed regions in the 2D space, referred to as a footprint, where a partic-
ular algorithm is expected to do well. More details about this study can be found in
Subsection 4.7.1.

4.6 Deriving New Features from the Basic Set 65

Fig. 4.2: Latent embedding based on probabilistic matrix decomposition of
42,000 configurations, color coded by the algorithm. Image taken from Fusi
et al. (2018)

Constructing new latent features by matrix factorization

Fusi et al. (2018) proposed to apply matrix factorization to the performance matrix
Y ∈ RN×D, where N is the number of algorithms (workflows) and D is the number of
datasets. Each cell contains the performance of a particular algorithm on a particular
dataset. The authors proposed to use a probabilistic matrix factorization algorithm that
decomposes Y ≈ XW , where X ∈ RN×Q and W ∈ RQ×D.

The authors note that, in many cases, Y is a sparse matrix and this method helps
to provide a solution. Being able to deal with missing values is important in situations
when a repeated algorithm selection method is carried out for the new (target) dataset.
An advantage of the probabilistic matrix factorization method is that it maps each dataset
into a latent feature vector of size Q.

This opens up a way to new lines of research, where the resulting matrix can be
mined for patterns, such as shown in Figure 4.2. The plot shows various results on
several datasets relative to four different algorithms (more precisely OpenML flows) and
their differently configured variants. The algorithms involved in this study were naive
Bayes, random forest, XGBoost, and linear discriminant analysis (LDA).

Yang et al. (2019) describe an AutoML system that is integrated with an algorithm
selection method with similar latent features.

Generating new features in the form of embeddings

Some researchers have suggested to use a so-called Siamese neural network (SNN) to
generate a feature vector from a given dataset (Baldi and Chauvin, 1993; Bromley et al.,
1994).7 This network consists of two similar sub-networks. During training each sub-
network is applied to similar examples, such as, examples from one class. This permits
to extract a feature vector consisting of neural weights, representing effectively an em-
bedding. Classification consists of comparing an extracted feature vector of each example

7Chapter 13 discusses Siamese neural networks.

66 4 Dataset Characteristics (Metafeatures)

with a stored feature vector for each class. Items closer to this stored representation for
the positive class than a chosen threshold are accepted as belonging to the positive class.

This approach was originally used to distinguish original signatures from forgeries.
In subsequent works it was reused and adapted to various other domains, including,
e.g., speaker recognition (Chen and Salman, 2011) and sentence similarity (Mueller and
Thyagarajan, 2016).

In another work on recommender systems which involves a metalearning approach,
Cunha et al. (2018a) used graph embeddings to create dataset embeddings.

4.7 Selection of Metafeatures

4.7.1 Static selection of metafeatures

It is often important to select a suitable subset of data characteristics and the correspond-
ing metafeatures from all the possible alternatives. The number of metafeatures should
not be too large compared with the amount of available metadata. An excessively large
number of measures may cause overfitting and, thus, poor predictions on unseen data.
This is particularly true because the number of examples in metalearning (i.e., datasets)
tends to be small.

Selection of metafeatures may be done during the development of the metalearning
system by including only measures that are expected to be relevant (Brazdil et al., 2003).
This can be done by taking into account the characteristics of the metalearning problem,
as discussed above.

Alternatively, it is possible to include as many metafeatures as possible. A feature
selection method can then be applied to obtain a smaller subset of suitable metafeatures.
Obviously, if it were possible to use a relatively small subset, this would have advantages.
The whole process of metalearning would be simpler, as one would not have to calculate
so many characteristics.

It has been shown that the use of wrapper-based feature selection methods at the
meta level can improve the quality of the results (Todorovski et al., 2000; Kalousis and
Hilario, 2001a). The improvement can be attributed to the fact that “noisy” attributes
have been dropped. The wrapper-based approach normally uses backward elimination,
which is normally used for feature selection (Kuhn and Johnson, 2013).

Recently, Muñoz et al. (2018) carried out a comprehensive study in the area of classi-
fication with 509 features. The aim was to select a small subset that would characterize
well the hardness of the classification task. The level of hardness was established by
measures, such as nonlinear separability, among others. The whole process of identify-
ing the relevant features is quite complex, so the authors have identified the following
ten features:

• Maximum normalized entropy of the attributes (information-theoretic)
• Normalized entropy of class attribute (information-theoretic)
• Mean mutual information of attributes and class (information-theoretic)
• Error rate of the decision node (landmarker)
• Training error of linear classifier (landmarker)
• Standard deviation of the weighted distance (concept characterization)
• Maximum feature efficiency (complexity)
• Collective feature efficiency (complexity)
• Fraction of points on the class boundary (complexity)

4.6 Deriving New Features from the Basic Set 67

• Nonlinearity of nearest-neighbor classifier (complexity)

The type of metafeature is mentioned as well. We note that this set includes representa-
tives of several metafeature types.

4.7.2 Dynamic (iterative) data characterization

In the previous subsection we described the process of selecting metafeatures prior to
their use by a metalearning system. An alternative approach consists of gathering the
metafeatures in an iterative fashion (Leite and Brazdil, 2005, 2007). This approach is
useful in situations when gathering the metafeatures incurs costs. We may not want to
use the most informative set from the start simply to save effort.

Suppose the aim is to determine whether algorithm A or algorithm B should be used
with the target dataset. A test of both algorithms on a small sample (i.e., on the basis
of a given subsampling landmarker) provides some information that can be used for this
decision. Obviously, if we use more samples, we obtain more information. But if we can
make a decision on the basis of the existing metafeatures, there is no need to extend it
further.

In each phase of the algorithm described by Leite and Brazdil (2005, 2007), the
system tries to determine whether the currently available set of metafeatures is adequate
or whether it should be extended, and if so, how. This is done with the help of existing
metadata. The aim is to determine what happened in similar circumstances in the past.
If there is evidence that some extensions lead to a marked improvement of performance,
the system tries to identify the best one. This is the one which is expected to provide
maximum information while requiring the least computational effort.

We note that characterization of datasets is built up gradually. In each step, the
system determines the next sample sizes that should be tried out. The plan of these
experiments is built up gradually, by taking into account the results of all previous ex-
periments, both on other datasets (past metadata) and partly also on the target dataset
(new metadata).

4.8 Algorithm-Specific Characterization and Representation
Issues

4.8.1 Algorithm-specific data characterization

The set of base-algorithms should also be taken into account in the development
of metafeatures. In the case where diverse algorithms are included, different sets of
metafeatures could be useful for discriminating the performance of different pairs of
algorithms (Aha, 1992; Kalousis and Hilario, 2001a, 2000; Sun and Pfahringer, 2013).

For instance, the proportion of continuous features can be useful to discriminate be-
tween naive Bayes and k-NN, but not between naive Bayes and a rule-based learner
(Kalousis and Hilario, 2000). This is consistent with the knowledge that k-NN is better
suited for continuous features than naive Bayes, but both the naive Bayes and rule-based
systems have problems to deal with this kind of attributes. Therefore, a set of metafea-
tures that is able to discriminate among all of the algorithms should be used.

68 4 Dataset Characteristics (Metafeatures)

Data characterization useful for ranking pairs of algorithms

Another approach is to transform the problem into several pairwise metalearning prob-
lems (i.e., predict whether to use algorithm A or B, or whether they are equivalent)
and use different sets of metafeatures for each of them. This strategy has been used,
for instance, by Sun and Pfahringer (2013). The existing meta-data is used to train a
rule-based classifier whose aim is to predict whether algorithm A (or B) is better for a
particular dataset. The rules include base-level features which may include landmarkers
(e.g., AUC associated with a particular type of tree (REPTree.depth2)).

When the base-algorithms are similar, specific metafeatures that represent the differ-
ences between them should be designed. A particular case is when the base-algorithms
represent the same algorithm with different parameter settings. In the case of selecting
parameters for the kernel of SVM, it has been shown that better results are obtained
with algorithm-specific metafeatures than with general ones (Soares and Brazdil, 2006).
The metafeatures used in this work were based on the kernel matrices for the differ-
ent kernel parameters considered. In a different approach to this problem, metafeatures
characterizing the kernel matrix were combined with other metafeatures describing the
data in terms of its relation to the margin (Tsuda et al., 2001).

4.8.2 Representation Issues

Most researchers represent the metafeatures using a vector with a fixed number of posi-
tions. However, some approaches have exploited a relational representation of metafea-
tures (Todorovski and Džeroski, 1999; Hilario and Kalousis, 2001; Kalousis and Hi-
lario, 2003), commonly used in inductive logic programming (ILP). For instance, in a
dataset with kc continuous attributes, skewness is described by kc metafeatures, with
the skewness value of each attribute. An ILP approach has also been proposed to take
full advantage of the model-based approach to data characterization, which is also non-
propositional (Bensusan et al., 2000). The authors illustrate their proposal by character-
izing the dataset using a decision tree induced from that dataset.

4.9 Establishing Similarity Between Datasets

4.9.1 Similarity based on metafeatures

Let us represent the metafeatures of some meta-instance (dataset) di using a vector
fdi = (fdi,1, fdi,2, · · · , fdi,m), where m is the number of metafeatures. Similarly, fdnew
represents the vector of metafeatures of the target dataset dnew. The vectors of metafea-
tures are used to identify the datasets that are most similar to the target dataset. This
is done using an approach similar to k-NN. The similarity between examples is usually
based on some simple distance measure (e.g., Manhattan, Euclidean, etc.).8

The following formula shows how we can calculate the distance between dataset
dnew and dataset di, assuming that all features are numeric and are attributed equal
weight:

Distmf (dnew, di) =

m∑
p=1

|fdnew,p − fdi,p|
max(f∗,p)−min(f∗,p)

. (4.1)

8Distance measures are discussed by Atkeson et al. (1997).

4.8 Algorithm-Specific Characterization and Representation Issues 69

This formula uses the L1 norm in the calculation of the distance. The distance value
for each metafeature is normalized by dividing it by the corresponding range of values
across all datasets. The value of similarity based on metafeatures can be obtained from
the distance using: Simmf = 1−Distmf .

4.9.2 Similarity based on performance results of algorithms

The following two similarity measures are based on recent work of Leite and Brazdil
(2021).

Cosine-based similarity of performance results

This version of similarity calculates the similarity between two datasets by considering
the performance results of different algorithms on these datasets. The actual measure
used here is cosine similarity. This measure permits to calculate the similarity between
two vectors v(dnew) and v(di) representing dataset dnew and di as follows (Manning
et al., 2009):

Simcos(dnew, di) =
v(dnew) · v(di)

|v(dnew)|2 ∗ |v(di)|2
, (4.2)

where the numerator represents the dot product (inner product) of the two vectors, while
the denominator is the product of their Euclidean lengths. The denominator is used to
normalize the resulting values so that they would be in the range between 0 and 1.
Here the vectors v(dnew) and v(di) represent performance values obtained by evaluating
algorithms (workflows) a on dataset dnew or di respectively. This can be represented by
function p(a, dnew) and p(a, di). Consequently, the equation above can be rewritten as

Simcos(dnew, di) =
p(a, dnew) · p(a, di)

|p(a, dnew)|2 ∗ |p(a, di)|2
. (4.3)

After substituting the dot product by the sum of products we get

Simcos(dnew, di) =

∑
ak∈a p(ak, di) ∗ p(ak, dnew)

|p(a, dnew)|2 ∗ |p(a, di)|2
. (4.4)

The Euclidean length of the terms in the denominator of the form |x|2 is calculated as∑√
xk)2. The algorithm set a is a subset of all possible elements which were already

evaluated on dnew.

Correlation-based similarity of performance results

This version of similarity is similar to the previous one. It also calculates similarity be-
tween two datasets by considering the performance results of different algorithms on
these datasets. Instead of using cosine similarity it uses similarity based on Spearman’s
correlation

Simrs(dnew, di) = rs(p(a, dnew), p(a, di)), (4.5)

where p(a, dnew) is a function applied to a vector of algorithms (workflows) a that
returns the corresponding performance values (e.g., accuracies) on dataset dnew, and
p(a, di) is defined in a similar way. The term rs represents Spearman’s correlation func-
tion.

70 4 Dataset Characteristics (Metafeatures)

Another similar variant uses a weighted rank measure of correlation (da Costa and
Soares, 2005; da Costa, 2015) discussed in Chapter 3 (Section 3.2)

Simrw(dnew, di) = rw(p(a, dnew), p(a, di)). (4.6)

Similarly, rw represents the weighted rank correlation function.

References

Adya, M., Collopy, F., Armstrong, J., and Kennedy, M. (2001). Automatic identification
of time series features for rule-based forecasting. International Journal of Forecasting,
17(2):143–157.

Aha, D. W. (1992). Generalizing from case studies: A case study. In Sleeman, D. and Ed-
wards, P., editors, Proceedings of the Ninth International Workshop on Machine Learning
(ML92), pages 1–10. Morgan Kaufmann.

Atkeson, C. G., Moore, A. W., and Schaal, S. (1997). Locally weighted learning. Artificial
Intelligence Review, 11(1-5):11–73.

Baldi, P. and Chauvin, Y. (1993). Neural networks for fingerprint recognition. Neural
Computation, 5.

Bensusan, H. (1998). God doesn’t always shave with Occam’s razor - learning when and
how to prune. In ECML ’98: Proceedings of the 10th European Conference on Machine
Learning, pages 119–124, London, UK. Springer-Verlag.

Bensusan, H. and Giraud-Carrier, C. (2000). Discovering task neighbourhoods through
landmark learning performances. In Zighed, D. A., Komorowski, J., and Zytkow, J.,
editors, Proceedings of the Fourth European Conference on Principles and Practice of
Knowledge Discovery in Databases (PKDD 2000), pages 325–330. Springer.

Bensusan, H., Giraud-Carrier, C., and Kennedy, C. (2000). A higher-order approach to
meta-learning. In Proceedings of the ECML 2000 Workshop on Meta-Learning: Building
Automatic Advice Strategies for Model Selection and Method Combination, pages 109–
117. ECML 2000.

Bensusan, H. and Kalousis, A. (2001). Estimating the predictive accuracy of a classifier.
In Flach, P. and De Raedt, L., editors, Proceedings of the 12th European Conference on
Machine Learning, pages 25–36. Springer.

Box, G. and Jenkins, G. (2008). Time Series Analysis, Forecasting and Control. John Wiley
& Sons.

Brazdil, P., Gama, J., and Henery, B. (1994). Characterizing the applicability of clas-
sification algorithms using meta-level learning. In Bergadano, F. and De Raedt, L.,
editors, Proceedings of the European Conference on Machine Learning (ECML94), pages
83–102. Springer-Verlag.

Brazdil, P. and Henery, R. J. (1994). Analysis of results. In Michie, D., Spiegelhalter,
D. J., and Taylor, C. C., editors, Machine Learning, Neural and Statistical Classification,
chapter 10, pages 175–212. Ellis Horwood.

Brazdil, P., Soares, C., and da Costa, J. P. (2003). Ranking learning algorithms: Using IBL
and meta-learning on accuracy and time results. Machine Learning, 50(3):251–277.

Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., and Shah, R. (1994). Signature verifica-
tion using a “siamese” time delay neural network. In Advances in Neural Information
Processing Systems 7, NIPS’94, pages 737–744.

Chatfield, C. (2003). The Analysis of Time Series: An Introduction. Chapman & Hall/CRC,
6th edition.

4.9 Establishing Similarity Between Datasets 71

Chen, K. and Salman, A. (2011). Extracting speaker-specific information with a regular-
ized Siamese deep network. In Advances in Neural Information Processing Systems 24,
NIPS’11, pages 298–306.

Costa, A. J., Santos, M. S., Soares, C., and Abreu, P. H. (2020). Analysis of imbalance
strategies recommendation using a meta-learning approach. In 7th ICML Workshop
on Automated Machine Learning (AutoML).

Cunha, T., Soares, C., and de Carvalho, A. C. (2018a). cf2vec: Collaborative fil-
tering algorithm selection using graph distributed representations. arXiv preprint
arXiv:1809.06120.

Cunha, T., Soares, C., and de Carvalho, A. C. (2018b). Metalearning and recommender
systems: A literature review and empirical study on the algorithm selection problem
for collaborative filtering. Information Sciences, 423:128 – 144.

da Costa, J. P. (2015). Rankings and Preferences: New Results in Weighted Correlation and
Weighted Principal Component Analysis with Applications. Springer.

da Costa, J. P. and Soares, C. (2005). A weighted rank measure of correlation. Aust. N.Z.
J. Stat., 47(4):515–529.

de Souto, M. C. P., Prudencio, R. B. C., Soares, R. G. F., de Araujo, D. S. A., Costa, I. G.,
Ludermir, T. B., and Schliep, A. (2008). Ranking and selecting clustering algorithms
using a meta-learning approach. In 2008 IEEE International Joint Conference on Neural
Networks (IEEE World Congress on Computational Intelligence), pages 3729–3735.

dos Santos, P. M., Ludermir, T. B., and Prudêncio, R. B. C. (2004). Selection of time
series forecasting models based on performance information. In Proceedings of the
Fourth International Conference on Hybrid Intelligent Systems (HIS’04), pages 366–371.

Ferrari, D. and de Castro, L. (2015). Clustering algorithm selection by meta-learning
systems: A new distance-based problem characterization and ranking combination
methods. Information Sciences, 301:181–194.

Fürnkranz, J. and Petrak, J. (2001). An evaluation of landmarking variants. In Giraud-
Carrier, C., Lavrač, N., and Moyle, S., editors, Working Notes of the ECML/PKDD 2000
Workshop on Integrating Aspects of Data Mining, Decision Support and Meta-Learning,
pages 57–68.

Fusi, N., Sheth, R., and Elibol, M. (2018). Probabilistic matrix factorization for auto-
mated machine learning. In Advances in Neural Information Processing Systems 32,
NIPS’18, pages 3348–3357.

Gama, J. and Brazdil, P. (1995). Characterization of classification algorithms. In Pinto-
Ferreira, C. and Mamede, N. J., editors, Progress in Artificial Intelligence, Proceedings of
the Seventh Portuguese Conference on Artificial Intelligence, pages 189–200. Springer-
Verlag.

Hilario, M. and Kalousis, A. (2001). Fusion of meta-knowledge and meta-data for case-
based model selection. In Siebes, A. and De Raedt, L., editors, Proceedings of the Fifth
European Conference on Principles and Practice of Knowledge Discovery in Databases
(PKDD01). Springer.

Ho, T. and Basu, M. (2002). Complexity measures of supervised classification problems.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(3):289–300.

Kalousis, A. (2002). Algorithm Selection via Meta-Learning. PhD thesis, University of
Geneva, Department of Computer Science.

Kalousis, A. and Hilario, M. (2000). Model selection via meta-learning: A comparative
study. In Proceedings of the 12th International IEEE Conference on Tools with AI. IEEE
Press.

72 4 Dataset Characteristics (Metafeatures)

Kalousis, A. and Hilario, M. (2001a). Feature selection for meta-learning. In Cheung,
D. W., Williams, G., and Li, Q., editors, Proc. of the Fifth Pacific-Asia Conf. on Knowledge
Discovery and Data Mining. Springer.

Kalousis, A. and Hilario, M. (2001b). Model selection via meta-learning: a comparative
study. Int. Journal on Artificial Intelligence Tools, 10(4):525–554.

Kalousis, A. and Hilario, M. (2003). Representational issues in meta-learning. In Pro-
ceedings of the 20th International Conference on Machine Learning, ICML’03, pages
313–320.

Kalousis, A. and Theoharis, T. (1999). NOEMON: Design, implementation and per-
formance results of an intelligent assistant for classifier selection. Intelligent Data
Analysis, 3(5):319–337.

Köpf, C. and Iglezakis, I. (2002). Combination of task description strategies and case base
properties for meta-learning. In Bohanec, M., Kavšek, B., Lavrač, N., and Mladenić,
D., editors, Proceedings of the Second International Workshop on Integration and Col-
laboration Aspects of Data Mining, Decision Support and Meta-Learning (IDDM-2002),
pages 65–76. Helsinki University Printing House.

Köpf, C., Taylor, C., and Keller, J. (2000). Meta-analysis: From data characterization for
meta-learning to meta-regression. In Brazdil, P. and Jorge, A., editors, Proceedings of
the PKDD 2000 Workshop on Data Mining, Decision Support, Meta-Learning and ILP:
Forum for Practical Problem Presentation and Prospective Solutions, pages 15–26.

Kuhn, M. and Johnson, K. (2013). Applied Predictive Modeling. Springer.
Leite, R. and Brazdil, P. (2004). Improving progressive sampling via meta-learning on

learning curves. In Boulicaut, J.-F., Esposito, F., Giannotti, F., and Pedreschi, D., ed-
itors, Proc. of the 15th European Conf. on Machine Learning (ECML2004), LNAI 3201,
pages 250–261. Springer-Verlag.

Leite, R. and Brazdil, P. (2005). Predicting relative performance of classifiers from
samples. In Proceedings of the 22nd International Conference on Machine Learning,
ICML’05, pages 497–503, NY, USA. ACM Press.

Leite, R. and Brazdil, P. (2007). An iterative process for building learning curves and
predicting relative performance of classifiers. In Proceedings of the 13th Portuguese
Conference on Artificial Intelligence (EPIA 2007), pages 87–98.

Leite, R. and Brazdil, P. (2021). Exploiting performance-based similarity between
datasets in metalearning. In Guyon, I., van Rijn, J. N., Treguer, S., and Vanschoren, J.,
editors, AAAI Workshop on Meta-Learning and MetaDL Challenge, volume 140, pages
90–99. PMLR.

Leite, R., Brazdil, P., and Vanschoren, J. (2012). Selecting classification algorithms with
active testing. In Machine Learning and Data Mining in Pattern Recognition, pages
117–131. Springer.

Lemke, C. and Gabrys, B. (2010). Meta-learning for time series forecasting and forecast
combination. Neurocomputing, 74:2006–2016.

Lindner, G. and Studer, R. (1999). AST: Support for algorithm selection with a CBR
approach. In Giraud-Carrier, C. and Pfahringer, B., editors, Recent Advances in Meta-
Learning and Future Work, pages 38–47. J. Stefan Institute.

Lorena, A., Maciel, A., de Miranda, P., Costa, I., and Prudêncio, R. (2018). Data com-
plexity meta-features for regression tasks. Machine Learning, 107(1):209–246.

Manning, C., Raghavan, P., and Schütze, H. (2009). An Introduction to Information
Retrieval. Cambridge University Press.

Michie, D., Spiegelhalter, D. J., and Taylor, C. C. (1994). Machine Learning, Neural and
Statistical Classification. Ellis Horwood.

References 73

Muñoz, M., Villanova, L., Baatar, D., and Smith-Miles, K. (2018). Instance Spaces for
Machine Learning Classification. Machine Learning, 107(1).

Mueller, J. and Thyagarajan, A. (2016). Siamese recurrent architectures for learning
sentence similarity. In Thirtieth AAAI Conference on Artificial Intelligence.

Peng, Y., Flach, P., Brazdil, P., and Soares, C. (2002). Improved dataset characterisation
for meta-learning. In Discovery Science, pages 141–152.

Perez, E. and Rendell, L. (1996). Learning despite concept variation by finding structure
in attribute-based data. In Proceedings of the 13th International Conference on Machine
Learning, ICML’96.

Pfahringer, B., Bensusan, H., and Giraud-Carrier, C. (2000). Meta-learning by land-
marking various learning algorithms. In Langley, P., editor, Proceedings of the 17th
International Conference on Machine Learning, ICML’00, pages 743–750.

Pimentel, B. A. and de Carvalho, A. C. (2019). A new data characterization for selecting
clustering algorithms using meta-learning. Information Sciences, 477:203 – 219.

Pinto, F. (2018). Leveraging Bagging for Bagging Classifiers. PhD thesis, University of
Porto, FEUP.

Pinto, F., Soares, C., and Mendes-Moreira, J. (2016). Towards automatic generation
of metafeatures. In Pacific-Asia Conference on Knowledge Discovery and Data Mining,
pages 215–226. Springer International Publishing.

Post, M. J., van der Putten, P., and van Rijn, J. N. (2016). Does feature selection improve
classification? a large scale experiment in OpenML. In Advances in Intelligent Data
Analysis XV, pages 158–170. Springer.

Prudêncio, R. and Ludermir, T. (2004). Meta-learning approaches to selecting time series
models. Neurocomputing, 61:121–137.

Rendell, L. and Seshu, R. (1990). Learning hard concepts through constructive induc-
tion: Framework and rationale. Computational Intelligence, 6:247–270.

Rendell, L., Seshu, R., and Tcheng, D. (1987). More robust concept learning using
dynamically-variable bias. In Proceedings of the Fourth International Workshop on Ma-
chine Learning, pages 66–78. Morgan Kaufmann Publishers, Inc.

Rice, J. R. (1976). The algorithm selection problem. Advances in Computers, 15:65–118.
Rivolli, A., Garcia, L. P. F., Soares, C., Vanschoren, J., and de Carvalho, A. C. P. L. F.

(2019). Characterizing classification datasets: a study of meta-features for meta-
learning. In arXiv. https://arxiv.org/abs/1808.10406.

Smith, M. R., Martinez, T., and Giraud-Carrier, C. (2014). An instance level analysis of
data complexity. Machine Learning, 95(2):225–256.

Smith-Miles, K., Baatar, D., Wreford, B., and Lewis, R. (2014). Towards objective mea-
sures of algorithm performance across instance space. Computers & Operations Re-
search, 45:12–24.

Smith-Miles, K. A. (2008). Cross-disciplinary perspectives on meta-learning for algo-
rithm selection. ACM Computing Surveys (CSUR), 41(1):6:1–6:25.

Soares, C. (2004). Learning Rankings of Learning Algorithms. PhD thesis, Department of
Computer Science, Faculty of Sciences, University of Porto.

Soares, C. and Brazdil, P. (2006). Selecting parameters of SVM using meta-learning and
kernel matrix-based meta-features. In Proceedings of the ACM SAC.

Soares, C., Brazdil, P., and Kuba, P. (2004). A meta-learning method to select the kernel
width in support vector regression. Machine Learning, 54:195–209.

Soares, C., Petrak, J., and Brazdil, P. (2001). Sampling-based relative landmarks: Sys-
tematically test-driving algorithms before choosing. In Brazdil, P. and Jorge, A., edi-
tors, Proceedings of the 10th Portuguese Conference on Artificial Intelligence (EPIA2001),
pages 88–94. Springer.

74 4 Dataset Characteristics (Metafeatures)

Soares, R. G. F., Ludermir, T. B., and De Carvalho, F. A. T. (2009). An analysis of meta-
learning techniques for ranking clustering algorithms applied to artificial data. In
Alippi, C., Polycarpou, M., Panayiotou, C., and Ellinas, G., editors, Artificial Neural
Networks – ICANN 2009. Springer, Berlin, Heidelberg.

Sohn, S. Y. (1999). Meta analysis of classification algorithms for pattern recognition.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(11):1137–1144.

Sun, Q. and Pfahringer, B. (2013). Pairwise meta-rules for better meta-learning-based
algorithm ranking. Machine Learning, 93(1):141–161.

Todorovski, L., Blockeel, H., and Džeroski, S. (2002). Ranking with predictive clustering
trees. In Elomaa, T., Mannila, H., and Toivonen, H., editors, Proc. of the 13th European
Conf. on Machine Learning, number 2430 in LNAI, pages 444–455. Springer-Verlag.

Todorovski, L., Brazdil, P., and Soares, C. (2000). Report on the experiments with feature
selection in meta-level learning. In Brazdil, P. and Jorge, A., editors, Proceedings of the
Data Mining, Decision Support, Meta-Learning and ILP Workshop at PKDD 2000, pages
27–39.

Todorovski, L. and Džeroski, S. (1999). Experiments in meta-level learning with ILP.
In Rauch, J. and Zytkow, J., editors, Proceedings of the Third European Conference on
Principles and Practice of Knowledge Discovery in Databases (PKDD99), pages 98–106.
Springer.

Tomp, D., Muravyov, S., Filchenkov, A., and Parfenov, V. (2019). Meta-learning based
evolutionary clustering algorithm. In Lecture Notes in Computer Science, Vol. 11871,
pages 502–513.

Tsuda, K., Rätsch, G., Mika, S., and Müller, K. (2001). Learning to predict the leave-one-
out error of kernel based classifiers. In ICANN, pages 331–338. Springer-Verlag.

Tukey, J. (1977). Exploratory Data Analysis. Addison-Wesley Publishing Company.
van Rijn, J. N., Abdulrahman, S., Brazdil, P., and Vanschoren, J. (2015). Fast algorithm

selection using learning curves. In International Symposium on Intelligent Data Analy-
sis XIV, pages 298–309.

Vanschoren, J. (2019). Meta-learning. In Hutter, F., Kotthoff, L., and Vanschoren, J.,
editors, Automated Machine Learning: Methods, Systems, Challenges, chapter 2, pages
39–68. Springer.

Vilalta, R. (1999). Understanding accuracy performance through concept characteriza-
tion and algorithm analysis. In Giraud-Carrier, C. and Pfahringer, B., editors, Recent
Advances in Meta-Learning and Future Work, pages 3–9. J. Stefan Institute.

Vukicevic, M., Radovanovic, S., Delibasic, B., and Suknovic, M. (2016). Extending meta-
learning framework for clustering gene expression data with component-based algo-
rithm design and internal evaluation measures. International Journal of Data Mining
and Bioinformatics (IJDMB), 14(2).

Yang, C., Akimoto, Y., Kim, D. W., and Udell, M. (2019). Oboe: Collaborative filtering
for AutoML model selection. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 1173–1183. ACM.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

References 75

http://creativecommons.org/licenses/by/4.0/

	4 Dataset Characteristics (Metafeatures)
	4.1 Introduction
	4.2 Data Characterization Used in Classification Tasks
	4.3 Data Characterization Used in Regression Tasks
	4.4 Data Characterization Used in Time Series Tasks
	4.5 Data Characterization Used in Clustering Tasks
	4.6 Deriving New Features from the Basic Set
	4.7 Selection of Metafeatures
	4.8 Algorithm-Specific Characterization and Representation Issues
	4.9 Establishing Similarity Between Datasets
	References

