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Advances in Two-Line Heterosis Breeding
in Rice via the Temperature-Sensitive
Genetic Male Sterility System

Jauhar Ali, Madonna Dela Paz, and Christian John Robiso

Abstract Hybrid rice technology is a viable strategy to increase rice production
and productivity, especially in countries with limited cultivable land for agriculture
and irrigation water, along with costlier chemical inputs. The three-line hybrid rice
technology adoption rate is slowing down because of restricted heterosis per se, the
availability of better combining ability in cytoplasmic male sterile lines, lower
hybrid seed reproducibility, and limited market acceptability of hybrids. Two-line
heterosis breeding could overcome these shortcomings. However, the wide-scale
adoption and use of two-line hybrid rice technology are possible through systematic
research and breeding efforts to develop temperature-sensitive genetic male sterile
(TGMS) lines with low (<24 °C) critical sterility temperature point, which is dis-
cussed in this chapter. Research on the genetics, breeding, grain quality, and resis-
tance to insect pests and diseases for TGMS line development and physiological
characterization is also discussed. In addition, the identification and validation of
natural sites for TGMS self-seed multiplication and hybrid rice seed production
through GIS mapping and climatic data analytical tools are also tackled. The devel-
opment of high-yielding two-line rice hybrids and improvement in hybrid rice seed
reproducibility could help in their wide-scale adoption.
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1 Introduction

Global rice production in 2018 was 782 million tons from 167.1 million hectares
with an average productivity of 4.68 t/ha (FAOSTAT 2020). However, production
needs to keep pace with the increasing food demand in the coming decades, espe-
cially when the global human population is predicted to reach 9.73 billion by 2050
(Worldometer 2020). Increasing rice production under declining resources such as
cultivable land and irrigation water and costlier agricultural inputs will become a
great challenge in the coming decades. Furthermore, climate change is going to
increase the pressure on stable and sustainable rice production.

Hybrid rice technology is a viable approach to increase rice production under
limited resources and climate change. This technology took roots as early as 1964 in
China, and around the same time, international scientific communities were discuss-
ing its prospects, especially in India, the United States, and the Philippines (Carnahan
et al. 1972; Swaminathan et al. 1972; Athwal and Virmani 1972). However, it was
China under Professor Yuan Longping that demonstrated hybrid rice technology on
a commercial scale in 1976 with requisite cytoplasmic male sterile (CMS), main-
tainer, and restorer lines. This early success led China to expand hybrid rice signifi-
cantly to reach 16.7 million ha, accounting for 57% of the country’s rice area.
Hybrid rice now accounts for more than 65% of China’s total national rice produc-
tion. In recent years, the average productivity of rice in China has been 6.45 t/ha:
7.50 t/ha for hybrid rice and 6.15 t/ha for conventional rice. The increased produc-
tion of hybrid rice each year provides food for more than 70 million people (Yuan
2014). The International Rice Research Institute (IRRI) made a significant effort to
deploy hybrid rice technology outside China by sharing the requisite hybrid rice
parental lines directly to both the public and private sectors. Parental lines devel-
oped by IRRI have been used quite extensively in the release of several commercial
hybrids from the private and public arenas in India, Nepal, Pakistan, Vietnam, the
Philippines, Bangladesh, and Indonesia. IRRI has directly released 17 hybrids in the
Philippines alone.

Despite the enormous research and extension efforts that have gone into hybrid
rice from the early 1990s, especially in Asia, hybrid rice area is growing slowly.
Among the major reasons for the slow growth is, first, the available level of hetero-
sis or hybrid rice yield advantage over the best checks is from 15% to 20%. Second,
hybrid rice seed reproducibility is still below 2 t/ha for most hybrids outside China,
besides being cumbersome and expensive, which is not attractive to the private seed
industry to adopt the technology on a wide scale. Third, hybrids do not possess the
required amount of disease and insect pest resistance in the target regions. Fourth,
the grain quality of hybrids does not meet market needs, and decreased head rice
recovery is keeping farmers from adopting hybrid rice. In addition, the rapid rise in
labor wages in India and China is causing the seed industry to look for alternative
approaches to decrease the cost of hybrid rice seed and make it more efficient based
on parental line improvement to entice farmers to adopt hybrid rice and benefit. In
this regard, the Hybrid Rice Development Consortium (HRDC) at IRRI is consider-



Advances in Two-Line Heterosis Breeding in Rice via the Temperature-Sensitive... 101

ing these factors and developing market-oriented parental materials. Ongoing
hybrid rice research at IRRI seeks to improve the levels of outcrossing and hybrid
seed reproducibility, especially by developing newer CMS lines. The HRDC has
been sharing these improved materials with both the public and private sectors in an
aggressive manner since 2016. Currently, the area of hybrid rice outside China is
approximately 8 million ha, and pushing hybrid rice technology is vital to overcome
its shortcomings. In this context, it is crucial to revisit other alternative technologies
such as two-line hybrid rice technology for efficient seed production and increased
heterosis.

2 The Emergence of Two-Line Hybrid Rice Technology
with a Historical Perspective

Two-line hybrid breeding began with the discovery of a photoperiod-sensitive
genic male sterile (PGMS) mutant, Nongken 58S, in Hubei Province, China,
which remains male sterile under long-day conditions (>13.45 h) or fertile under
shorter day (<13 h) conditions (Shi 1981, 1985; Shi and Deng 1986). Likewise,
the discovery of thermosensitive genic male sterility (TGMS) that renders the
plant male sterile at higher mean temperatures and reverts it to fertility at lower
mean temperatures allowed significant development of the technology. Several
TGMS sources of spontaneous or induced origin were discovered such as Annong
S-1 and Anxiang S (Tan et al. 1990; Lu et al. 1994) in China, Norin PL 12
(Maruyama et al. 1990, 1991) in Japan, IR32364 at IRRI (Virmani and Voc 1991),
and SM 5, F61, and SA 2 in India (Ali 1993; Ali et al. 1995; Hussain et al. 2012;
Reddy et al. 2000) (Table 1). Moreover, photo-thermosensitive genic male steril-
ity systems were also discovered, for which researchers found the interaction of
photoperiod and temperature that governs male sterility-fertility alteration. Based
on these three male sterility-fertility alteration systems involving photoperiod,
temperature, and photo-thermo interactions, Yuan (1987) put forward a new strat-
egy of hybrid rice breeding that did not involve a maintainer line, and it was called
the two-line method. Any fertile line with a dominant gene for this trait could be
used as a pollen parent to develop rice hybrids (Lu et al. 1994). Two-line hybrid
rice technology has several advantages over the three-line system, including a
wider range of germplasm resources as pollen parents, thus allowing opportuni-
ties to exploit higher heterosis and simpler procedures for breeding and hybrid
seed production (Ali et al. 2018; Chen et al. 2020).

In tropical conditions, day length differences are marginal, and therefore, the
TGMS system is more useful than the PGMS and PTGMS systems. Consistent
temperature differences are found at different altitudes and over different seasons in
the same location or region, which could be exploited for two-line hybrid rice devel-
opment. However, successful exploitation of this novel male sterility system relies
on knowledge of the fertility behavior of TGMS lines (Chandirakala et al. 2008).
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In this regard, to address tropical Asian markets, IRRI is refocused on developing
two-line hybrid rice technology with usable TGMS parental lines. The two-line
hybrid rice approach via TGMS holds great promise as it does away with one step
of outcrossing of parental line production, thus directly bringing down seed costs.
Although the two-line system is well established, especially in Vietnam and the
Philippines, expansion to other regions remains a challenge because of the lack of
TGMS lines with a low critical sterility temperature point (CSTP) of 24 °C. Such
low CSTP of TGMS lines could be a game changer in tropical Asia vis-a-vis earlier
discovered TGMS lines with CSTP of >27 °C. Currently, the annual planting area
of two-line hybrid rice in China has surpassed 5 million ha, while fully exploiting
heterosis in rice (Chen et al. 2020). With recent research advances, TGMS-based
two-line hybrid rice breeding is poised to replace three-line hybrid rice technology
over the next decade (Ali et al. 2018).

3 Advantages and Disadvantages of the TGMS System
in the Tropics

The TGMS-based two-line system has several advantages over the three-line sys-
tem. First, hybrid seed production is less cuambersome as TGMS does not require
maintainers and seed can be self-multiplied under fertility-conducive low-tempera-

TGMS system for two-line rice hybrids

STEP1 TGMS line“S TGMS line'S”  p i d 2 any inbred line mder
Maintenance fertility-conducive locations with
low-temperature conditions
i tms/tms

‘S’ line self-seed multiplication

TGMIS line ‘S’ female parent Pollen parent line
STEP2
Restoration X
ECM s :mwihﬂg{;c]m” oy Row ratio
conditions

10S:2PP
F, hybrid seed for farmers: fertile

Fig. 1 TGMS system for the production of two-line rice hybrids
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ture conditions (Fig. 1). Second, there is a higher probability of identifying the het-
erotic pool and market-oriented hybrids, as any nonTGMS parent is a potential
pollen parent. Third, the current CMS three-line system is primarily based on a
single source of wild abortive (WA) cytoplasm that continues to pose a constant
threat because of the adverse effects associated with it. However, the two-line
approach also has certain shortcomings, such as the adverse effect of low-tempera-
ture fluctuations due to sudden/unforeseen weather changes that could trigger self-
seeds in hybrid seed production plots. In addition, the higher temperature fluctuations
in self-seed multiplication plots could result in lower self-seed yields of the TGMS
lines. Therefore, the right choice of locations based on historical agrometeorologi-
cal data is essential to identify ideal places for hybrid rice seed production and self-
seed multiplication.

4 Physiological Characterization of the TGMS Trait

Homozygous and true-breeding TGMS lines need to be physiologically character-
ized, especially for CSTP and CFTP, besides determining the temperature-sensitive
stage for sterility-fertility alteration. The deployment of TGMS lines needs to match
the target location requirements. Furthermore, precise information on these two
indices is essential for choosing an appropriate source for the development of two-
line hybrids (Ali et al. 1995).

4.1 Determination of CSTP and CFTP

The determination of CSTP and CFTP is essential for characterizing TGMS lines
for their proper exploitation in target regions. CSTP pertains to the lowest mean
temperature among the temperatures inducing sterility, while the highest mean tem-
perature causing fertility is considered as the CFTP (Chandirakala et al. 2008; Latha
and Thiyagarajan 2010; Sasikala et al. 2015; Kadirimangalam et al. 2017). The
tracking technique (Ali et al. 1995) was used to identify the CSTP and CFTP based
on the sensitive stage of a line. Using this method, the CSTP is determined by
obtaining the lowest among the maximum temperatures of the three tracking dates
coinciding with the sensitive stage of the three panicles that caused complete pollen
sterility. At the same time, the CFTP is the temperature range in which the plants
produced a higher proportion of fertile and unaborted sterile (partially stained) pol-
len. Further studies by Vinodhini et al. (2019) considered the lowest value of the
mean maximum temperature during the sensitive stage to determine the CSTP of a
TGMS line. Viraktamath and Virmani (2001) proved that the maximum temperature
is what influences the expression of fertility-sterility alteration of TGMS lines in
tropical countries. Moreover, Kadirimangalam et al. (2017) identified TGMS lines
with a CSTP at a mean temperature of above 29 °C. It is essential to understand that
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a given TGMS gene varies for its CSTP and CFTP when transferred to different
genetic backgrounds (Sasikala et al. 2015). The fertility of PTGMS rice lines is
affected by both temperature and light duration. Usually, PTGMS rice lines tend to
produce low purity of hybrid seeds because of selfing at a low temperature
(23-24 °C) in seed production. The spikelets of PTGMS lines during anthesis could
not normally open at high temperature (HT, >35 °C), thereby severely decreasing
hybrid seed yields (Chen et al. 2020). This, along with other factors, makes PTGMS
unfavorable for use in tropical conditions. However, PTGMS materials may still be
useful in temperate conditions where day length is more crucial.

4.1.1 Characterization Under Controlled-Temperature Screening
Conditions

Sterile single-plant selections identified in a mutation population of the M, genera-
tion or selections from segregating materials derived from TGMS X pollen parent
(PP) crosses need to be stubbled and screened at low temperature to check for fertil-
ity reversion in the new emerging panicles. The crosses need to be bagged, and the
generations correctly advanced under low-temperature facilities. At IRRI, the focus
is on TGMS traits with low CSTP; thus, screening of the stable mutants and fixed
materials is done under a phytotron in three mean temperature treatments (23, 24,
and 25 °C) to determine their critical temperature for sterility/fertility induction
(Fig. 2). This helped in identifying several TGMS lines with sterility at 24 °C and
above and fertility at 23 °C. A few sterile plants were also identified in all three
temperature conditions and are currently being evaluated for fertility reversion at
<22 °C. Wongpatsa et al. (2014) carried out a similar study using two TGMS lines
(KU-TGMS1 and KU-TGMS3) screened at the panicle initiation stage under growth
chambers using day/night temperature parameters of 26/22 °C, 26/20 °C, 24/18 °C,
and 22/20 °C, along with 11.5 h light/12.5 h dark periods and 75% relative humid-
ity. Their results suggest that night temperatures of 18-22 °C induced maximum
pollen viability and seed set. Furthermore, the highest seed rate was observed for
KU-TGMS3 under 24/18 °C, peaking at 33.63%. In conclusion, this revealed that
night temperature has a more significant effect on pollen viability than day
temperature.

4.1.2 Field Screening Through Sequential Seeding

The physiological characterization of fixed TGMS lines can also be carried out
through continuous seeding or sequential sowing. Sequential seeding is done in
such a way that flowering is observed throughout the year at the candidate target
sites to study pollen sterility and spikelet sterility (bagged and unbagged condi-
tions). Such studies help in evaluating the stability of promising TGMS lines and
determining the sterile phase window for hybrid rice seed production. Based on the
tracking method (Ali et al. 1995), one can determine the CSTP and the sensitive
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Fig. 2 Physiological characterization of TGMS lines in (a) plant growth facility bay, (b) cold-
water facility, and (c) reach-in chamber

stage for sterility. A study done by Ramakrishna et al. (2006) observed six TGMS
lines planted in three staggered sowing at intervals of 10 days. The lines were seen
over two different seasons, postrainy 2002 (October—December) for fertility rever-
sion with lower temperature range (25.5/16.1 °C) and prerainy 2003 (February—
April) for sterility reversion with higher temperature range (35.7/23.8 °C), especially
during the panicle initiation stage (Ramakrishna et al. 2006). Shuttle breeding of the
selected sterile plants from segregating materials and their stubbles then transfers
them to low-temperature conditions for obtaining self-seeds to advance the genera-
tions under low-temperature conditions. It would help to identify suitable TGMS
lines for such environments. At IRRI, the sterile plant stubbles are sent to Lucban
and Benguet in the Philippines for self-seed multiplication and generation advance-
ment. Likewise, researchers at Tamil Nadu Agricultural University, India, evaluated
TGMS lines in two sterility-inducing environments, Coimbatore and
Sathiyamangalam, during rabi season starting in December 2013 and 2014. The
same lines were stubble-planted and evaluated for pollen sterility in pollen fertility-
inducing environments during kharif season in July 2013 and 2014 at the Hybrid
Rice Evaluation Centre, Gudalur, a high altitude (1500 masl) with colder climate
(Manonmani et al. 2016). Latha and Thiyagarajan (2010) also recommended a high-
altitude area such as Gudalur for TGMS self-seed multiplication of lines such as
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TS29, which was observed to have only 16 days of fertile phase during December
in Coimbatore. In Gudalur, TS29 had more than 60% pollen fertility and seed set
when the mean temperature was 22 °C (28/17 °C) and below from June to November.

4.2 Determination of the Critical Stage for Fertility-Sterility
Alteration

The critical stages of panicle development sensitive to temperature could be deter-
mined from the stages exhibiting a significant correlation with pollen sterility
(Chandirakala et al. 2008). The stamen pistil primordial stage, which is 15-24 days
before heading, was considered as the sensitive stage (Ali et al. 1995; Salgotra et al.
2012). Furthermore, Viraktamath and Virmani (2001) found 4-8 days after panicle
initiation as the most sensitive stage. For the lines that Latha and Thiyagarajan
(2010) had examined, those were sensitive to temperature from stamen pistil pri-
mordial differentiation to pollen ripening except for two lines that were sensitive
from the meiotic division of the pollen mother cell to pollen ripening. The sensitive
stages observed to vary with the four TGMS lines (TNAU 27S, TS 09 12, TS 09 15,
and TS 09 25) showed a significant amount of positive correlation between pollen
sterility and maximum and mean temperatures (Sasikala et al. 2015). The period of
partial sterility was considered as the phase of fertility transition (Ali et al. 1995;
Latha and Thiyagarajan 2010). Sanchez and Virmani (2005) observed differentia-
tion of secondary branch primordium and the filling stage of pollen, that is, 24 to
5 days before heading was considered a sensitive stage for temperature. The results
showed that the critical stage for most of the TGMS lines occurred during panicle
developmental stages and approximately 26 to 5 days before heading
(Kadirimangalam et al. 2017). Based on all these studies, we can demarcate the
critical stage for sterility expression from 5 to 26 days before heading that coincides
with the differentiation of secondary branch primordium and the filling stage of pol-
len. These sensitive days before heading also varied with early-, medium-, and late-
duration TGMS lines and depending on the synchronous flowering habit.

4.3 Evaluation of TGMS Lines for Sterility-Fertility Alteration
in Different Environments

TGMS-based two-line breeding programs require natural sites with low tempera-
tures in higher altitudes in the tropics that are essential for advancing generations of
selected TGMS lines. However, it will be worthwhile to select sterile plants with
low CSTP in the range of 23-25 °C as they are stable under high-temperature condi-
tions (28-30 °C) for sterility. A recent discovery at IRRI of A07 with low CSTP of
24 °C is an excellent example of this type of TGMS line (Ali et al. 2018). Regular
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self-seed multiplication of TGMS lines is carried out for their use in hybrid rice seed
production plots under high-temperature conditions. IRRI has two locations (Lucban
and Benguet) for self-seed multiplication in the Philippines. Multilocation trials for
two-line hybrid rice seed reproducibility trials are essential for understanding the
stability of the TGMS parental lines and their outcrossing features.

4.4 Improvement of Outcrossing Traits in TGMS and Pollen
Parental Lines

Outcrossing is directly correlated as a function of floral morphology and flowering
behavior for the male-sterile parental line (Oka and Morishima 1967). The wider
angle of lemma and palea correlated with greater exsertion and surface area of the
stigma, leading to higher seed-set percentage. Visual phenotypic selection can be
used efficiently to identify higher seed-set potential (Ramakrishna et al. 2006;
Salgotra et al. 2012). According to the standards set by Chen et al. (2010), female
parents should possess a panicle exsertion rate of >70%, along with an excellent
outcrossing rate, early and short flowering span, and well-closed lodicules and lem-
mas after pollination. On the other hand, pollen parents should exhibit large anthers
and pollen quantity, pollen vigor, and vigorous growth ability (Chen et al. 2010).

Better panicle exsertion from the sheath in male-sterile lines would help increase
the number of spikelets for outcrossing than lines with incomplete panicle exsertion
(Rahul Roy and Kumaresan 2019; Abeysekera et al. 2003; Virmani 1994). The lines
with higher panicle exsertion percentage coupled with higher seed set and higher
spikelet fertility percentage influence outcrossing ability and could be well exploited
for the development of hybrid rice (Arasakesary et al. 2015).

Many of the traits for outcrossing in CMS, such as greater glume opening angle
and more stigma exsertion, lead to higher seed setting (Mahalingam et al. 2013),
which could be used as well for TGMS breeding. Outcrossing of relevant traits,
especially the longer feathery stigma protrusion on either side of the lemma-palea
and full glume opening, is highly attractive for increased pollination reception, ger-
mination, and seed set. Developing synchronous flowering habits in TGMS lines is
essential for successful seed production. At IRRI, a few long feathery stigma-pro-
truding types of TGMS lines with synchronous flowering patterns were successfully
identified (Fig. 3) (Ali et al. 2018). Similarly, at TNAU, the TGMS lines developed
through pedigree breeding, mutation breeding, and identification of spontaneous
mutants in the breeding material were addressing the market requirements for
medium duration, better agronomic characteristics, and excellent floral traits and
requirements such as high stigma exsertion, wider glume opening, and acceptable
grain quality characteristics such as medium slender grain type, etc. (Manonmani
et al. 2016). However, the outcrossing traits translating into higher hybrid seed
yields need to be verified under hybrid seed production geographies.
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Fig. 3 Newly developed
TGMS line with long
feathery stigma

The floral traits of the pollen parents are also equally important to obtain higher
seed setting. The pollen parents need to be highly diverse from the TGMS parental
lines. At the same time, they need to possess floral traits similar to those of a restorer
in the three-line system, especially in terms of plant height, profuse tillering, heavy
pollen load, and pollen dehiscence. Moreover, the pollen parents should possess a
staggered flowering habit to provide good pollen dehiscence during hybrid seed
production. Consideration should be given to the synchrony of the timing of pollen
dehiscence of pollen parents. It should match the TGMS parent’s spikelet opening,
and stigma receptivity is essential. In addition, pollen parents need to possess all the
market-required traits such as appropriate grain shape and quality, abiotic stress
tolerance, and insect pest and disease resistance.

5 Genetics of TGMS Lines

The recent discovery of new low-CSTP TGMS lines that showed complete sterility
at a mean temperature of 24 °C has sparked renewed interest in two-line hybrid rice
technology. The genetics of the TGMS trait is essential for the exploitation of this
technology.

5.1 Identification of Genes Governing the TGMS Trait

A single recessive nuclear gene governs the TGMS trait in TGMS lines (Hussain
etal. 2012). So far, 13 TGMS genes and their alleles (tmsl, tms2, tms3, tms4, tms5,
tms6, tms6(t), tms7(t), tmsS8, tms9, tms9-1, tms10, and tmsX) found in 5460S, Norin
PL 12, IR32364, SA 2, Annong S-1, SoKcho-MS, 0A15-1, UPRI-95-140TGMS,
F61, ZhulS, Hengnong S-1, japonica cv. 9522, and Xian S, respectively, have been
identified based on their allelic relationship as well as molecular marker studies.
(Wang et al. 1995; Subudhi et al. 1997; Yamaguchi et al. 1997; Reddy et al. 2000;
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Jia et al. 2000; Wang et al. 2004; Lee et al. 2005; Li et al. 2005; Peng et al. 2010;
Hussain et al. 2012; Sheng et al. 2013; Qi et al. 2014; Yu et al. 2017) (Table 2).

The identified #ms genes could be further exploited for developing TGMS pyra-
miding lines by using two to three fms genes for improving stability during the ste-
rility phase. However, only a few studies have been attempted on the pyramiding of
these alleles, studying them for improving the stability of the TGMS lines (Nas
et al. 2005). So far, 13 #ms, seven pms, and three rtms genes have been identified
governing the EGMS trait that is spread across all 12 rice chromosomes.

The TGMS trait is governed by a single major gene and could have several modi-
fier genes that exist in different backgrounds. Therefore, it is crucial to characterize
the TGMS lines physiologically before their commercial exploitation. The TGMS
trait is much easier to transfer to other backgrounds through the marker-assisted
backcross (MABC) approach, and one has to take care of modifier genes as well that
may influence trait expression. In this context, it is essential to understand the
molecular function of the TGMS trait (Ding et al. 2012; Zhou et al. 2012; Wang
et al. 2013; Pan et al. 2014; Kim and Zhang 2017; Mishra and Bohra 2018).

Earlier studies on TGMS focused on the physiological aspects and how the gene
is phenotypically expressed in the population. However, the first genetic study to
confirm the location of the TGMS gene was begun by Wang et al. (1995) using an
F, cross from a mutant TGMS line (5460S) and Hong Wan 52. Bulk segregant
analysis and QTL mapping using RAPD markers identified the first TGMS gene as
TGMS1.2, located within chromosome 8 (Wang et al. 1995). Succeeding genetic
studies are all compiled and given in Table 2 with the corresponding molecular
markers.

5.2 Molecular Mechanisms of the TGMS Trait

With the advent of new technologies in the field of genomics and transcriptomics,
Luo et al. (2020) confirmed the location of the #ms gene, which was begun by Wang
et al. (1995), for the identification of #ms/ on chromosome 8 using RFLP markers.
This transition from RFLP to SSRs and more recently with transcriptomics in con-
firming the tms/ loci led to the unraveling of the mechanism behind rms genes (Luo
et al. 2020). Furthermore, Pan et al. (2014) showed that, in line TGMS-Co027, male
sterility is based on the cosuppression of a UDP-glucose pyrophosphorylase gene
(Ugpl), and the underlying molecular mechanisms need to be unraveled. Zhou et al.
(2014) uncovered the molecular mechanism of rice #ms5, which functions in RNase
ZS1-mediated UbL40 mRNA regulation during pollen development. Under permis-
sive (low) temperature conditions, the level of UbL40 mRNASs remains low in the
tms5 mutant plants, allowing the production of normal pollen. However, at restric-
tive (high) temperature, UbL40 mRNAs are not processed by RNase ZS1, which
leads to their high-level accumulation, causing male sterility (Zhou et al. 2014).
Wang et al. (2019) carried out a comparative quantitative proteomic analysis of the
anthers of TGMS line Annong S-1 grown at permissive (low) (21 °C) and restrictive
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Fig. 4 Current breeding approaches for TGMS followed at IRRI

(high) temperatures (>26 °C). The restrictive high temperatures resulted in 89 dif-
ferentially accumulated proteins (DAPs) in the anthers as compared to permissive
low-temperature conditions. Out of the 89 DAPs, 46 had increased abundance and
43 had decreased abundance, which are distributed in most of the subcellular com-
partments of anther cells. Most have catalytic and binding molecular functions.
Moreover, the gene ontology analysis for biological processes done by Wang et al.
(2019) indicated that high-temperature induction caused the fertility-sterility con-
version. This mainly adversely affects the metabolism of protein, carbohydrate, and
energy and decreases the abundance of vital proteins closely related to defense and
stress. This further impedes the growth and development of the pollen and weakens
the overall defense and stress ability of Annong S-1.

Li et al. (2020) carried out RNA-Seq on rice TGMS lines at the microspore
mother cell and meiosis stages under sterile and fertile conditions that revealed
1070 differentially expressed genes found to be enriched in protein folding, protein
binding, regulation of transcription, transcription factor activity, and metabolic-
related processes. They showed that hub genes (such as UbL40s) were predicted to
interact with proteolysis-related genes and DNA-directed RNA polymerase subunit,
and heat shock proteins (HSPs) interacted with kinases to play significant roles in
regulating fertility alteration. Their study suggested that, besides UbL40s, DNA-
directed RNA polymerase subunit, kinases, and HSPs might be involved in TGMS
fertility alteration and could be applied for TGMS breeding (Li et al. 2020). Despite
several of these in-depth studies, the TGMS trait mechanism still needs to be unrav-
eled entirely for its immediate exploitation by breeders.
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6 Breeding of TGMS and Pollen Parental Lines

Two-line breeding strategies for TGMS are currently carried out using four
approaches: (a) the use of mutagenesis to induce new fms gene mutants from current
materials, (b) conventional crossing and pedigree selection, (c) introgression of cur-
rently identified fms genes into elite lines, and (d) pyramiding known fms genes
from different sources (Fig. 4). For each strategy, parental line selection remains the
most crucial part to ensure hybrid vigor and address market segment requirements.

6.1 Different Available Approaches to Breed TGMS Lines
6.1.1 Mutation Breeding for the Identification of TGMS Mutants

Mutation breeding for the development of TGMS lines was first reported by
Maruyama et al. (1991) for the development of Norin PL12 using gamma radiation.
Furthermore, Ali et al. (1995) developed and characterized several TGMS lines
using chemical and physical mutagens. Interestingly, Ali and Siddiq (1999) also
identified a spontaneous mutant (JP38s) that showed a reverse TGMS trait, behav-
ing as sterile at lower temperatures (<24 °C) and as fertile at higher temperatures
(>30.5 °C). IRRI began a mutation breeding program using chemical mutagens in
2015 to discover new TGMS mutants, which are currently being characterized. The
mutation populations in the M, generation need to be screened under high-temper-
ature conditions to identify complete male sterility, and these are then stubbled and
taken to low-temperature conditions to check for fertility reversions. Depending
upon their seed settings in the stubbles, they are further generation advanced under
low-temperature conditions to fix the TGMS mutants quickly. Upon fixation, these
mutants are studied in different temperature regimes to characterize them physio-
logically (Ali et al. 1995, 2020 Unpublished).

6.1.2 Pedigree Breeding

It is also essential to breed new materials through crossing TGMS parents with elite
lines and selection in the F, generation for male-sterile single plants under high-
temperature conditions. At IRRI, conventional crosses were made with the TGMS
line AQ7 as a pollinator and elite breeding materials as the female parents (Ali et al.
2018). After the initial cross in the F, generation, the selected male-sterile single
plants in high-temperature regimes are then stubbled and selfed seeds are produced
under low-temperature conditions. These selected single plants are verified for the
presence of the fms5 gene across succeeding generations. Using this approach, a
new TGMS line with the rms5 gene will be developed (Ali et al. 2020 Unpublished).
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6.1.3 Transfer from a Known TGMS Gene Source to Elite Lines

Another strategy for integrating TGMS in two-line hybrid rice is by introgression of
tms genes. At IRRI, the TGMS line A07 is used as a donor for introgressing the rms5
gene into elite breeding materials by two backcrosses and selecting the progenies in
BC,F, onward for the tms5 gene. By using foreground markers and high-density
background SNP markers, introgression of the #ms5 gene into elite materials is pos-
sible. However, it is essential to accurately characterize these materials upon fixa-
tion for their fertility-sterility alteration behavior.

6.1.4 Pyramiding TGMS Genes for Better Stability

Despite the independent successes in characterizing and isolating different TGMS
genes in rice, only a few studies have dealt with the additive effect and pyramiding
of different TGMS genes (Nas et al. 2005). Two- and three-gene pyramids con-
structed using the three TGMS donors, Norin PL 12 (rms2), SA2 (tgms), and
DQ200047-21 (tms5), possessing the RM 11 allele of Norin PL 12, RM257 allele of
SA2, and RM174 allele of DQ200047-21 were selected. As expected, all selected
progenies were male-sterile in sterility-inducing conditions (Nas et al. 2005). The
pyramids developed from this effort were designated as IR80775-46 (with tms2 and
tms5) and IR80775-21 (with tms2, tgms, and tms5). Pyramiding tms genes is useful
to improve the stability of the TGMS line and to widen the sterility phase. Currently,
at IRRI, efforts are ongoing to pyramid fms2 and tms5 genes to understand the
mechanisms of the genes and to improve the stability of the TGMS trait. The current

Maturity (days) 100 120 117

Plant height (cm) 81.7 54.0-60.0 75.0

Tiller number 7-11 10-12 15-20

Panicle length (cm) 23.0 17.0-20.0 23.0
Flag-leaflength (cm) 45.8 35.0 21.5-30.0

Flag-leaf width (cm) 1.6 1.2 1.6
Value-added genes GS3 GS3+Wxg2 and Wxg3 GS3+Wx-e6, Bph18+Bph3

Fig. 5 New IRRI stable TGMS lines with low critical sterility temperature point at 24 °C
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Table 3 TGMS lines developed at IRRI (modified from Ali et al. 2018)

S. no. TGMS line

1 A07

2 A32

3 A36

4 A37

5 IR75589-31-27-8-33-1 (TGMS)
6 IR68301-11-6-4-4-3-6-6 (TGMS)
7 1R73827-23-26-15-7 (TGMS)

8 1R73834-21-26-15-25-4 (TGMS)
9 IR75589-31-27-8-33 (TGMS)

10 IR77271-42-5-4-36 (TGMS)

Sterility-fertility alteration in newly bred TGMS lines

38C
Physiological high-temperature point

24°C
Critical sterility point

PHENOTYPIC CHARACTERISTICS
Maturity: 125 days
Plant height {cm): 96
22.9°C Tiller number: 10
Critical fertility point Yield (t/ha): 4.1 {under <23°C)
Flag leaf length {cm): 45.8
Flag leaf width (cm): 1.6
Grain shape: Medium slender
16°C Low critical sterility point (Mean):24°C
Physiological low-temperature point Highly stable line and synchronous flowering

Fig. 6 New IRRI stable TGMS line with low critical sterility temperature point. (Source: Ali et al.
2018)
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TGMS pyramiding studies at IRRI used line AO7 as a pollinator parent (Ali et al.
2020 Unpublished).

6.2 Rapid Fixation of Segregating TGMS Lines

Conventionally, generation advancement is accomplished by growing the plants
under natural low-temperature locations, for example, Lucban-Quezon (14.0805°N,
121.5427°E) and Tublay-Benguet (16.50805°N, 120.63524°E). This method
remains the most popular as it is the most cost-efficient and requires the least techni-
cal work. This method, however, has its disadvantages as well. First, the environ-
mental variables (temperature, humidity, and day length) at the location could cause
genetic purities, mainly if fluctuations occurred during the plant’s panicle initiation.
Second, it requires labor-intensive cultural management of the field to prevent pests
and diseases, especially under higher altitude locations in the tropics. Regardless of
the fixation method, marker-assisted selection (MAS) is integral to the generation
advancement of TGMS lines. MAS ensures the integrity of the fms gene and the
genetic purity of the TGMS lines across generations.

Pedigree breeding and generation advancement of desirable TGMS segregants
and mutants are challenging until the lines are correctly fixed. Recently, using new
techniques of speed breeding under rapid generation advancement (RGA) facilities
with specialized lighting, one can fix the segregating TGMS trait within 2-3 years,
and this can be put to use to develop hybrid combinations. The use of the RGA
method is a viable alternative to save on time and costs vis-a-vis field conditions.
RGA hastens the fixation of new lines by advancing single seeds per line from a
segregating population under controlled conditions (Collard et al. 2017). Instead of
the usual dry and wet seasons, RGA allows several generations of advancement in
a single season by growing the plants in trays instead of transplanting in the field to
facilitate faster growth. Generations of TGMS breeding lines are advanced at low
temperature (<22 °C) in plant growth facility (PGF) chambers. It is essential to
maintain the critical temperature and humidity necessary to induce pollen fertility
and self-seed setting in plants, thus requiring more labor costs, a PGF, and technical
expertise.

To speed up the fixation of TGMS traits in the mutants and segregants, one can
use a doubled-haploid (DH) approach. It is essential to identify the right segregants
and mutants for fixation through the DH approach (Fig. 5). Many times, the DH
TGMS lines, once fixed, may not be the ideal ones to match the market require-
ments. IRRI has previously developed four TGMS lines using DH technology: A07,
A36, A32, and A37 (Ali et al. 2018) (Table 3). Among them, AO7 has already been
validated as highly stable and it has a low CSTP of 24 °C (Fig. 6).

Moreover, the fms gene present in this line (fms5) is the most extensively studied
tms gene and it is used in different breeding programs as well (Wang et al. 2003;
Nas et al. 2005; Yang et al. 2007; Kadirimangalam et al. 2019). Finally, DH technol-
ogy offers the best potential among the three approaches. The use of DH technology
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ensures the fastest method of fixing recombinant genotypes, encompassing six gen-
erations of population advancement typically required to fix the population in just a
single season (Yao et al. 2018). Moreover, the use of DHs eliminates the presence
of deleterious alleles and background noise, which are typically observed in a natu-
ral population.

6.3 Breeding Pollen Parents

Heterotic pool-based breeding of pollen parents, more diverse and distinct from the
TGMS pool, is required. These materials need to be improved within the pool and
avoid contamination from materials nearer the TGMS heterotic pool. Breeders need
to select for the target traits that help in pollen dehiscence, staggering flowering
characteristics, and heavy tillering to provide a continuous pollen supply.
Furthermore, the pollen parents need to address market segment needs so that the
hybrids developed fit well. Pedigree breeding, single seed descent with genomic
selection, along with RGA approaches could help to speed up the pollen parental
breeding process. Specific traits such as genes with resistance against major insect
pests and diseases that address market segment needs could be incorporated through
a marker-assisted backcross (MABC) breeding approach.

6.4 Two-Line indica/japonica Hybrids

The two-line system is ideal for exploiting indica/japonica hybrids as there is no
barrier for the identification of pollen parents, which could be any parent other than
the TGMS parent. The TGMS gene could preferably be in the indica parental back-
ground, and with the use of a wide-compatibility (WC) gene in any one of the par-
ents, one could develop indica/japonica hybrids. Shukla and Pandey (2008)
suggested brighter prospects of combining improved japonica and tropical japonica
germplasm having WC genes with indica TGMS lines for the exploitation of inter-
subspecific heterosis. Recently, with the discovery of reliable WC gene-based mark-
ers, ones such as S5 could be highly useful for selection to combine with fms
gene-based markers. At IRRI, the S5 gene from different sources is backcrossed into
TGMS line AO7. Hybrid rice seed production of intersubspecific hybrids may be
challenging due to the varying timing of spikelet opening and pollination of the two
subspecies, especially in tropical environments. So, we need to carefully identify
parental lines from these two subspecies closer to each other.
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7 Breeding Two-Line Hybrids

Two-line rice hybrids have higher heterosis than three-line rice hybrids as any
nonTGMS line could be used as a pollen parent, thus creating more extensive
opportunities. Unlike the three-line system, CMS requires only restorers with
restorer fertility (Rf) genes to restore fertility in the F, hybrid. Thus, it is a much
narrower range within which heterosis needs to be exploited. On the other hand,
TGMS-based two-line hybrids open up more opportunities to use the intersubspe-
cific hybrids (indica/japonica) as the japonica subspecies has a low frequency of
restorer genes. At IRRI, all source nurseries are genotyped, and heterotic pools are
formed based on the genetic distances. Heterotic pool-based breeding is being fol-
lowed to identify the best combinations for the two-line hybrids. To improve the
heterotic pools, we have to make crosses within the pool. There is a need to maintain
different heterotic pools carefully and to avoid contamination from other heterotic
pools. To develop new heterotic hybrids, we can attempt crosses between dis-
tant pools.

Fig. 7 IR134554H, a multiple-stress-tolerant two-line rice hybrid developed at IRRI
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7.1 Combining Ability Nurseries

The general combining ability (GCA) of an inbred is its average performance across
a series of hybrid combinations, and it is primarily due to the additive effects of
genes. The GCA effects of the parental lines help in the identification of suitable
parental lines (Chandirakala et al. 2012). The most promising TGMS lines devel-
oped in high combining ability backgrounds could be used to further identify and
validate their general combining ability. For this, a line X tester design could be used
to identify high GCA of lines. This also allows identifying combinations with high
specific combining ability that could be immediately exploited. A combining ability
nursery needs to be regularly created to identify TGMS lines with high GCA and
pollen parents from the breeding pipelines. Chen et al. (2010) stressed the impor-
tance of identifying PTGMS with high combining ability as this is the basis of
robust heterotic hybrid rice varieties. Cao and Zhao (2014) showed that successful
hybrids are directly determined by the combining ability of the sterile line, and
sterile lines with high GCA have higher chances to produce heterotic combinations.
In situations with poor GCA of TGMS lines, it is good to have pollen parents with
high GCA to develop heterotic hybrids. Shukla and Pandey (2008), with a broad set
of line X tester crosses, found that the parents with good GCA did not always pro-
duce the best hybrid combinations due to a lack of higher-order additive interaction,
and they suggested evaluating the specific combinations. They found TGMS line
365-8S to be the best general combiner for all six traits: grain yield, panicle length,
grain number per panicle, earliness in flowering, panicle number per plant, and
1000-grain weight.

7.2 Breeding Trials

Once hybrid combinations are identified, small-scale seed production either by
hand crosses or in field conditions should be sufficient to carry out an observation
yield trial (OYT). An OYT evaluation of the F;s under best management conditions
would allow the identification of good performing hybrids, and these should be
forwarded to an advanced yield trial (AYT) in a larger plot size with proper replica-
tions and the best market checks. Simultaneously, the AYT is screened for resis-
tances to insect pests and diseases. The highly performing hybrids should be
identified and sent for grain quality evaluation. Based on all the data, the best
hybrids need to be produced in large quantities and also evaluated for their hybrid
seed reproducibility for ensuring their success when screened in multienvironment
trials (METSs). The best candidate hybrids tested under METs lay the foundation for
the identification of the best hybrids for a given target location and market segment.
IRRI conducted two demonstration trials in India to evaluate the performance of
some newly developed two-line hybrids. One hybrid (IR134554H) performed
exceedingly well at both Hyderabad and Varanasi (Table 4, Fig. 7).
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7.3 Insect Pest and Disease Resistance

Two-line rice hybrid yield potential could be fully realized by incorporating resis-
tance to major diseases and insect pests (bacterial leaf blight (BLB), blast (BL),
false smut (FS), sheath blight (SHB), tungro, green leathopper (GLH), brown plan-
thopper (BPH), stem borer, leaf folder, and gall midge). Most insect pest and dis-
ease resistances are governed by major genes and could be easily introgressed into
parental lines depending on market segment requirements. Two-line breeding offers
better opportunities to convert the TGMS parent to acquire disease and insect pest
resistance as compared to a CMS/maintainer parent, which is more cumbersome
and requires more time (Ali et al. 2018). In this regard, IRRI has developed a global
product concept addressing different market needs, which could be useful, require
fewer resources, and result in higher impact. Researchers at Huazhong Agricultural
University (HAU) introgressed Xa7, Xa21, and Xa23 genes into C815S, a popular
TGMS parental line, to develop five BLB-resistant cultivars: Hual005S, Hual002S,
Hua 1009S, Hua 1006S, and Hual001S (Jiang et al. 2015). Two-line hybrids with
Xa23 showed a resistance reaction to seven Xanthomonas oryzae pv. oryzae (Xo0)
strains. Hual006S was the most promising TGMS parent among them with a higher
degree of resistance based on Xa23 besides better plant type and grain quality fea-
tures (Jiang et al. 2015). Currently, at IRRI, introgression of BLB and blast resis-
tance genes into elite TGMS and pollen parental lines is carried out through
marker-assisted selection.

7.4  Grain Quality Considerations Addressing Market Needs

A wider array of heterotic two-line rice hybrids opens up better options for develop-
ing customized grain quality that caters to market needs (Table 5). IRRI’s two-line
rice hybrid Mestiso 61 with good grain quality matched the market needs of the
Philippines. It was successfully licensed to SL Agritech Company in the Philippines
with limited exclusivity for a 6-year period. However, it is still available for license
to the private seed industry for other countries under the Hybrid Rice Development
Consortium. This hybrid gave an average yield of 6.7 t/ha during the dry season and
6.4 t/ha during the wet season across the Philippines. The yield potential of this
hybrid was nearly 10 t/ha, with 55% head rice recovery and amylose content of
20.5%, ideally fitting Philippine market needs. We developed a strategy to breed and
customize grain quality as per market requirements (Allahgholipour et al. 2006;
Pang et al. 2016). In this approach, breeders identify good-quality lines that will
cater to the varied interests of consumers across rice-consuming countries by
screening the breeding materials for eating and cooking quality (ECQ) and keeping
the popularly preferred good-quality varieties as controls in the study. Furthermore,
work is ongoing to identify advanced rice breeding lines/cultivars with similar
apparent amylose content (AAC), gelatinization temperature (GT), and rapid vis-
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cosity analysis (RVA), properties like those of the popular high-quality rice variet-
ies, through simple cluster analysis. A two-line hybrid from China, Pei-Liang-you
1108, has relatively good ECQ, and through our study, we identified seven lines in
the HC21 cluster clade with similar AAC, GT, and RVA and hence with comparable
ECQ. Likewise, another two-line hybrid with good ECQ, Jin-ke-you651, allowed us
to identify 11 hybrid lines within the HC18 cluster clade that had similar AAC, GT,
and ECQ (Pang et al. 2016).

It is essential to develop rice hybrids with better ECQ that address market needs,
paving the way for the expansion and adoption of rice hybrids in Asia and Africa.
Higher hybrid rice yields have no value if they do not translate into higher percent-
age head rice recovery (>55%), leading to increased farmers’ income.

8 Seed Production Challenges

Two-line hybrid rice technology largely depends on the identification of TGMS
lines that need to be multiplied under low-temperature conditions, and hybrid rice
seed production requires a minimum of 2 weeks of stable high temperature to reach
the sterile phase. To achieve these two different aspects of seed production carefully,
we have different approaches to identify appropriate locations based on agrometeo-
rological data. However, this needs validation before large-scale seed production.

Key Challenges

* Addressing market requirements for different target places varies: for example,
long-duration hybrids for the Indian market segment may require a longer dura-
tion of TGMS and pollen parents.

 Identification and exploitation of hybrid rice seed production and TGMS self-
seed multiplication sites.

e Development of usable and stable TGMS parental lines matching market seg-
ment requirements.

* The relative heterosis of two-line rice hybrids needs to be superior to that of the
existing best three-line hybrids in the market.

e Two-line hybrid rice technology should assure lower seed costs on account of
better hybrid seed reproducibility rates of 3 t/ha and higher self-seed multiplica-
tion rates (>4.5 t/ha), making this seed feasible for use by farmers.

8.1 Identification of Ideal Locations for Self-Seed
Multiplication of TGMS and Hybrid Rice Seed Production

TGMS-based two-line hybrid rice technology mainly depends on the identification
of suitable areas for both self-seed multiplication and hybrid rice seed production
(Table 6). Earlier, a systematic analysis of 50 years of agrometeorological data
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helped in the identification of appropriate sites in India (Siddiq and Ali 1999).
Interestingly, the authors identified places located in India between 500 and 700 m
above sea level from May to September for both hybrid seed and self-seed multipli-
cation of the TGMS lines. Furthermore, through experimental validation, these
places were confirmed as suitable for hybrid rice seed production, TGMS seed mul-
tiplication, and locations ideal for both operations (Siddiq and Ali 1999).

Critical considerations for the choice of place could be the hills, coastal plains,
or interior plains, keeping within the physiological sterility limits of <40 °C to
>16 °C. The Two-line Hybrid Rice Research Station was established under Tamil
Nadu Agricultural University in the Nilgiris hills at 1200 m above sea level in a
place known as Gudalur as early as 1995 in India (Soundararaj et al. 2002). Male-
sterile TGMS selections at high temperatures at Trichy were made and immediately
sent as stubbles to Gudalur to allow their self-seed multiplication and generation
advancement. The most suitable time for matching the temperature conducive to
self-fertility was from June to November. Shuttle breeding helped to identify 15
highly stable TGMS lines with better stigma exsertion of 40-66%, and many are in
the pipeline. Nearly 800 ha of paddy lands are available for commercial self-seed
multiplication of promising TGMS lines (Soundararaj et al. 2002). In the Philippines,
Lucban, Nueva Vizcaya, and Benguet are all identified as highly suitable for self-
seed multiplication of TGMS lines. In Nueva Vizcaya, the mean temperature from
the beginning of October to the end of February in the next year is less than 22 °C,
making it a suitable place to reproduce TGMS line seed. The mean temperature at
Lucban from January to February was <23 °C, and so all the TGMS lines possessing
a CFTP of <23 °C could be multiplied at Lucban. The TGMS lines should be com-
pletely male sterile to ensure the safety of hybrid seed production. Interestingly, we
observed that the mean temperature at IRRI, Los Bafios, was higher than 25 °C
almost all year. So, the CSTP of fertility-sterility alteration of TGMS lines in the
Philippines could be set at >24 °C for ensuring completely safe hybrid seed produc-
tion, especially from April to June.

Pollen of AO7 was partially fertile to completely sterile at Lucban as observed
from 5 May to 17 June and completely sterile (with no pollen type) at Los Bafios.
AO07 possesses a lower CFTP to turn completely fertile at <24 °C. A07 seeds pro-
duced in Nueva Vizcaya are possible where lower temperature prevails as compared
to Lucban (Ali et al. 2020 Unpublished). Recently, with GIS technologies, IRRI has
successfully identified a suitable choice of sites for hybrid seed production and
TGMS self-seed multiplication based on 20 years of agrometeorological data. The
potential GIS maps for the Philippines, identifying the places suitable for self-seed
multiplication and hybrid rice seed production, are shown in Fig. 8. A map with a
0.08° spatial resolution and limited climatic data from 2010 to 2018 was used to
avoid results affected by climate change trends. The following assumptions were
used for locations selected based on temperature meeting a stable criterion for
28 days minimum each year, especially for hybrid seed production: (a) average
daily temperature of >28 °C and <36 °C and (b) a minimum temperature of
>24 °C. Likewise, for TGMS self-seed multiplication, a criterion of average tem-
perature of <24 °C and Tmin >16 °C was used.
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Table 6 Ideal locations for two-line hybrid seed production and TGMS self-seed multiplication
(modified from Ali et al. 2018)

Seed production operation Ideal places

Hybrid seed production India: Aduthurai, Trichy, Killikulum, Madurai, Karnal,
Delhi Philippines: Los Banos

TGMS seed production India: Aduthurai, Gudalur, Samalkota, Karnal;

Philippines: Lucban, Benguet, Nueva Vizcaya

Hybrid seed production & TGMS India: Aduthurai and Samalkota
seed multiplication

9 Wide-Scale Adoption and Use of Two-Line Hybrid Rice
Technology

To achieve wide-scale adoption of two-line hybrid rice technology, we need ideal
TGMS lines that should possess a higher combining ability, outcrossing rate, and
market-desirable grain quality features along with insect and disease resistance
(Fig. 6). During the sterile induction phase, the plants must be 100% male sterile
with more than 99.5% pollen sterility and must behave stably under well-defined
fertility-sterility alteration conditions. Higher seed setting above 45% in the self-
seed multiplication phase is essential. Ideal TGMS lines should have lower CSTP
(24 °C) and lower CFTP (22 °C). However, researchers are still attempting to lower
the CSTP to 23 °C (mean temperature), which will render the TGMS lines highly
stable, especially during the sterile phase, and make them highly suitable for hybrid
rice seed production. The frequency of heterotic hybrids is much higher for two-line
hybrids than for three-line hybrids as any nonTGMS parent could be used as a pol-
len parent, thereby increasing hybrid breeding efficiency. Furthermore, as there is
no need for restorer genes in the male parents of two-line hybrids, this is highly
ideal for developing indica/japonica hybrids as most japonica lines do not possess
restorer genes. Since there is no need for a maintainer line for seed multiplication,
this makes seed production much simpler and highly cost-effective. Two-line
hybrids have obvious superiority over three-line hybrids for rice grain yield, quality,
and insect pest and disease resistance (Chen et al. 2010). In this regard, the best two-
line hybrids should address market segment requirements with a 30-35% yield
advantage over market check inbreds and with higher seed reproducibility rates
(>3 t/ha).

Two-line hybrid rice technology is feasible for tropical conditions for which the
temperature regimes are highly suitable for its exploitation. TGMS parental lines
with lower CSTP of 23 °C are highly essential for the success of this technology. At
IRRI, we are trying to reach 22 °C for CSTP, which is even more stable and would
ensure the wide-scale adoption of two-line hybrid rice technology. In this regard,
the Two-Line Hybrid Rice Study Group involving key hybrid rice seed companies
agreed to join hands in 2019 primarily to test-verify and validate potential TGMS
lines, pollen parents, and F; hybrids in the target geographies. The study group will
be able to jointly confirm the strength of two-line hybrid rice technology, especially



Advances in Two-Line Heterosis Breeding in Rice via the Temperature-Sensitive... 137

Hybrid Seed Sultability Maps  gGwms self-seed
Production hilippines Multiplication
Weather Data : i, - £,
aWhere, 0,08 © spatial e ks < ) %A s
resolution ’ '

Years: 2010-2018

(only latest years are
included to avoid results
affected by climate change
trend)

Assumptions:

Location selected based on
lemperature meeling stable
criteria below for 28days

minimum each year : ‘,i
For Hybrid Seed Production
Average daily temperatures
> 28°C and <= 36°C wilh
TMin>24%(
L3

For EGMS Self-seed
Multiplrcation Average
temperatures < 24°C and

i

.. et y
TMinz 16%C q‘,

Fig. 8 Suitability maps for hybrid rice seed production and self-seed multiplication of TGMS
lines for the Philippines developed by the IRRI GIS team

for its feasibility in South Asia. IRRI will continue to invest in this crucial technol-
ogy for bringing the benefits of two-line rice hybrids to the rice farmers in South
Asia. The accomplishment of this study group would ensure a lower cost of hybrid
seeds, higher heterosis of two-line hybrids, and potential combinations meeting the
market needs of the target regions. The success of two-line hybrid rice technology
in tropical Asia would shift the attention of hybrid rice development in China toward
South Asia, thus triggering widespread adoption of two-line rice hybrids.

10 Future Directions and Conclusions

The recent discovery of genome editing tools has opened up more opportunities to
correct the genes of interest, including the #ms gene, and to make them more stable
and with precise expression. However, in many countries, genome editing is still
under the genetically modified (GM) domain, including the Philippines. Li et al.
(2019) introduced specific mutations into the TMS5, Pi2l, and Xal3 genes in
Pinzhan intermediate breeding material using the CRISPR/Cas9 multiplex genome
editing system. They demonstrated multiplex gene editing by finding transgene-free
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homozygous triple tms5/pi21/xal3 mutants obtained in the T, generation that dis-
played characteristics of TGMS with improved resistance to rice blast and bacterial
leaf blight. However, recent publications on editing the 7MS5 gene and also achiev-
ing multiplex gene editing have increased our confidence to improve TGMS lines
(Barman et al. 2019; Li et al. 2019; Zhou et al. 2016).

Wang and Deng (2018) described the development and implementation of the
“third-generation” hybrid rice breeding system that is based on a transgenic
approach to propagate and use stable recessive nuclear male-sterile lines. Using this
approach, the male-sterile lines and hybrid rice produced using such a system are
nontransgenic and hold great promise to boost the production of hybrid rice and
other crops (Wang and Deng 2018).

To conclude, two-line hybrid rice technology primarily concentrates on the iden-
tification of proper TGMS parental lines with a lower CSTP (23 °C) and matching
market segment requirements. The hybrids developed out of these TGMS parental
lines should also meet market needs by achieving consumer and farmer acceptance
that includes duration, grain shape, grain quality, and insect pest and disease resis-
tance. Furthermore, these top-performing hybrids should have a high hybrid rice
seed reproducibility of >3 t/ha to allow the private sector to adopt them. Also, hybrid
rice seed costs would become relatively cheaper and enable farmers to invest in the
purchase of seeds. Two-line rice hybrids have several advantages over three-line
rice hybrids, and they could be easily upscaled once they match market needs. The
Two-line Study Group was formed in 2019 at IRRI to understand the fundamental
challenges for the wide-scale adoption of two-line hybrid rice technology and vali-
date the research efforts by IRRI to meet these challenges and make the technology
feasible. The study group is in the process of testing and verifying IRRI TGMS
materials in the target regions. Recent advances in the field of GIS and the precise
identification of suitable locations for hybrid rice seed production and TGMS self-
seed multiplication, especially in the tropical countries in Asia and Africa, have
given us the confidence to scale up two-line hybrid rice technology.
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