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Metalearning Approaches for Algorithm Selection I
(Exploiting Rankings)

Summary. This chapter discusses an approach to the problem of algorithm selection,
which exploits the performance metadata of algorithms (workflows) on prior tasks to
generate recommendations for a given target dataset. The recommendations are in the
form of rankings of candidate algorithms. The methodology involves two phases. In
the first one, rankings of algorithms/workflows are elaborated on the basis of historical
performance data on different datasets. These are subsequently aggregated into a sin-
gle ranking (e.g. average ranking). In the second phase, the average ranking is used to
schedule tests on the target dataset with the objective of identifying the best performing
algorithm. This approach requires that an appropriate evaluation measure, such as accu-
racy, is set beforehand. In this chapter we also describe a method that builds this ranking
based on a combination of accuracy and runtime, yielding good anytime performance.
While this approach is rather simple, it can still provide good recommendations to the
user. Although the examples in this chapter are from the classification domain, this ap-
proach can be applied to other tasks besides algorithm selection, namely hyperparameter
optimization (HPO), as well as the combined algorithm selection and hyperparameter
optimization (CASH) problem. As this approach works with discrete data, continuous
hyperparameters need to be discretized first.

2.1 Introduction

This chapter follows the basic scheme discussed in the introduction which was illus-
trated in Figures 1.1 and 1.2. However, we focus on a method that exploits a specific
kind of metadata that captures performance results of algorithms (workflows) on past
datasets, namely rankings. Ranking methods usually rely on some form of metadata,
that is, knowledge about how a discrete set of algorithms have performed on a set of his-
torical datasets. This chapter discusses a standard approach that is capable of converting
this metadata into a static ranking. The ranking helps users by suggesting an order of
algorithms to apply when confronted with a new dataset. The approach is rather simple,
but can still provide excellent recommendations to the user. Therefore, we have decided
to discuss this approach before various other approaches described in subsequent chap-
ters. Although it can be applied to various domains, all the examples in this chapter are
from the classification domain.

The ranking approach can be applied to the algorithm selection (AS) task, hyperpa-
rameter optimization (HPO), as well as the combined algorithm selection and hyperpa-
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rameter optimization (CASH) problem. Note that this approach works always with dis-
crete data. Therefore, when addressing the HPO or CASH problems using this approach,
continuous hyperparameters need to be discretized first.

Organization of this chapter

Section 2.2 discusses a rather general topic, which is concerned with different forms of
recommendation. The system can recommend just a single item, or several items, or a
ranked list of items.

Section 2.3 explains the methodology used to construct a ranking of algorithms,
based on the available metadata. The methodology involves two phases. In the first one,
rankings of algorithms/workflows are elaborated on the basis of historical performance
data on different datasets. These are subsequently aggregated into a single ranking (e.g.
average ranking). The details are described in Subsection 2.3.1. In the second phase,
the average ranking is used to schedule tests on the target dataset with the objective of
identifying the best performing algorithm. The details are explained in Subsection 2.3.2.
This procedure represents a kind of standard and has been used in many metalearning
and AutoML research papers.

Section 2.4 describes a method that incorporates a measure that combines both ac-
curacy and runtime. Indeed, as the aim is to identify well-performing algorithms as soon
as possible, this method tests fast algorithms first, and proceeds to slower ones later. The
final section (2.5) describes various extensions of the basic approach.

2.2 Different Forms of Recommendation

Before explaining the approach that exploits rankings, let us analyze different types of
recommendation that a system can provide. The system can recommend the user to
apply/explore:

1. Best algorithm in a set,
2. Subset of the top algorithms,
3. Linear ranking,
4. Quasi-linear (weak) ranking,
5. Incomplete ranking.

Although complete and incomplete rankings can also be referred to as total and partial
rankings, we prefer to use the former terminology here. Table 2.1 illustrates what char-
acterizes each case. In our example, it is assumed that the given portfolio of algorithms
includes {a1, a2, . . . , a6}. Figure 2.1 complements this information. Hasse diagrams pro-
vide a simple visual representation of rankings (Pavan and Todeschini, 2004), where
each node represents an algorithm and directed edges represent the relation “signifi-
cantly better than”. The figure on the left (part (a)) shows an example of a complete
linear ranking. The figure in the center (part (b)) shows an example of complete quasi-
linear ranking. The figure on the right (part (c)) shows an example of an incomplete
linear ranking. Each of these figures corresponds to the rankings in rows 3 to 5 of Ta-
ble 2.1. More details about each form are provided in the following subsections.
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Table 2.1: Examples of different forms of recommendation

1. Best in a set a3

2. Subset {a3, a1, a5}

Rank
1 2 3 4 5 6

3. Linear and complete ranking a3 a1 a5 a6 a4 a2

4. Quasi-linear and complete ranking a3 a1 a5 a6 a4 a2

5. Linear and incomplete ranking a3 a1 a5 a6

a0 a0a2

a4

a6

a5

a1

a3

(a)

a0 a0

a2

a4 a6

a5

a1 a3

(b)

a0 a0

a6

a5

a1

a3

(c)

a0 a0

a2

a6

a5

a1 a3

(d)

Fig. 2.1: Representation of rankings using Hasse diagrams: (a) complete linear
ranking; (b) complete quasi-linear ranking; (c) incomplete linear ranking; (d)
incomplete quasi-linear ranking

2.2.1 Best algorithm in a set

The first form consists of identifying the algorithm that is expected to obtain the best
performance in the set of base-level algorithms (Pfahringer et al., 2000; Kalousis, 2002).
Note that this is formally a ranking of size one. Intuitively, most data scientists make use
of such ranking, when applying their favorite algorithm first on a new dataset. One way
of doing this is by identifying the best algorithm for each dataset. Then the information
gathered needs to be aggregated. One possibility is to use the algorithm that was the
best one on most datasets.

We note that this is similar to selecting one of the top items in the linear ranking. As
this strategy does not use search, there is a possibility that the algorithm selected may
not be the truly best one. Consequently, we may get a substandard result.
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2.2.2 Subset of the top algorithms

Methods that use this form of recommendation suggest a (usually small) subset of algo-
rithms that are expected to perform well on the given problem (Todorovski and Džeroski,
1999; Kalousis and Theoharis, 1999; Kalousis, 2002). One way of determining this sub-
set is by identifying the best algorithm for each dataset. If the best algorithm is tied with
others, we may simply select the first one in the order as they appear. Then the infor-
mation gathered can be aggregated by taking the union of all the algorithms identified.
So, supposing that the training datasets include n datasets, we will end up with a subset
with at most n elements. We note that this method ignores all algorithms that achieve a
comparable performance to the best algorithm. Consequently, there is a chance that the
subset selected may not include the truly best one.

To increase the chances, we may use a more elaborate strategy. It involves identifying
the best algorithm for each dataset and all other algorithms that also perform equally
well. The notion of performing well on a given dataset is typically defined in relative
terms. For example, having a model that makes predictions that are correct in 50% of
the cases is considered very good on some datasets, whereas on others this might be
considered mediocre. The following subsection discusses the details.

Identifying algorithms with comparable performance

Assuming that the best algorithm has been identified (a∗) a question arises whether
there are other algorithms (e.g., ac) with comparable performance. One possibility is to
carry out a suitable statistical test to determine whether the performance of some can-
didate algorithms is significantly worse than the performance of the best one (Kalousis
and Theoharis, 1999; Kalousis, 2002). An algorithm is included among the “good” sub-
set, if it is not significantly worse than the best one. In practice, researchers have applied
both parametric test (e.g., t-test) and non-parametric tests (e.g., Wilcoxon signed-rank
test (Neave and Worthington, 1992)). This approach requires that the tests of the algo-
rithms are carried out using cross-validation (CV), as it requires information gathered in
different folds of the CV procedure.

If the fold information is not available, it is possible to use an approximate method
that may still provide a quite satisfactory solution. This approach involves establishing
a margin relative to the performance of the best algorithm on that dataset. All the al-
gorithms with a performance within the margin are considered to perform well too. In
classification, the margin can be defined in the following way (Brazdil et al., 1994; Gama
and Brazdil, 1995; Todorovski and Džeroski, 1999):(

emin, emin + k

√
emin (1− emin))

n

)
, (2.1)

where emin is the error of the best algorithm, n is the number of examples, and k is
a user-defined confidence level that affects the size of the margin. We note that this
approach is based on an assumption that errors are normally distributed.

Both approaches are related, because the interval of confidence of the first method
can be related to the margin used in the second one. Thus, any algorithm with a per-
formance within this margin can be considered to be not significantly worse than the
best one. This method results in a small subset of algorithms for each dataset (those that
perform well).
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Aggregating subsets

The subsets generated in the previous step need to be aggregated. This can be done, for
instance, by taking a union. The algorithms in the final subset can be ordered accord-
ing to how many datasets they are involved in. If a particular algorithm ai appears in
several subsets, while aj only once, ai could be attributed a higher rank than aj , as the
probability that ai will achieve better performance on the target dataset is higher when
compared with aj .

This approach has the advantage that the search phase involves more than one al-
gorithm and, consequently, the chance that the truly best algorithm is included in it is
higher.

This topic is related to the problem of reducing the set of algorithm in a given port-
folio, which is discussed in Chapter 8.

2.2.3 Linear ranking

Rankings have been used by many researches in the past (Brazdil et al., 1994; Soares
and Brazdil, 2000; Keller et al., 2000; Brazdil et al., 2003). Typically, the order indicated
in the ranking is the order that should be followed in the experimentation phase. Many
systems tend to use linear and complete ranking. It is shown in row 3 of Table 2.1 and
also in Figure 2.1(a). It is referred to as linear ranking because the ranks are different for
all algorithms. Additionally, it is a complete ranking because all the algorithms a1, . . . , a6
have their rank defined (Cook et al., 2007).

This type of ranking has a disadvantage, as it cannot represent the case when two
algorithms are tied on a given dataset (i.e., their performance is not significantly differ-
ent).

2.2.4 Quasi-linear (weak) ranking

Whenever two or more algorithms are tied, a quasi-linear (sometimes also called weak)
ranking can be used (Cook et al., 1996). An example is shown in Table 2.1 (row 4).
The line above the algorithm names (as in a3 a1) indicates that the performance of the
corresponding algorithms is not significantly different. An alternative representation is
shown in Figure 2.1(b).

Quasi-linear rankings arise when there is not enough data permitting to distinguish
their (relative) performance on the dataset at hand, or if the algorithms are truly indis-
tinguishable. In this case, the problem can be resolved by assigning the same rank to all
tied algorithms.

A meta-learning method that provides recommendations in the form of quasi-linear
rankings is proposed in Brazdil et al. (2001). The method is an adaptation of the k-
NN ranking approach discussed in the next section (2.3). It identifies algorithms with
equivalent performance and includes only one of the algorithms in the recommendation.

2.2.5 Incomplete ranking

Both linear and quasi-linear rankings can be incomplete, as only some algorithms were
used in the tests. So a question arises on what to do. In our view we need to distinguish
the following two rather different situations. The first one arises when some algorithms
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were excluded from consideration for a particular reason (e.g., they sometimes crash;
they are difficult to use; they are rather slow etc.). In this case, we should just resort to
the incomplete ranking, as if it were complete.

The second situation occurs when new algorithms were developed and so they need
to be added to the existing algorithm set (portfolio). Obviously, it is necessary to run tests
to extend the existing metadata. The metadata does not necessarily need to be complete.
The topic of complete vs. incomplete metadata is discussed further in Chapter 8 (Sec-
tion 8.8). If the metalearning method in question can work with incomplete metadata,
a question arises regarding which tests should be conducted in preference to others.
Chapter 8 (Section 8.9) describes some strategies developed in the area of multi-armed
bandits that can be used for this purpose.

2.2.6 Searching for the best algorithm within a given budget

Rankings are particularly suitable for algorithm recommendation, because the met-
alearning system can be developed without any information about how many base-
algorithms the user will try out. This number depends on the available computational
resources (i.e., budget) and the importance of achieving good performance (e.g., accu-
racy) on the target problem. If time is the critical factor, only very few alternatives should
be selected. On the other hand, if the critical factor is, say, accuracy, then more algorithms
should be examined, as it increases the chance of obtaining the potentially best result.
This was confirmed by various experimental studies (e.g., Brazdil et al. (2003)).

2.3 Ranking Models for Algorithm Selection

The approach described in this chapter is based on the following assumption: if the aim
is to identify a well-performing algorithm, it is not as important to accurately predict
their true performance, as it is to predict their relative performance. The task of algorithm
recommendation can thus be defined as the task of ranking algorithms according to their
predicted performance.

To address this problem with the help of machine learning, we follow the two-phase
approach described in introductory Chapter 1. In the first phase, it is necessary to collect
data describing the performance of algorithms, referred to as performance metadata.
Some approaches also exploit certain characteristics of base-level tasks, referred to as
task/dataset metadata. The metadata permits to generate a meta-level model. In the
approach discussed in this chapter, the meta-level model is in the form of a ranked
list of algorithms (workflows). More details about this process are provided in Subsec-
tion 2.3.1.

After the meta-level model has been generated, it is possible to advance to the sec-
ond phase. The meta-level model can be used to obtain recommendation for the target
dataset. More details about this are given in Subsection 2.3.2.

2.3.1 Generating a meta-model in the form of rankings

The process of generating a meta-model involves the following steps:

1. Evaluate all algorithms on all datasets.
2. Use dataset similarity to identify the relevant parts of metadata.
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3. Use all performance results to elaborate a ranking of all algorithms, representing a
meta-model.

This process is illustrated in Figure 2.2.

Fig. 2.2: Generating a meta-model in the form of a ranking

Gathering performance results

This step consists of running tests to collect performance results (performance meta-
data). We assume that the performance results are stored in a performance matrix
P , where rows represent datasets and columns algorithms. More precisely, the labels
(names) of the rows are the names of the dataset used, i.e., D = {d1, · · · , dk}. Simi-
larly, the labels (names) of the columns are the algorithm names (A = {a1, · · · , an}).
Each slot P (i, j) holds the performance of algorithm j on dataset i after the respective
evaluation was carried out.

Let us clarify what kind of performance measures can be used here. In the classifi-
cation domain, some common measures are accuracy, AUC, F1, microF1 and macroF1,
among others, described in books on machine learning (ML) (e.g., Mitchell (1997); Hand
et al. (2001)). In the examples in this chapter we use mainly predictive accuracy, which
is defined as the proportion of test examples that were classified correctly by the model.

Details of this process are shown in Algorithm 2.1. To simplify the description, we
assume that the initial performance matrix P0, which is initially empty, is given. The aim
is to generate a rank matrix R, which has a similar format to the performance matrix P ,
but instead of performance values it includes ranks. Table 2.3 shows an example of test
results converted to ranks for 3 datasets and 10 algorithms.

The conversion to ranks is simple. The best algorithm is assigned rank 1, the runner-
up is assigned rank 2, and so on.

Note that cross-validating each algorithm on each dataset is a costly procedure, and
only feasible for a relatively small number of algorithms and datasets. In many studies,
this information is assumed to be readily available, e.g., by using an existing source of
such metadata, such as OpenML discussed in Chapter 16.
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input : P0 (empty performance matrix)
output: R (ranking matrix)
begin

P ← P0

end
foreach row (dataset) i in P do

foreach column (algorithm) j in P do
Evaluate the algorithm j on dataset i using cross-validation (CV):
P (i, j)← CV (j, i)

end
end
foreach column (algorithm) j in P do

Convert the performance vector into a ranking:
R(, j)← rank(P (, j))

end
Algorithm 2.1: Constructing performance and rank matrices

Aggregating performance results into a single ranking

This subsection includes a description of the process of aggregation of set of rankings
obtained in different tests into a single aggregated ranking. The aggregation is done on
the basis of a particular ranking criterion that can be chosen. Different criteria exist:

• average rank,
• median rank,
• rank based on significant wins and/or losses.

Aggregating by average rank: This method can be regarded as a variant of Borda’s
method (Lin, 2010). This method was inspired by Friedman’s M statistic (Neave and
Worthington, 1992). The method based on average ranks is referred to as the average
ranking (AR) method. It requires that we have, for each dataset, a ranking of all algo-
rithms based on performance results.

Let Ri,j be the rank of base-algorithm aj (j = 1, . . . , n) on dataset i, where n is the
number of algorithms. The average rank for each aj is

R̄j =

∑n
i=1Ri,j

k
, (2.2)

where k represents the number of datasets. The final ranking is obtained by ordering the
average ranks and assigning ranks to the algorithms accordingly. An example is given
further on.

Aggregating by median rank: This method is similar to the one just described. Instead
of calculating the mean rank using Eq. 2.2, it is necessary to obtain the median value.
The method based on median ranks is referred to as the median ranking (MR) method.
Cachada (2017) compared the two methods — AR and MR — on a set-up that in-
cluded test results of 368 different workflows on 37 datasets. The results showed that
MR achieved somewhat better results than AR, although the differences were not statis-
tically significant.
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Table 2.2: Classification algorithms

C5b Boosted decision trees (C5.0)
C5r Decision tree-based rule set (C5.0)
C5t Decision tree (C5.0)
IB1 1-Nearest neighbor (MLC++)
LD Linear discriminant
Lt Decision trees with linear combination of attributes
MLP Multilayer perceptron (Clementine)
NB Näıve Bayes
RBFN Radial basis function network (Clementine)
RIP Rule sets (RIPPER)

Table 2.3: Example of an average ranking based on three datasets

Algorithm: C5b C5r C5t MLP RBFN LD Lt IB1 NB RIP
byzantine 2 6 7 10 9 5 4 1 3 8

isolet 2 5 7 10 9 1 6 4 3 8
pendigits 2 4 6 7 10 8 3 1 9 5

Average rank scores R̄i 2.0 5.0 6.7 9.0 9.3 4.7 4.3 2.0 5.0 7.0
Average ranking 1.5 5.5 7 9 10 4 3 1.5 5.5 8

Aggregating by the number of significant wins and/or losses: This method estab-
lishes the rank of each algorithm ai and takes into account the number of significant
wins and/or losses over other algorithms. A significant win of algorithm ai over al-
gorithm aj is defined as a performance difference that is statistically significant. This
method was explored by various researchers in the past (Brazdil et al., 2003; Leite and
Brazdil, 2010).

Example: elaborating an average ranking

The use of the average ranking method for the problem of algorithm recommendation
is illustrated here on an example. The metadata used captures the performance of 10
classification algorithms (see Table 2.2) and 57 datasets from the UCI repository (Asun-
cion and Newman, 2007). More information about the experimental set-up can be found
elsewhere (Brazdil et al., 2003).

The goal here is to construct the ranking of the algorithms on the basis of rankings
obtained on three datasets listed in Table 2.3. The corresponding average rank scores,
R̄j , obtained by aggregating the individual rankings are shown in that table. The rank
scores can be used to reorder the algorithms and, this way, obtain the recommended
ranking (C5b, IB1 .. RBFN). This ranking provides guidance concerning the future exper-
iments to be carried out on the target dataset.

We note that the average ranking contains two pairs of ties. One of them involves
C5b and IB1, which share the first two ranks and hence have been attributed rank 1.5
in our table. A tie means that there is no evidence that either of the algorithms (in this
case C5b and IB1) would achieve different performance, based on the metadata used.
The user can carry our random selection, or else use some other criterion in the selection
process (e.g., runtime).
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A question that follows is whether the predicted (or recommended) ranking is an
accurate prediction of the true ranking, i.e., of the relative performance of the algorithms
on the target dataset. This issue is addressed in the next subsection (2.3.2) and also in
Chapter 3. We observe that the two rankings are more or less similar. The largest error is
made in the prediction of the ranks of LD and NB (four rank positions), but the majority
of the errors are of two positions. Nevertheless, a proper evaluation methodology is
necessary. That is, we need methods that enable us to quantify and compare the quality
of rankings in a systematic way. This is explained in Section 2.3.3.

2.3.2 Using the ranking meta-model for predictions (top-n strategy)

The meta-model discussed in the previous subsection can be used to provide a recom-
mendation regarding which algorithm to select for the target dataset. This scheme is
illustrated in Figure 2.3. Algorithm 2.2 provides more details about the method.

Fig. 2.3: Using the average ranking (AR) method for the prediction of the best
algorithm

As the recommendation is in the form of a ranking, it is thus reasonable to expect
that the order recommended will be followed by the user. The algorithm (workflow)
ranked in the first position will most likely be considered first, followed by the one
ranked second, and so on. This is done by cross-validating the algorithms in this order
on the target dataset. After each cross-validation test, the performance is stored, and the
algorithm with the highest stored performance is the winner. A question arises regarding
how many algorithms the user should select.

A top-n execution can be used for this purpose (Brazdil et al., 2003). This method
consists of simulating that the top n items will be selected. When studying the perfor-
mance of the top-n scheme, we will normally let it run until the end. In other words, the
parameter n will normally be set to the maximum value, corresponding to the number
of algorithms. This has the advantage that we can inspect the results at different stages
of execution. One other alternative to fixing n consists of fixing the time budget (see
Section 2.4).

Example

The method is illustrated by following the recommended ranking presented in Table 2.4
and carrying out tests on waveform40 dataset. The table also presents the accuracy ob-
tained by each algorithm and the corresponding runtime. The first item listed in this table
represents the default classification accuracy on this dataset. As the dataset waveform40
includes three classes, we can assume that the mean accuracy will be 1/3, under the
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input : A = {a1, · · · , an} (list of algorithms ordered by ranks)
dnew (target dataset)
n (number of algorithms to test)

output: a∗ (algorithm with the best performance)
p∗ (performance of a∗)
taccum (time used)

begin
a∗ ← A[1] (initialize a∗)
Evaluate the first algorithm and initialize values:
(p∗, taccum)← CV (A[1], dnew)
foreach i ∈ {2, · · · n} do

Evaluate the i-th algorithm:
(pc, tc)← CV (A[i], dnew)
if pc > p∗ then

a∗ ← A[i]
end
p∗ ← max(pc, p∗)
taccum ← tc + taccum

end
end

Algorithm 2.2: Top-n procedure

Table 2.4: Results of executing a given recommended ranking on waveform40

dataset

Recommended Def MLP RBFN LD Lt C5b NB RIP C5r C5t IB1
Ranking 0 1 2 3 4 5 6 7 8 9 10
Accuracy 0.33 0.81 0.85 0.86 0.84 0.82 0.80 0.79 0.78 0.76 0.70
Runtime 0 99.70 441.52 1.73 9.78 44.91 3.55 66.18 11.44 4.05 34.91
Runtime accum. 0 99.7 541.2 542.9 552.7 597.6 601.2 667.4 678.8 682.9 717.8

assumption that the classes are equally probable. We assume that determining this takes
virtually no time.

Figure 2.4 shows how the accuracy evolves with the number of algorithms executed
(n). The first algorithm executed is MLP, obtaining an accuracy of 81.4%. Once the next
algorithm in the ranking (RBFN) is executed a significant increase in accuracy is obtained,
reaching 85.1%. The execution of the next algorithm in the ranking, LD, yields a smaller
increase (86.0%). The remaining algorithms do not alter this situation much. Note that
when using the top-n strategy, the performance never goes down. In order to understand
this, we need to revisit what it actually does. It measures the highest obtained perfor-
mance in cross-validation tests so far. As the set of cross-validated algorithms grows, this
value cannot decrease.

Figure 2.5 shows the evolution of accuracy on runtime. This plot provides more
information that is relevant for the assessment of the recommended ranking. It shows
that, although the execution of RBFN provides a significant improvement in accuracy, it
does so at the cost of a comparatively much larger runtime (441 s.). The plot also shows
that, although the gain obtained with LD is smaller, the corresponding runtime is quite
small (less than 2 s.).
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Fig. 2.4: Dependence of accuracy on number of tests with top-n execution
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Fig. 2.5: Dependence of accuracy on runtime with top-n execution

Section 2.4 discusses another variant of the ranking method where runtime is incor-
porated into the algorithm. It is shown that this leads to marked improvements.

2.3.3 Evaluation of recommended rankings

An important question is how good/bad the recommendations are. Chapter 3 discusses
the methodology that can be adopted to assess the quality of the recommendations gen-
erated by the system. It describes two different approaches. The first one aims to assess

30      2  Metalearning Approaches for Algorithm Selection I (Exploiting Rankings)



the quality by comparing it with the correct ranking, representing a golden standard.
The second one aims to assess the effects on base-level performance when the ranking
is followed.

2.4 Using a Combined Measure of Accuracy and Runtime

Rankings can be based on any performance measure we might wish to consider. Mea-
sures that combine accuracy (or AUC, F1, etc.) and runtime are of particular interest.
Indeed, beforehand we do not know for sure which algorithms will perform well on the
target dataset, and therefore a lot of time can be wasted on slower algorithms. Ideally,
we want to schedule first the CV tests of fast, but relatively well-performing algorithms,
before other, slower ones.

As Abdulrahman et al. (2018) have shown, this can lead to substantial speed-ups
when seeking the best algorithm for a given target dataset. The concept of a combined
measure that combines accuracy and runtime is not new. Various authors have proposed
such a measure, including, for instance, Brazdil et al. (2003) who proposed the measure
ARR. However, as was shown later (Abdulrahman et al., 2018), this measure is not
monotonic. The authors introduced a measure A3R (shown in Chapter 5) that does not
suffer from this shortcoming. Here we use a simplified version of this function, referred
to as A3R’ (van Rijn et al., 2015), which is defined as follows:

A3R′
di
aj =

Pdiaj

(T diaj )Q
, (2.3)

where Pdiaj represents the performance (e.g., accuracy) of algorithm aj on dataset di and
T diaj the corresponding runtime. This function requires that a correct balance is estab-
lished between the importance of accuracy and runtime. This is done by the parameter
Q, which is in effect a scaling factor. Typically, Q would be a rather small number, such
as 1/64, representing in effect, the 64th root. This is motivated by the fact that runtimes
vary much more than accuracies. It is not uncommon that one particular algorithm is
three orders of magnitude slower (or faster) than another. Obviously, we do not want
the time ratios to completely dominate the equation.

For instance, when the setting is Q = 1/64, an algorithm that is 1000 times slower
would yield a denominator of 1.114. This would thus be equivalent to the faster reference
algorithm only if its accuracy were 11.4% higher than the reference algorithm.

A question arises regarding what the best setting for the parameter Q is. Abdulrah-
man et al. (2018) have investigated this issue. They have considered various settings
for Q, including 1/4, 1/16, 1/64, 1/128 and 1/258. They have shown that the setting
Q = 1/64 was the best one, as it permitted to identify the good-performing algorithms
earlier than the other options. This setting can be regarded as a useful default setting.

Average ranking is elaborated in the way described in Section 2.3. In addition to this,
runtimes could be normalized for each dataset. Normalization is discussed in Chapter
3. For each dataset, the algorithms are ordered according to the performance measure
chosen (here A3R) and ranks are assigned accordingly.

The average ranking is constructed by applying the Eq. 2.2. This upgrade has a rather
dramatic effect on the loss curves, as can be seen in Figure 2.6 reproduced from Abdul-
rahman et al. (2018).
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Fig. 2.6: Loss-time curves for A3R-based and accuracy-based average ranking

The loss curve of AR*, corresponding to the A3R-based average ranking method with
the parameter setting P = 1/64, obtains a much better curve than the version AR0, cor-
responding to the case when only accuracy matters. With AR* the loss of 1% is achieved
before reaching 100 seconds, while AR0 requires more than 10,000 seconds to obtain
the same loss.

2.5 Extensions and Other Approaches

2.5.1 Using average ranking method to recommend workflows

Currently the attention of both researchers and practitioners is turning to the selection
and configuration of workflows (pipelines) of operations. These typically include differ-
ent preprocessing operations followed by the application of machine learning algorithms
with appropriate hyperparameter configurations.

In this section we briefly mention the work of Cachada et al. (2017), which uses the
variant AR* to recommend a workflow for a new dataset. The workflows may include a
particular feature selection method (correlation feature selection, CFS (Hall, 1999)) and a
particular classification algorithm selected from a given (62 in total). About half of these
are ensembles. Besides, the authors also use different versions of some classification
algorithms (algorithms with different settings of hyperparameters).

The authors show that AR* was able to select good-performing workflows. Their ex-
periments also show that including feature selection and hyperparameter configurations
as alternatives is, on the whole, beneficial. More details about this approach and other
related approaches are given in Chapter 7.
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2.5.2 Rankings may downgrade algorithms that are dataset experts

The rankings discussed in this chapter focus on algorithms that have high performance
overall. Although this seems understandable, it also has a potential downside. Consider
for example the following case, as shown in Table 2.5.

Table 2.5: Example metadataset, consisting of datasets d1 . . . d4 and algorithms
a1 . . . a4. The table on the left shows the performance values of each algorithm
on each dataset. The table on the right shows the ranks of each algorithm on
each dataset

d1 d2 d3 d4
a1 0.66 0.63 0.950.950.95 0.65
a2 0.900.900.90 0.810.810.81 0.89 0.840.840.84
a3 0.82 0.79 0.83 0.83
a4 0.74 0.76 0.84 0.77

d1 d2 d3 d4
a1 4 4 111 4
a2 111 111 2 111
a3 2 2 3 2
a4 3 3 4 3

As can be seen, the complete ranking would be a2, a3, a4, a1, suggesting that a1 is the
worst algorithm to test. Looking at it from a different perspective, a1 is, in fact, the only
algorithm that manages to exceed the performance of a2 on one dataset (d3). In other
words, when considering the performance on each dataset, algorithms a2 and a1 are the
only algorithms that lie on the Pareto front.

The issue of how to identify and eliminate certain algorithms from a given set (which
can be converted to a ranking) was addressed by Brazdil et al. (2001) and Abdulrahman
et al. (2019). This approach is further detailed in Chapter 8 (Section 8.5).

Wistuba et al. (2015) investigated how to create a ranking of complementary al-
gorithms. Pfisterer et al. (2018) showed that creating the optimal ranking based on
metadata is an NP-complete problem, and proposed a greedy approach.

2.5.3 Approaches based on multi-criteria analysis with DEA

An alternative to designing a combined measure of two (or more) performance crite-
ria is to use data envelopment analysis (DEA) (Charnes et al., 1978) for multi-criteria
evaluation of learning algorithms (Nakhaeizadeh and Schnabl, 1997). One of the im-
portant characteristics of DEA is that the weights of the different criteria are determined
by the method and not the user. However, this flexibility may not always be entirely
suitable, and so Nakhaeizadeh and Schnabl (1998) have proposed a variant of DEA that
enables to personalize the relative importance of different criteria. For instance, one user
may prefer faster algorithms that generate interpretable models even if they are not so
accurate.

2.5.4 Using dataset similarity to identify relevant parts of metadata

Section 2.3 described how to create a ranking model based on all metadata. However,
not all metadata gathered in the experiments may be relevant to the task at hand. If
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Table 2.6: Example of metadata with missing test results

Alg. D1 D2 D3 D4 D5 D6

a1 0.85 0.77 0.98 0.82

a2 055 0.67 0.68 0.66

a3 0.63 0.55 0.89 0.46

a4 0.45 0.52 0.34 0.44 0.63

a5 0.78 0.87 0.61 0.34 0.42

a6 0.99 0.89 0.22

the metadata includes test results on datasets that are rather different from the current
task, using it may have an adverse effect on performance. So a question arises on how
to identify which metadata is relevant for the given task.

One common approach involves using dataset characteristics to identify a subset of
the most similar datasets to the target dataset and use the metadata associated with these
datasets only. The approach presented here is motivated by the following hypothesis.
If datasets are similar, then the algorithm rankings obtained on those datasets will be
similar too. Dataset characteristics are sometimes called, in this context, metafeatures.
Dataset characteristics are discussed in detail in Chapter 4.

We want to stress that a ranking approach can often be used without this step with
quite satisfactory results. However, if dataset characteristics are not considered, the tar-
get dataset does not affect the order in which the algorithms are tested. In other words,
the method follows a fixed schedule. Although this may not affect the final algorithm
identified, more time may be needed to identify it. Having a flexible schedule may bring
advantages. One such flexible schedule, different from the one discussed here, is pre-
sented in Chapter 5 (Section 5.8), which discusses an approach referred to as active
testing.

2.5.5 Dealing with incomplete rankings

In practice, it sometimes happens that a certain proportion of test results is missing.
That is, the test results of some algorithms on some datasets may be missing. So, if this
happens, the resulting ranking will be incomplete. An example of an incomplete ranking
is shown in row 5 in Table 2.1 and also in Figure 2.1(c). Table 2.6 shows an example
with six algorithms (a1 .. a6) and six datasets (D1 .. D6). Note that in each column two
out of the six results are missing.

Given that incomplete test results often arise in practice, a question arises regarding
what to do. One simple and obvious answer is to complete the results. However, this
may not always be possible, as a particular algorithm may have simply failed to run, or
the know-how regarding how to run it is no more available. Also, running experiments
with ML algorithms may often require substantial computational resources.

So, the other possibility is to use the incomplete metadata in the process of identi-
fying the potentially best algorithm for the target dataset. This issue was investigated
by Abdulrahman et al. (2018). The authors have shown that the performance of the
average ranking method AR* that uses the combined measure of accuracy and runtime
(discussed in Section 2.4), is not affected even by 50% of omissions in the metadata. This
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has an important implication. It indicates that we do not need to carry out exhaustive
testing to provide quite good metamodels.

Abdulrahman et al. (2018) have shown that the method for aggregating incomplete
rankings needs to be modified. More details are provided in the following subsection.

Aggregating incomplete rankings

Many diverse methods exist that can be used to aggregate incomplete rankings. Ac-
cording to Lin (2010), these can be divided into three categories: heuristic algorithms,
Markov chain methods, and stochastic optimization methods. The last category includes,
for instance, cross-entropy Monte Carlo (CEMC) methods.

Merging incomplete rankings may involve rankings of different size. Some ap-
proaches require that these rankings be completed before aggregation. Let us consider a
simple example. Suppose ranking R1 represents four elements, namely (a1, a3, a4, a2),
while R2 represents just two elements (a2, a1). Some approaches would require that the
missing elements in R2 (i.e., a3, a4) be attributed a concrete rank (e.g., rank 3). For
instance, this strategy is used in package RankAggreg of R (Pihur et al., 2009). This is
not right, as one should not be forced to assume some information when in fact there is
none.

Abdulrahman et al. (2018) have proposed a relatively simple method for aggregating
incomplete rankings that avoids this shortcoming. The method is based on the following
observation: If two rankings are of unequal length, the ranks in the shorter one provide
much less information than the ranks in the longer ranking. It is quite easy to see why.
A substandard algorithm may appear in the first position if it is compared with another
similar algorithm. The authors provide experimental evidence that this method provides
quite good results despite its simplicity.
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Todorovski, L. and Džeroski, S. (1999). Experiments in meta-level learning with ILP.
In Rauch, J. and Zytkow, J., editors, Proceedings of the Third European Conference on
Principles and Practice of Knowledge Discovery in Databases (PKDD99), pages 98–106.
Springer.

van Rijn, J. N., Abdulrahman, S., Brazdil, P., and Vanschoren, J. (2015). Fast algorithm
selection using learning curves. In International Symposium on Intelligent Data Analy-
sis XIV, pages 298–309.

Wistuba, M., Schilling, N., and Schmidt-Thieme, L. (2015). Sequential model-free hy-
perparameter tuning. In 2015 IEEE International Conference on Data Mining, pages
1033–1038.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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