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Molecular Approaches for Insect Pest 
Management in Rice

Jagadish S. Bentur, R. M. Sundaram, Satendra Kumar Mangrauthia, 
and Suresh Nair

Abstract This chapter focuses on the progress made in using molecular tools in 
understanding resistance in rice to insect pests and breeding rice for multiple and 
durable insect resistance. Currently, molecular markers are being extensively used 
to tag, map, introgress, and clone plant resistance genes against gall midge, plan-
thoppers, and leafhoppers. Studies on cloned insect resistance genes are leading to 
a better understanding of plant defense against insect pests under different feeding 
guilds. While marker-assisted breeding is successfully tackling problems in durable 
and multiple pest resistance in rice, genomics of plants and insects has identified 
RNAi-based gene silencing as an alternative approach for conferring insect resis-
tance. The use of these techniques in rice is in the developmental stage, with the 
main focus on brown planthopper and yellow stem borer. CRISPR-based genome 
editing techniques for pest control in plants has just begun. Insect susceptibility 
genes (negative regulators of resistance genes) in plants are apt targets for this 
approach while gene drive in insect populations, as a tool to study rice-pest interac-
tions, is another concept being tested. Transformation of crop plants with diverse 
insecticidal genes is a proven technology with potential for commercial success. 
Despite advances in the development and testing of transgenic rice for insect resis-
tance, no insect-resistant rice cultivar is now being commercially cultivated. An 
array of molecular tools is being used to study insect-rice interactions at transcrip-
tome, proteome, metabolome, mitogenome, and metagenome levels, especially 
with reference to BPH and gall midge, and such studies are uncovering new 
approaches for insect pest management and for understanding population genetics 
and phylogeography of rice pests. Thus, it is evident that the new knowledge being 
gained through these studies has provided us with new tools and information for 
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facing future challenges. However, what is also evident is that our attempts to man-
age rice pests cannot be a one-time effort but must be a continuing one.

Keywords Insect resistance · Molecular markers · Marker-assisted breeding · 
RNAi · Genome editing · Transgenic rice · Insect-plant interaction

1  Introduction

Insect pests of rice form a formidable biotic stress component and a significant pro-
duction constraint across the globe. Although more than 200 insect species are 
reported to feed on rice plants, about a dozen of them are economically important in 
a specific rice ecosystem at a given time. Several of these have coevolved over thou-
sands of years along with their host and many have no alternate host. The pest 
complex of rice is represented by insects from all the feeding guilds, from defolia-
tors, tissue borers, and sap-suckers to gall formers, and several of these are occupied 
by a complex of species (Heinrichs 1994). Most important among these are stem 
borers: yellow stem borer (YSB), Scirpophaga incertulas; striped stem borer (SSB), 
Chilo suppressalis; and pink stem borer (PSB), Sesamia inferens; planthoppers: 
brown planthopper (BPH), Nilaparvata lugens; white-backed planthopper (WBPH), 
Sogatella furcifera; and small brown planthopper (SBPH), Laodelphax striatellus; 
leafhoppers: green leafhopper (GLH), Nephottetix virescens; green rice leafhopper 
(GRL/GRH), Nephotettix cincticeps; and zigzag leafhopper (ZLH), Recilia dorsa-
lis; gall midges: Asian rice gall midge (ARGM), Orseolia oryzae; and African rice 
gall midge (AfRGM), Orseolia oryzivora; and leaffolders: Cnaphalocrocis medina-
lis and Marasmia spp. Several other insects such as rice hispa, grain bugs, aphids, 
mealy bug, and stem fly are of minor or regional importance (Bentur 2010).

Several studies reported yield losses due to either a single pest or a complex of 
pests but most of them end up with either overestimating or underestimating the 
damage caused by these pests. Savary et al. (2000) critically studied yield losses 
caused by different pests under varying production environments and suggested that 
stem borer damage at heading stage accounted for 2.3% loss. They also noted that 
yield attrition from chronic injuries by stem borer deadheart damage and defoliation 
is underestimated. Although this study represented the macro-level scenario, micro- 
level yield losses due to any single or combination of insect pests can be high and 
deserves to be mitigated. Deutsch et al. (2018) predict future increases in yield loss 
in rice because of insect pests under the scenario of global warming.

Past experience has clearly shown that any unilateral approach based on chemi-
cal control, plant resistance, biocontrol, or behavioral means with pheromones has 
not provided desirable and sustainable solutions to pest problems. However, an 
early lead in exploring host-plant resistance taken by the International Rice Research 
Institute and emulated by various national programs paved the way for breeding for 
insect resistance with exemplary success against pests such as striped stem borer, 
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gall midge, and planthoppers. But the first wave of success was countered by the 
rapid evolution of virulent biotypes. With the recent advances in molecular biology 
and biotechnology, researchers now have a new set of tools with which they can 
address several problems at the molecular level and identify new strategies to over-
come old problems. In this chapter, we examine progress made through the classical 
approach and how the limitations of classical approach-based insect resistance and 
breeding for multiple and durable insect resistance in rice are being overcome with 
molecular marker-based approaches. In addition, we attempt to present the future 
scenario of genomics-based tools that may provide novel strategies of pest 
management.

2  Classical Approach Through Host-Plant Resistance 
Gene Deployment

Following the seminal publication of R.H. Painter (1951), genetic resistance in the 
host plant has been extensively explored and plant resistance (R) genes have been 
transferred to elite cultivars of field crops and other economically important plant 
species. Classical breeding methods and phenotypic selections were followed to 
achieve this until molecular markers were discovered. Currently, desired R-genes 
can be transferred and pyramided through marker-assisted selection and breeding. 
The status of donor sources, genetics of resistance, tagging and mapping of R-genes, 
and reported gene-linked markers are provided in what follows for the major insect 
pests of rice.

2.1  Gall Midge

Asian rice gall midge (ARGM) is a serious pest of rice in South and Southeast Asia. 
In India, gall midge damage is estimated to cause an annual yield loss of about 
USD 80 million (Bentur et al. 2003). The insect displays a unique life cycle, which 
is completed in 3–4 weeks. Maggots hatched from eggs laid on the plant surface 
crawl down between leaf sheaths to reach the apical meristem to feed. The insect 
feeds by laceration of the apical meristem and secretion of saliva, resulting in hyper-
trophy and hyperplasia of cells, ultimately leading to the development of a nutritive 
tissue and a gall chamber in the tiller. The insect also renders the tiller sterile and 
arrests further differentiation. Maggots cease feeding in the third instar and pupate 
in the gall. The adult fly emerges from this modified sheath gall called “silver shoot,” 
which is a typical symptom of gall midge damage. ARGM is predominantly a 
vegetative- stage pest and, in the event of a high percentage of tillers being converted 
into galls, there will be a proportionate decrease in the number of productive tillers, 
panicles, and therefore grain yield.
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Rice varieties differ in their response to gall midge infestation. A small propor-
tion of varieties is immune to pest attack by effectively killing the maggot within 
hours of feeding. The resistance mechanism displayed by the varieties is catego-
rized into two distinct types. A majority of the resistant rice genotypes express a 
hypersensitive reaction (HR), leading to tissue necrosis at the site of maggot feed-
ing, and are referred to as HR +ve (HR+) types, whereas a few of the resistant geno-
types do not display HR but still maggot mortality is noticed, and these are termed 
HR −ve (HR−) types. The role of phenols in HR+ resistance has been reported 
(Amudhan et al. 1999). Because the nature of resistance is antibiosis in both HR+ 
and HR− types, host-plant resistance is the most effective way of managing the pest 
(Bentur et al. 2003).

Field and greenhouse evaluations of more than 50,000 germplasm accessions 
resulted in the identification of more than 300 primary sources of resistance (Bentur 
et  al. 2011). Studies on the genetics of gall midge resistance in rice have often 
shown the involvement of a single dominant or recessive gene. To date, 12 genes 
conferring resistance against the pest have been reported (Himabindu et al. 2010; 
Leelagud et  al. 2020), 10  of which are dominant (Gm1 through Gm11, except 
gm3 and gm12). The presence of gall midge biotypes within India was suspected 
during the early phase of breeding for resistance. So far, seven distinct biotypes 
have been characterized based on their reaction pattern against five groups of dif-
ferential rice varieties (Vijayalakshmi et al. 2006). Similar to the interaction between 
pathogens and their plant hosts, a gene-for-gene interaction has been reported 
between rice resistance genes (i.e., R genes) and gall midge biotypes (Nair et al. 
2011). Each of the biotypes displays a specific range of virulence against R-genes, 
and likewise each R-gene confers resistance to specific biotypes, which also implies 
that none of the R-genes conferred resistance to all biotypes and none of the bio-
types showed virulence against all of the R-genes. Hence, it is possible to extend the 
range of resistance against biotypes by combining diverse resistance genes through 
gene pyramiding.

Of the 12 gall midge resistance genes identified thus far, 10 (Gm1, Gm2, gm3, 
Gm4, Gm5, Gm6, Gm7, Gm8, Gm11, and gm12) have been tagged and mapped with 
reported linked markers (Table 1). As it is well known that single gene-conferred 
resistance against gall midge can break down within a short time, the strategy of 
pyramiding two or more genes with divergent mechanisms of resistance (i.e., HR+ 
and HR−) has been advocated for durable resistance against the insect pest 
(Sundaram et al. 2013). So far, three gall midge resistance genes, gm3 (Sama et al. 
2014), Gm4 (Divya et al. 2015), and Gm8 (Divya et al. 2018b), have been cloned 
and characterized, and another gene, Gm2, has been reported to be allelic to gm3 
(Sama et  al. 2014; Sundaram 2007). The recessive resistance gene, gm3, which 
displays HR+, encodes an NB-ARC (NBS-LRR) domain-containing protein, while 
the dominant gene, Gm4, which also displays HR+, encodes a leucine-rich repeat 
(LRR) protein, and Gm8, displaying HR−, encodes a proline-rich protein (PRP). It 
is desirable to deploy two or more previously undeployed genes that differ in their 
mechanism of resistance, for example, Gm4 (HR+) and Gm8 (HR−) genes would 
meet the above-specified requirements. Another gene, gm3, may also be considered 
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for pyramiding since it is a HR+ type and recessively inherited and has not been 
deployed so far in any variety.

Using Gm4 and Gm8, the research group at ICAR-IIRR (Abhilash Kumar et al. 
2017) has developed gene-pyramided lines in the genetic background of the elite 
restorer line RPHR1005R (restorer line for the popular rice hybrid DRRH3) through 
marker-assisted breeding. In another such effort, the high-yielding rice variety 
Akshayadhan has been improved for its resistance against gall midge by targeted 
transfer of Gm4 and Gm8 genes. Sama et al. (2014) introduced the recessive gene 
gm3 into the genetic background of elite rice variety Improved Samba Mahsuri with 
the help of markers. In a recent report (Venkanna et al. 2018), two major resistance 
genes, gm3 and Gm8, have been pyramided in the genetic background of the fine- 
grain- type rice variety Kavya, which already possesses Gm1. Now that closely 
linked markers/functional markers are available for all the major gall midge resis-
tance genes, selected gene combinations can be pyramided into elite genetic back-
grounds (Divya et al. 2018c) easily through marker-assisted breeding for developing 
durable multiARGM biotype-resistant rice cultivars/hybrids.

2.2  Planthoppers and Leafhoppers

Although more than 100 species of planthoppers (Delphacidae) and leafhoppers 
(Cicadellidae) are reported to feed on rice, three species of planthoppers (BPH, 
WBPH, and SBPH) have gained high economic importance since 2000 (Bentur and 
Viratkamath 2008). Likewise, of the leafhoppers, GLH, GRL, and ZLH are impor-
tant. Although both groups consist of phloem sap feeders, planthoppers cause severe 
damage by feeding alone, leading to total death of plants, termed hopper burn. Both 
leafhoppers and planthoppers vector disease-causing viruses and cause indirect 
damage to the crop. The main virus diseases thus transmitted are rice ragged stunt, 
rice grassy stunt, and wilted stunt by BPH; southern rice black-streaked dwarf by 
WBPH; stripe and black-streaked dwarf by SBPH; and rice tungro by several spe-
cies of leafhoppers. In response to planthoppers and leafhoppers gaining impor-
tance, screening of rice germplasm for resistance began at the International Rice 
Research Institute (IRRI), Philippines, during the 1970s. Such initiatives were also 
taken up in other Asian rice-growing countries, leading to reports of a large number 
of resistance sources (IRRI 1979; Heinrichs et al. 1985; Heong and Hardy 2010). 
Several of these sources were selected for systematic studies on genetics of resis-
tance, resulting in the identification of more than 38 major resistance genes against 
BPH, 14 against WBPH, 14 against GLH, six against GRL, and three against ZLH 
(Fujita et al. 2013; Ling and Weillin 2016; Du et al. 2020). Most of these genes are 
now tagged and mapped on different rice chromosomes and reliable molecular 
markers linked to these traits are available (Table 1). Marker-assisted selection as a 
tool for breeding for BPH resistance using a single gene or multiple genes is being 
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reported (Liu et al. 2016; H Wang et al. 2016a; Y Wang et al. 2017b; Jiang et al. 
2018). However, a few issues remain to be resolved. Several of the reported BPH 
Rgenes are not effective on the Indian subcontinent (Horgan et al. 2016); hence, 
more effective genes for the region need to be characterized from the reported 
sources. All the BPH Rgenes, except probably Bph3 (Liu et al. 2015), are not effec-
tive against WBPH.  Since these two species are sympatric and are often under 
severe interspecific competition (Srinivasan et  al. 2016), selecting for resistance 
against BPH alone may not be the right approach. But, efforts to tag, map, and clone 
WBPH resistance genes are few. Another limitation is the ability of BPH to quickly 
evolve virulent biotypes, especially if a single Rgene is deployed. Hence, gene pyra-
miding is suggested for durability. Ideally, undeployed genes with different mecha-
nisms of resistance are the choice for pyramiding. Of the 13 BPH Rgenes cloned, 
eight (Bph14, Bph26, Bph18, Bph9/1/7/10/21) represent the NBS-LRR family; pro-
teins coded by these are located in the cytoplasm, while others are reported as lectin 
receptor kinases (Bph3, Bph15), B3 DNA-binding domain (bph29), or SCR domain 
protein (Bph32) coding (Ren et al. 2016; Y Zhao et al. 2016b; Du et al. 2020), which 
are membrane bound. It is suggested to combine two genes from these two classes 
(such as Bph14 + Bph15) to achieve durability (Jing et al. 2017).

2.3  Other Pests

Rice stem borers are ubiquitous insects representing Diopsidae (Diptera), Noctuidae, 
and Crambidae (Lepidoptera) families. Among several species of rice stem borers, 
YSB is considered the most economically important insect pest in almost all rice- 
growing countries of Asia (Makkar and Bentur 2017). Larvae of YSB feed only on 
rice and can cause damage at both the vegetative (deadheart) and reproductive 
(whitehead) stages of the rice crop, with the latter being the main cause of yield loss 
(Savary et al. 2000). Because of the lack of highly resistant sources in rice germ-
plasm explored so for, breeding for resistance or molecular mapping of resistance 
genes against YSB has not been encouraging (Bentur 2007). Nonetheless, rice vari-
eties such as Vikas, Ratna, and Sasyasree have been developed and released in India 
with moderate YSB resistance. Most of these varieties have either TKM6 or W1263 
as the source of resistance. Because of the lack of the desired level of resistance 
against YSB in the primary gene pool of rice, the secondary gene pool consisting of 
wild species of Oryza is being explored at IRRI, ICAR-IIRR, and other institutes. 
Chromosome segment substitution lines (CSSLs) need to be developed for different 
accessions of wild rice that can be evaluated for YSB resistance. Also, ethyl meth-
anesulfonate (EMS) mutants of rice have been generated and evaluated at ICAR- 
IIRR and have shown encouraging results in preliminary evaluations. More extensive 
and concerted efforts in this direction have potential to identify novel sources of 
resistance that can be used by breeders and entomologists for understanding the 
resistance mechanisms and developing YSB-resistant rice cultivars.
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3  Novel Approaches Through Genomics

3.1  RNAi Approach for Insect Resistance

Transgenic crops harboring Bt endotoxin genes or other insecticidal protein-coding 
genes have shown tremendous potential for managing insect pests. Several of these 
genes have been used in transforming rice as described in the next section, although 
none of these have been commercially cultivated. As an alternative to this approach, 
RNA interference (RNAi) can be exploited, which has been well demonstrated for 
resistance induction in plants against viruses, bacteria, and nematodes. RNAi is an 
RNA-driven post-transcriptional homology-based gene-silencing mechanism 
through the mRNA degradation pathway present in all eukaryotic organisms. The 
RNAi is triggered by double-stranded RNAs (dsRNA), which are processed by the 
RNase-III-like Dicer protein to produce small interfering RNAs (siRNAs). The 
guide strand of siRNA directs an RNA-induced silencing complex (RISC) to the 
target mRNA (Fig. 1). The most important constituent of RISC is RNase protein 
Argonaute, which helps in the degradation of target mRNAs sharing homology with 
the guide strand of siRNA (Zamore et al. 2000). The double-stranded RNAs specific 
to key insect genes can be stably expressed in plant tissues fed on by the insect and 
that in turn can trigger the RNAi pathway to degrade the mRNAs transcribed by the 
key insect genes (Price and Gatehouse 2008; Agarwal et al. 2012).

Key genes in insects are identified as targets of RNAi, that is, genes coding 
developmental proteins, digestive enzymes, salivary gland proteins, nervous system 
regulatory proteins, proteins involved in host-insect interaction, hormone receptors, 
gut enzymes, and proteins involved in metabolism (Gatehouse 2008; Huvenne and 
Smagghe 2010; Agarwal et al. 2012; Kola et al. 2015).

Initial successes in experiments (Tomoyasu and Denell 2004; Turner et al. 2006) 
raised hope among researchers that RNAi could be another alternative and effective 
tool to develop insect resistance in crop plants. Initially, dsRNAs were delivered to 
the target insects either by injection or through artificial diet. Baum et al. (2007) 
demonstrated the effectiveness of host-plant-mediated production of dsRNA in crop 
protection. Transgenic maize plants producing insect-specific vacuolar H+ ATPase 
dsRNAs had decreased root damage by western corn rootworm. In another similar 
report, Mao et al. (2007) generated transgenic Nicotiana tabacum and Arabidopsis 
thaliana targeting RNAi against the cytochrome P450 gene of Helicoverpa armig-
era, resulting in retarded larval growth of insects feeding on these modified hosts. 
The versatility of the application of RNAi against different insect orders and target 
genes shows the potential of RNAi for managing diverse crop pests (Terenius et al. 
2011; Khajuria et al. 2015; Zhang et al. 2017). Recent reports suggest that the pro-
duction of dsRNAs in chloroplasts, rather than in cytoplasm, can improve insect 
resistance significantly as long as dsRNAs can be stably produced in chloroplasts, 
which are devoid of RNAi machinery (Zhang et al. 2015; Jin et al. 2015; Bally et al. 
2018). The first such RNAi-based DvSnf7 dsRNA-expressing maize crop targeting 
western corn rootworm is scheduled to be commercialized (Khajuria et al. 2018). 
Several research groups have been working on modifying the technology for its 
more efficient application.
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Application of the RNAi tool for insect resistance in rice is in the developmental 
phase. Most of the reports on RNAi in rice are centered on BPH (Zha et al. 2011; 
Zhou et al. 2013; Yu et al. 2014; Wang et al. 2018) and YSB (Renuka et al. 2017). 
RNAi has been used for functional genomics of glutathione S-transferase (GST) 
genes, which are involved in the degradation of toxins produced by host plants and 
insecticides. Injecting dsRNAs targeting the NlGSTe1 and NlGSTm2 genes into 
nymphs of BPH enhanced their sensitivity to chlorpyrifos but not to beta- 
cypermethrin. Through feeding assays and stable expression of NlEcR (ecdysone 
receptor gene) targeting dsRNAs in rice, Yu et al. (2014) showed significant down- 
regulation of target gene expression and a decrease in the number of offspring 

Fig. 1 Schematic representation of host-induced gene silencing in insects through siRNA 
approach. (1) Integration of insect gene-targeted siRNA cassette (transgene) into rice genome; (2) 
fate of transgene in rice cells; (3) expression of transgene in rice cell generates the mRNA; (4) 
formations of dsRNA through self-complementation of transgene’s sense and antisense strands in 
rice cell; (5) host Dicer-mediated specific cleavage of dsRNA leads to production of siRNAs in rice 
cell; (6) host-generated siRNAs processed by host Argonaute protein (the main component of 
RNA-induced silencing complex or RISC); (7) host-generated siRNAs are nonfunctional in rice 
cells due to absence of targeted gene; (8 and 9) host-synthesized dsRNAs/siRNAs transfer from 
rice plant to insect through feeding on rice tissues; (10) fate of transferred dsRNA/siRNAs in insect 
cells; (11) generation of siRNAs from dsRNA through insect Dicer-mediated cleavage; (12) the 
siRNAs are processed by insect Argonaute proteins/RISC complex; (13a) formation of activated 
RISC along with target-specific guide RNA; (13b and 13c) the passenger RNA is separated from 
guide RNA and degraded; (14) transcription of insect DNA resulted in the expression of targeted 
functional mRNA (transcript); (15) guide strand of siRNA helps in identification and binding of 
activated RISC to the targeted mRNA; (16) silencing of targeted gene expression by RISC- 
mediated cleavage of corresponding mRNA
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produced by BPH adults. Likewise, Zha et al. (2011) targeted three midgut genes, 
carboxypeptidase (Nlcar), hexose transporter (NlHT1), and trypsin-like serine pro-
tease (Nltry). L Zhao et al. (2016a) aimed at trehalase genes involved in chitin bio-
synthesis and degradation. Wang et al. (2018) aimed at the calmodulin gene, Waris 
et  al. (2018) aimed at the chemosensory protein 8 (CSP8) gene, and Zhu et  al. 
(2017b) studied the function of the ribosomal protein gene (NlRPL5) using an RNAi 
tool. Pan et al. (2018) used RNAi to knock down 135 CP (chitin and cuticular pro-
tein) genes by injecting specific dsRNAs and showed that 32 CPs are necessary for 
normal egg production and development. Li et al. (2015) suggested that dsRNAs are 
stable under diverse environments and can be absorbed by roots of crop plants. This 
study provides scope to use dsRNAs as biopesticides. The above-cited studies are 
laying the foundation for the development of RNAi as a tool for managing rice pests 
such as BPH.

Kola et al. (2016) showed by feeding YSB larvae with dsRNA of cytochrome 
P450 derivative (CYP6) and amino peptidase N (APN) that expression of target 
genes decreased and resulted in increased mortality of larvae after 12–15  days. 
Similarly, Zeng et  al. (2018) knocked down three chemosensory protein (CSP) 
genes in rice leaffolder (C. medinalis) through injection of dsRNAs, which down-
regulated insect response to the specific chemicals. He et  al. (2018), in contrast, 
overexpressed striped stem borer-derived miR-14 microRNA in rice, which resulted 
in a high resistance against the pest.

3.2  Genome Editing Approach for Insect Resistance

Genome editing tools enable us to edit the genome or specific genes of an organism 
by addition/deletion or replacement of nucleotides with high precision and with few 
off-target effects. Because of its simplicity and wider applicability, genome editing 
is being practiced in many laboratories for functional genomics and trait improve-
ment. In agriculture, the technology has immense potential to improve yield and 
abiotic and biotic stress tolerance of crops. Also, the technology does not attract 
many concerns regarding biosafety regulators, specifically in the case of deletion of 
nucleotides. Most of the research on genome editing has been focused on functional 
genomics, trait discovery, and improvement in plants (Arora and Narula 2017; Yin 
et al. 2017; Aglawe et al. 2018).

The use of genome editing techniques for pest control in plants has just been 
hypothesized. Zuo et  al. (2017) created a mutation in Spodoptera exigua with 
CRISPR/Cas9 technology, which resulted in a mutant insect with high resistance 
against chlorantraniliprole, cyantraniliprole, and flubendiamide insecticides. To 
demonstrate the role of the cadherin gene in developing resistance against Bt toxin, 
the gene was edited by CRISPR/Cas9 in Helicoverpa armigera. The mutant strain 
of the insect showed high resistance to Cry1Ac (J Wang et  al. 2016b). The 
pheromone- binding protein 1 (PBP1) gene of H. armigera was mutated and the 
mutant male adults showed impaired responses to sex pheromone (ZF Ye et  al. 
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2017b). Dong et al. (2017) mutated PBP1 and PBP3 genes in striped stem borer to 
demonstrate their function. Biogenesis of the lysosome-related organelles complex 
1 subunit 2 (BLOS2) gene of Spodoptera litura was edited, which resulted in the 
disappearance of the yellow strips and white spots on the larval integument (Zhu 
et  al. 2017a). Similarly, when the abdominal-A (Slabd-A) gene of S. litura was 
mutated, it resulted in ectopic pigmentation and anomalous segmentation during the 
larval stage (Bi et al. 2016). Recently, Xue et al. (2018) edited two eye pigmentation 
genes in BPH, resulting in bright red compound eyes.

Although most of these reports showed successful application of CRISPR-based 
genome editing technology for functional genomics of insect genes, its use for 
incorporating and enhancing pest resistance in crops is yet to be realized. It is pos-
sible to derive genome editing-mediated resistance against insects by targeting 
either the host genes or the gene drive in insect populations. There is a dearth of 
information with regard to insect-susceptibility genes of host plants, specifically in 
rice. The recessive resistance genes identified so far are likely to represent nonfunc-
tional susceptibility genes and hence the need for more studies to characterize such 
candidate genes, which represent ideal targets for genome editing to develop new 
sources of resistance. Alternatively, novel resistance alleles can be created in sus-
ceptible rice cultivars either by replacement of a few nucleotides/motifs/domains or 
by editing of specific bases or transfer of a complete gene. However, precise replace-
ment of nucleotides, base editing, and insertion of a gene through CRISPR technol-
ogy are relatively complex at this stage and it may require a few more years for 
researchers in not-so-sophisticated laboratories to be able to use this technology.

Gene drive is another highly potential technology that can be exploited to pro-
mote the inheritance of CRISPR-generated mutated alleles or any other DNA 
sequence by sexual reproduction, which allows a rapid spread of genes among the 
insect population. Even the whole CRISPR machinery, that is, Cas9 mRNA and 
specific sgRNAs, can be spread into insect populations via a gene drive. Besides 
controlling the insect population, it can decrease vector-borne virus diseases such as 
rice tungro disease. However, its application requires a thorough public debate 
among scientists, policymakers, and regulators and other stakeholders (Courtier- 
Orgogozo et al. 2017). In addition, the rapid advancement in genome editing tech-
nologies will facilitate the functional analysis of insect genes, which would 
indirectly help in developing more effective strategies for achieving effective and 
durable biotic stress resistance in crops.

4  Transgenic Approach Through Gene Transfer

As naturally occurring resistance to lepidopteran pests of rice is yet to be identified/
discovered (e.g., stem borers and leaffolders; Schuler et  al. 1998), transgenesis 
offers a potent, immediate, cost-effective, and environment-friendly option for con-
trol of these pests through access and use of resistance from unrelated sources (i.e., 
nonrice sources). Fortunately, tissue culture and genetic transformation protocols 
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are well established in rice and many bacterial-derived insecticidal proteins have 
been deployed in rice through transgenic breeding (Sundaram et al. 2013). Bt genes 
derived from the soil bacterium Bacillus thuringiensis have been the most success-
ful group of related genes used commercially for genetic transformation of many 
crop plants, including rice. Bt genes encode for insecticidal proteins that are filled 
in crystalline inclusion bodies produced by the bacterium upon sporulation (e.g., 
Cry protein) or expressed during bacterial growth (e.g., Vip proteins). In addition, 
several research groups are assessing the potential of using non-Bt insecticidal pro-
teins such as lectins (carbohydrate-binding proteins), proteinase inhibitors, 
ribosome- inactivating proteins, secondary plant metabolites, small RNA viruses, 
etc. (Makkar and Bentur 2017).

4.1  Development of Transgenic Rice for Insect Resistance

The crystal insecticidal proteins (Cry toxins or delta-endotoxins) encoded by Bt 
genes are known to possess high toxicity to lepidopteran pests (Cohen et al. 2000), 
Dipterans (Andrews et al. 1987), and Coleopterans (Krieg et al. 1983; Herrnstadt 
et al. 1986) but are nontoxic to other groups of insects, other animals, and humans. 
Fujimoto et al. (1993) reported the first transformation of rice with a Bt gene. Many 
reports on the development and evaluation of Bt rice lines have since appeared (see 
review by High et  al. 2004; Chen et  al. 2006). Rice lines expressing Cry1Aa, 
Cry1Ab, Cry1Ac, Cry1Ab/Cry1Ac fusion gene, Cry1B, Cry1C, Cry2A, and a pyra-
mid of Cry1Ac with Cry2A, under the control of various constitutive and conditional 
promoters, have been shown to confer resistance to stem borers, leaffolders, and 
other foliage-feeding lepidopteran insects (Table 2). Several rice lines expressing 
insecticidal genes with anti-lepidopteran activity using Cry genes (Cry1Aa, Cry1Ab, 
Cry1Ac, Cry1Ab/Ac, Cry1C, Cry2A), CpTI (cowpea trypsin inhibitor), Vip (vegeta-
tive insecticidal protein), etc., have been reported. Various transgenic Bt (Cry1Ab, 
Cry1Ac) rice varieties (IR64, Karnal Local, etc.) resistant to YSB have been pro-
duced in India (Khanna and Raina 2002; Ramesh et al. 2004a). Pradhan et al. (2016) 
deployed a vegetative insecticidal protein (vip) in the genetic background of Swarna 
and demonstrated that the transgenic rice is resistant to multiple lepidopteran pests 
such as yellow stem borer, leaffolder, and rice horny caterpillar. Field evaluation 
and validation of transgenic rice possessing Cry1A (Shu et al. 2000; Tu et al. 2000) 
and synthetic Cry1Ab (Shu et al. 2002) have been reported from China. Field trials 
of Bt rice have also been conducted in Pakistan (Bashir et al. 2005; Mahmood-ur- 
Rahman et  al. 2007), Spain (Breitler et  al. 2004), Iran (James 2005), and India 
(Bunsha 2006). Iran was the first country to release Bt rice for commercial cultiva-
tion in 2004 (Makkar and Bentur 2017). China permitted the commercial produc-
tion of Bt rice lines Huahui No. 1 (CMS restorer line) and Bt Shanyou 63 (a hybrid 
of Huahui No. 1 and Zhenshan 97A, a CMS line), both lines expressing Cry1Ab/Ac 
fusion gene (Chen et al. 2011), but cultivation was discontinued afterward. Currently, 
no Bt rice is grown in any country across the world, including China, although 

J. S. Bentur et al.



401

Table 2 List of transgenes used in rice transformation to provide insect resistance

S. No.
Transgene(s) 
deployed

Recipient rice variety/
genotype

Promoter 
deployed

Reported 
resistant 
against Reference(s)

Lepidopteran pests
1 cry1Ab IR58 (indica rice) CaMV35S Yellow stem 

borer, striped 
stem borer, 
leaffolder

Wunn et al. 
(1996)

2 PINII (potato 
proteinase 
inhibitor)

Japonica rice – Pink stem 
borer

Duan et al. 
(1996)

3 cry1Ab Japonica, Taipei 309 Rice actin-1 
promoter

Yellow stem 
borer

Wu et al. 
(1997a)

4 cry1A, cowpea 
proteinase 
inhibitor gene

Japonica, Taipei 309, 
and Taipei 85-93. 
Indica, Minghui 63, 
and Qingliu Rai

– Yellow stem 
borer

Wu et al. 
(1997b)

5 cry1AC IR64 (indica rice) Maize 
ubiquitin 1 
promoter

Yellow stem 
borer

Nayak et al. 
(1997)

6 cry1Aa, cry 1Ac, 
cry2A, cry1C

Indica, japonica – Yellow stem 
borer

Lee et al. 
(1997)

7 cry1Ab Aromatic rice, Tarom 
molaii

– Yellow stem 
borer

Ghareyazie 
et al. (1997)

8 cry2A Basmati 370 and M7 
(indica rice)

CaMV35S 
promoter

Yellow stem 
borer, 
leaffolder

Maqbool et al. 
(1998)

9 cry1Ab Indica and japonica 
rice

– Yellow stem 
borer

Datta et al. 
(1998)

10 cry1Ab, cry1Ac, 
hph, gus genes

Japonica rice Maize 
ubiquitin 
promoter, the 
CaMV 35S 
promoter, 
and the 
Brassica 
Bp10 gene 
promoter

Yellow stem 
borer, striped 
stem borer

Cheng et al. 
(1998)

11 cry1Ab Maintainer line 
IR68899B

35S 
constitutive 
promoter

Yellow stem 
borer

Alam et al. 
(1999)

12 cry1Ab Vaidehi (indica rice) – Yellow stem 
borer

Alam et al. 
(1998)

13 cry1Ab PR16 and PR18 Maize 
ubiquitin 
promoter

Yellow stem 
borer

Ye et al. 
(2000)

(continued)
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Table 2 (continued)

S. No.
Transgene(s) 
deployed

Recipient rice variety/
genotype

Promoter 
deployed

Reported 
resistant 
against Reference(s)

14 cry1Ab, cry1Ac Minghui 63 (indica 
CMS restorer line) 
and its derived hybrid 
rice Shanyou 63

Rice actin-1 
promoter

Yellow stem 
borer and 
leaffolder

Tu et al. 
(2000)

15 cry1Ab KMD1 (japonica elite 
line)

– Yellow stem 
borer

Shu et al. 
(2000)

16 cry1A, cry1Ab, 
cry1Ac, cry1c 
and cry2A

Indica rice – Yellow stem 
borer

Intikhab et al. 
(2000)

17 cry1Ab, Xa21 Pusa Basmati 1 
(indica rice)

– Yellow stem 
borer, 
Bacterial 
blight disease

Gosal et al. 
(2000)

18 CRY1AB KMD1 and KMD2 – Yellow stem 
borer, striped 
stem borer

Ye et al. 
(2001)

19 cry1Ac, cry2A, 
snowdrop lectin 
gna

M7 and Basmati 370 
(indica rice varieties)

Maize 
ubiquitin-1 
promoter, 
CaMV 35S 
promoter

Yellow stem 
borer, 
leaffolder, 
and BPH

Maqbool et al. 
(2001)

20 cry1Ab IR64 (indica rice) – Yellow stem 
borer

Maiti et al. 
(2001)

21 Spider 
insecticidal gene

Xiushuill and 
Chunjiang 11

– Leaffolder 
and striped 
stem borer

Huang et al. 
(2001)

22 cry1Ac gene Minghui 81 Maize 
ubiquitin-1 
promoter

Striped stem 
borer

Zeng et al. 
(2002)

23 cry1Ac gene Pusa Basmati-1, 
IR64, and Karnal 
Local (indica rice)

Maize 
ubiquitin-1 
promoter

Yellow stem 
borer

Khanna and 
Raina (2002)

24 Bt fusion gene 
(for insect 
resistance), 
Xa21 gene (for 
BLB), chitinase 
gene (sheath 
blight)

IR72 (indica rice) – Yellow stem 
borer, 
bacterial 
blight 
disease, 
sheath blight 
disease

Datta et al. 
(2002)

25 Chimeric Bt 
gene, cry1Ab; 
cry1Ab/cry1Ac 
fusion gene

IR68899B and 
IR68897B 
(maintainer lines), 
MH63 and BR827- 
35R (restorer lines)

35S and 
PEPC 
promoters; 
actin 1 
promoter

Yellow stem 
borer, 
leaffolder

Balachandran 
et al. (2002)

(continued)
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Table 2 (continued)

S. No.
Transgene(s) 
deployed

Recipient rice variety/
genotype

Promoter 
deployed

Reported 
resistant 
against Reference(s)

26 cry1Ab, 
snowdrop lectin 
gna

Rajalele (javanica 
progenies)

– Yellow stem 
borer, 
planthoppers

Slamet et al. 
(2003)

27 cry1Ac IR64, Pusa 
Basmati-1, and 
Karnal Local (indica 
rice)

Maize 
ubiquitin 
promoter

Yellow stem 
borer

Raina et al. 
(2003)

28 cry1Ac, cry2A Basmati (indica rice) PEPC 
promoter and 
PB 10 
(pollen- 
specific) 
promoter

Yellow stem 
borer

Husnain et al. 
(2003)

29 cry1Ac, Xa21 Pusa Basmati-1 
(indica rice)

– Yellow stem 
borer, 
bacterial 
blight

Gosal et al. 
(2003)

30 CRY1AB, 
CRY1AC genes; 
bar gene for 
herbicide 
resistance

IR58025A, 
IR58025B, and 
Vajram (indica rice)

Maize 
ubiquitin 
promoter, 
CaMV 35S 
promoter 
(for BAR 
gene)

Yellow stem 
borer

Ramesh et al. 
(2004b)

31 cry1B, cry1Aa Ariete and Senia ubi 1 
promoter or 
mpi 
promoter

Striped stem 
borer

Breitler et al. 
(2004)

32 cry1Ab, cry1Ac, 
cry1C, cry2A, 
cry9C

Indica rice – Yellow stem 
borer, Striped 
stem borer

Alcantara et al. 
(2004)

33 mpi gene (maize 
proteinase 
inhibitor)

Senia and Ariete Maize 
ubiquitin 1 
promoter

Striped stem 
borer

Vila et al. 
(2005)

34 cry2A Minghui 63 (indica 
restorer line)

Maize 
ubiquitin 
promoter

Yellow stem 
borer

Chen et al. 
(2005)

35 cry1Ac, cry2A Basmati line B-370 
(indica rice)

– Yellow stem 
borer, 
leaffolder

Bashir et al. 
(2005)

36 cry1Ac, cry2A Basmati 370 (indica 
rice)

Ubiquitin 
promoter and 
CaMV 35S 
promoter

Yellow stem 
borer

Riaz et al. 
(2006)

(continued)
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Table 2 (continued)

S. No.
Transgene(s) 
deployed

Recipient rice variety/
genotype

Promoter 
deployed

Reported 
resistant 
against Reference(s)

37 cry1Ab-1B 
(translationally 
fused gene) and 
cry1A/cry1Ac 
(hybrid Bt gene)

Elite 
Vietnamese cultivars

Maize 
ubiquitin 
promoter and 
rice actin-1 
promoter

Yellow stem 
borer

Ho et al. 
(2006)

38 PINII (potato 
proteinase 
inhibitor)

Pusa basmati-1 and 
Tarori Basmati 
(indica rice) and 
TNG67 (japonica 
rice)

Pin2 
wound- 
inducible 
promoter

Yellow stem 
borer

Bhutani et al. 
(2006)

39 cry2Ab gene Minghui 63 (indica 
restorer 
line)/T(1Ab)-10

– Yellow stem 
borer, 
leaffolder

Tang and Lin 
(2007)

40 cry1Ab Korean varieties, P-I, 
P-II, P-III

Maize 
ubiquitin 
promoter

Yellow stem 
borer

Kim et al. 
(2008)

41 cry1Ab gene Khazar, Neda, and 
Nemat

– Striped stem 
borer

Kiani et al. 
(2008)

42 Ten transgenic 
lines (two 
cry1Ac lines, 
three cry2A 
lines, five cry9C 
lines)

Minghui 63 (elite 
indica restorer line)

– Yellow stem 
borer, striped 
stem borer

Chen et al. 
(2008)

43 cry1C Zhonghua 11 (Oryza 
sativa L. subsp. 
japonica)/RJ5 line.

rbcS 
promoter

Yellow stem 
borer, striped 
stem borer, 
leaffolder

Ye et al. 
(2009)

44 cry1Ia5 Oryza sativa – Yellow stem 
borer

Moghaieb 
(2010)

45 cry1b and 
cry1Aa fusion 
gene

Oryza sativa PEPC 
promoter

Yellow stem 
borer

Kumar et al. 
(2010)

46 cry1Ab and 
Vip3H fusion 
gene

G6H1, G6H2, G6H3, 
G6H4, G6H5, G6H6

– Striped stem 
borer, pink 
stem borer

Chen et al. 
(2010)

47 cry1Ab, cry1Ac 
fusion gene

Bt-SY63 – Striped stem 
borer

Zhang et al. 
(2011)

48 cry1Ac, CpTI 
genes

Bt-KF6 – Striped stem 
borer

Zhang et al. 
(2011)

49 cry1Ab Bt-DL – Striped stem 
borer

Zhang et al. 
(2011)

(continued)
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Table 2 (continued)

S. No.
Transgene(s) 
deployed

Recipient rice variety/
genotype

Promoter 
deployed

Reported 
resistant 
against Reference(s)

50 cry1Ab, cry1Ac, 
cry1C, cry2A

Minghui 63 (elite 
indica restorer line)

Maize 
ubiquitin 
promoter

Yellow stem 
borer, striped 
stem borer, 
leaffolder

Yang et al. 
(2011)

51 Cry1Ac, 
cry1I-like gene

Rice pGreen Striped stem 
borer, 
leaffolder

Yang et al. 
(2014)

52 cry1Ab gene Mfb-MH86 Ubiquitin 
promoter

Striped stem 
borer and 
other 
lepidopteran 
pests

Wang et al. 
(2014)

53 mpi-pci fusion 
gene

Ariete mpi 
promoter

Striped stem 
borer

Quilis et al. 
(2014)

54 Ds-Bt Zhejing-22, 
Kongyu-131

– Striped stem 
borer

Gao et al. 
(2014)

55 cry1Ac, cry1lg, 
G10 (EPSPS 
gene)

Xiushui 134 Maize 
ubiquitin 
promoter 
(pUBi)/
modified 
cauliflower 
35S 
promoter

Striped stem 
borer, 
leaffolder, 
and 
glyphosate

Zhao (2015)

Sucking pests
56 GNA (Galanthus 

nivalis 
agglutinin)

? Phloem- 
specific 
rice-sucrose- 
synthase

BPH Rao et al. 
(1998)

57 GNA ASD16/M12 Rice sucrose 
synthase/
maize 
ubiquitin

BPH and 
GLH

Foissac et al. 
(2000)

58 GNA ? ? SBPH Wu et al. 
(2002)

59 GNA Chaitanya and 
Phalguna, indica 
cultivars

Phloem- 
specific 
rice-sucrose- 
synthase

BPH, GLH, 
and WBPH

Nagadhara 
et al. (2003, 
2004)

60 GNA BPH, GLH, 
and WBPH

Ramesh et al. 
(2004a, b)

61 GNA Zhuxian B, an indica 
rice

BPH Li et al. (2005)

(continued)
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several such transgenic rice lines have been deregulated by the respective regulatory 
authorities of these countries due to various policy-related issues.

Genetic engineering for the control of planthopper and leafhopper pests of rice 
has begun with the use of plant-derived lectin genes. The snowdrop lectin gene, 
Galanthus nivalis agglutinin (GNA), has been transferred to several rice varieties 
and has been shown to provide partial to complete resistance to planthoppers and 
leafhoppers. Partial resistance to leafhoppers and planthoppers was demonstrated 
by rice transformation with a lectin gene from garlic (Allium sativum leaf agglutinin 
gene, ASAL; Saha et al. 2006). Bala et al. (2013) reported that ASAL interacts with 
NADH quinone oxidoreductase (NQO), a key player in the electron transport chain, 
and results in toxicity and increased mortality of BPH in transgenic rice lines. This 
study also demonstrated that, among all the transgenes available for control of suck-
ing pests, ASAL holds significant promise, particularly against BPH.  Yoshimura 
et  al. (2012) developed transgenic rice possessing lectin1 gene from Dioscorea 
batatas under the control of a phloem-specific promoter (i.e., promoter of sucrose 
synthase-1 gene) that showed a 30% decrease in the survival rate of BPH. Even 

Table 2 (continued)

S. No.
Transgene(s) 
deployed

Recipient rice variety/
genotype

Promoter 
deployed

Reported 
resistant 
against Reference(s)

62 ASAL (Allium 
sativum 
agglutinin)

IR64 CaMV35S BPH and 
GLH

Saha et al. 
(2006)

63 ASAL Chaitanya and 
BPT5204, indica 
cultivars

CaMV35S BPH, GLH, 
and WBPH

Yarasi et al. 
(2008)

64 ASAL IR64 CaMV35S BPH and 
GLH

Sengupta et al. 
(2010)

65 DB1/G95A- 
mALS 
(Dioscoria 
batata tuber 
lectin)

Tachisugata Phloem- 
specific 
rice-sucrose- 
synthase

BPH Yoshimura 
et al. (2012)

66 ASAL ? Phloem- 
specific 
rice-sucrose- 
synthase

BPH Chandrasekhar 
et al. (2014)

67 Loop 
replacements 
with gut-binding 
peptides in 
Cry1Ab domain 
II

In vitro assay – BPH Shao et al. 
(2016)

68 Cry64Ba and 
Cry64Ca

report Effective 
against 
sap-sucking 
insects

Liu et al. 
(2018)
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though, in general, it is known that Cry proteins are ineffective against sucking 
pests, through loop replacements with gut-binding peptides in Cry1AB domain II, 
enhanced toxicity against BPH has been demonstrated (Shao et al. 2016). Liu et al. 
(2018) have shown the effectivity of Cry64Ba and Cry64Ca, two ETX/MTX2-type 
Bt proteins, against hemipteran pests. Boddupally et  al. (2018) recently demon-
strated that the expression of hybrid fusion protein (Cry1Ac::ASAL) in transgenic 
rice plants imparted resistance against multiple insect pests: BPH, stem borer, and 
leaffolder. The list of transgenes deployed for the control of sucking pests such as 
BPH is summarized in Table 2.

5  Insect-Plant Interactions at the Genomic Level

5.1  Planthopper Genomes

The genome of BPH and its endosymbionts have been sequenced (Xue et al. 2014). 
It is a large genome (1141 Mb) with 27,571 protein-coding genes, of which 16,330 
are specific to this species. In comparison, the WBPH genome is relatively smaller 
(720 Mb) with 21,254 protein-coding genes (L Wang et al. 2017a), while the SBPH 
genome size is 541  Mb with 17,736 protein-coding genes (Zhu et  al. 2017c). 
Mitochondrial (mt) genomes of these three planthopper species have also been 
sequenced (Zhang et al. 2013, 2014). These studies are now providing insights into 
the genetic plasticity of this group, possible causes of rapid evolution of virulent 
biotypes, and resistance against a wide range of synthetic insecticides. In addition, 
the role of endosymbionts such as yeast-like symbiont (YLS) and Wolbachia spp. in 
enhancing insect fitness is being studied. Additional genetic markers are being 
developed for studying population genetics, individual differences, and the phylo-
geography of planthoppers. Several key genes of the insects have been identified, 
which can be targeted for RNAi-based genetic tools of pest management. 
Transcriptomics of the salivary gland has revealed more than 350 secretory proteins, 
of which several, such as NlSEF1 (W Ye et al. 2017a), act as effectors modulating 
plant defense response. Likewise, muscin-like protein of the salivary gland secre-
tion of BPH (Huang et al. 2017; Shangguan et al. 2018) and WBPH (Miao et al. 
2018) is likely to be an effector. Such genes can be suitable targets for their control 
using an RNAi-based approach described above. A high number of cytochrome 
P450 genes and their functional diversification are attributed to drive the evolution 
of insecticide resistance and virulence against host-plant resistance (Peng et  al. 
2017; Zimmer et al. 2018). In spite of efforts to map virulence loci onto the BPH 
genome (Jing et al. 2014; Kobayashi et al. 2014), no aviR gene has yet been cloned 
and characterized. Although mitochondrial markers based on mt genes COI and 
ND4 have been screened for population differentiation, the results have not been 
encouraging over large populations across countries. Further, Zhang et al. (2013) 
suggest that markers based on the control region of the mt genome might provide 
more reliable markers for studying population genetics and the phylogeography of 
planthoppers.
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5.2  Rice-Planthopper Interactions

Using both candidate gene cloning and a characterization-based approach and func-
tional genomics-based omics approaches, attempts are being made to understand 
planthopper and rice interactions. Based on initial information on the nature of R 
genes as being members of the NBS-LRR class or receptor kinase class, the rice 
resistance mechanism against BPH is, rather hurriedly, aligned to rice resistance 
against pathogens under two-tier immunity involving pattern-triggered immunity 
(PTI) and effector-triggered immunity (ETI) and the involvement of both JA- and 
SA-mediated pathways (Jing et al. 2017). Even the cloned genes are assigned to PTI 
(Bph3, Bph15) or ETI (Bph14, Bph1/10/18) tiers. However, what is not accounted 
for is the lack of documented evidence of hypersensitive reaction (HR) and systemic 
acquired resistance (SAR), which are hallmarks of plant response to biotrophic 
pathogens. Further, resistance in rice against planthoppers is not at the immune level 
but with moderate antibiosis coupled with antifeeding and antixenosis components. 
It is generally understood that SA- and JA-mediated plant defenses act reciprocally 
antagonistic to each other with adaptive significance (Thaler et  al. 2012). Such 
antagonism has not been convincingly illustrated in the case of planthopper resis-
tance in rice. Thus, greater understanding of planthopper-rice interactions is needed.

5.3  Rice-Gall Midge Interactions

Although genome sequence data for ARGM are yet to be published (Nair et  al. 
unpublished), the mitogenome has been sequenced (Atray et  al. 2015) and the 
microbiome analyzed in different stages of the life cycle of the insect (Ojha et al. 
2017). Based on identification and functional analysis of candidate genes, global 
gene expression profiles and differential gene expressions detected through SSH 
cDNA libraries, microarray studies, and the pyrosequencing approach in both the 
plants and the insect rice-gall midge interactions have been fairly well studied. In 
essence, with results from these studies indicating strategies used by both the pest 
and the host to defeat each other, defense ploys can be termed as a battle for survival 
(Bentur et al. 2016; Sinha et al. 2017).

During the infestation process and subsequent feeding on the host, the larvae 
inject substance(s) into the host. As in the case of pathogenic bacteria and fungi, 
these products could be determinants (effectors) of the avirulence/virulence phe-
nomenon. Extending this idea further, the genes that encode these molecules could 
be determinants of gall midge biotypes. Further, the genes that encode such mole-
cules could be those that encode secreted salivary gland proteins (SSGPs). Therefore, 
characterizing genes that encode SSGPs could provide a handle to study this inter-
action and also gain valuable insight into the process of infestation of rice by this 
pest. The expression patterns of some of these SSGPs in larvae interacting with a 
susceptible host (SH; compatible interaction) or resistant host (RH; incompatible 
interaction) indicated that some of the SSGPs such as gamma subunit of 
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oligosaccharyl transferase (OoOST) and nucleoside diphosphate kinase (OoNDPK) 
overexpress when interacting with SH compared with those in maggots when feed-
ing on RH (Sinha et al. 2011a, 2012a). Furthermore, NDPK protein has been dem-
onstrated to influence the host physiology. In contrast, two genes, OoprotI and 
OoprotII, homologous to serine proteases, and OoDAD1 (defender against death) 
overexpress in midgut of the maggots feeding on RH when compared with those 
feeding on SH (Sinha et al. 2011b, 2015). Although the former interactions repre-
sent effector-induced susceptibility, the latter set forms neutralizers attempting to 
overcome plant-secreted defensive toxins. Earlier studies also brought out similari-
ties in rice defense expression against gall midge with those seen against plant 
pathogens (Rawat et al. 2010, 2013), complete with HR and SAR. Subsequent anal-
ysis of SSH-generated cDNA libraries and microarray data brought out differences 
in the defense pathways underlying HR+-type and HR−-type resistance (Rawat 
et al. 2012b), among the two HR-type resistances conferred by Gm1 and Gm8 genes 
(Divya et al. 2016, 2018b), and also the diversity in susceptibility pathways in rice 
genotypes with ineffective R-genes against virulent biotypes (Rawat et al. 2012a). 
Generally, in the three gall midge-susceptible rice varieties studied, the insect- 
challenged plants tend to step up metabolism and transport of nutrients to their 
feeding site and have suppressed defense responses. However, one of the rice variet-
ies mounted an elevated defense response during early hours of infestation, only to 
be overpowered later, eventually resulting in host-plant susceptibility.

Pyrosequencing-based transcriptome analysis of ARGM revealed a differential 
response of the midge depending on whether it is in a compatible or incompatible 
interaction with its host (Sinha et al. 2012b). A recent study with sequencing of 16S 
rRNA bacterial gene (V3-V4 region) revealed differences in the microflora of the 
gall midge-rice maggots feeding on susceptible or resistant rice hosts. Results 
revealed that Wolbachia was the predominant bacterium in pupae and adults while 
Pseudomonas was predominant in maggots. Further, it was observed that members 
of proteobacteria were predominant across all the samples. There was high species 
diversity in maggots isolated from susceptible rice and a high representation of 
unclassified bacteria in maggots isolated from resistant rice. A first step in this 
direction is a report that highlights variation in the microbiome of the rice gall 
midge, based on the host phenotype from which it was isolated, and results suggest 
that these variations could have an important role in the host’s susceptibility/resis-
tance (Ojha et al. 2017).

The availability of the complete sequence of the gall midge mt genome and sub-
sequent sequence analysis revealed the presence of two tandem repeat elements in 
the noncoding regions of the mt genome. Further, sequencing of the iterated regions 
demonstrated that the iterations of the repeat elements could not only differentiate 
different gall midge biotypes present in India but also were able to genetically sepa-
rate the ARGM from its counterpart, the African rice gall midge (Atray et al. 2015). 
Thus, this study identified a reliable tool to monitor changes in the insect popula-
tions so as to have an “early warning system” in place. Janique et al. (2017) reported 
that two noncoding repeat motifs observed in the mitogenome of ARGM in India 
were absent in Thai populations and these were replaced by an 89-bp noncoding 
sequence.
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6  Conclusions and Perspectives

In terms of an evolutionary perspective, survival of neither the host nor the herbi-
vore has ever been under threat. Understandably, however, over the past couple of 
millennia when half of the human population started depending on this one cereal 
as its staple food, conflict of interest erupted between these insects and humans. All 
feasible efforts were made to protect the crop from possible damage by insects dur-
ing the early phase of domestication and cultivation of the rice crop. With the advent 
of modern scientific methods of crop husbandry, crop improvement, and synthetic 
chemicals, insect pests became targets of a frontal attack by humans. With quick 
development of resistance against a range of synthetic insecticides, insect pests 
proved their evolutionary superiority, compelling humans to concede defeat and 
conclude that pest management was the best solution for sustainable productivity 
rather than pest eradication or control. Rice insect pest management has traversed 
the same course as that in other crops such as cotton.

Insect pest management is complex and fraught with many variables. From the 
foregoing account, it is quite clear that we are just beginning to understand and 
make inroads into the complex interactions between the pest and its host, rice. It is 
also evident that, although productivity loss due to these insects alone runs into 
several million US dollars, insects are rapidly overcoming any management strategy 
that we are able to deploy, whether it is resistance genes or the development of new 
pesticides. What this review hopes to highlight primarily is that as a central concept 
we need to know how the rice plant interacts with its several insect enemies from an 
evolutionary point of view. Against YSB, no high resistance is expressed, probably 
because it is a “k” strategist and monophagous insect that does not kill the host. 
Against gall midge with an intermediate population strategy displaying buck and 
boost cycles, the host plant has a diverse array of immune-level R-genes that are 
constantly evolving along with the virulence in the pest populations. In stark con-
trast, the rice plant has stockpiled multiple major and minor R-genes against plan-
thoppers, which are typical “r” strategists. Second, the molecular tools now available 
have provided novel products for deployment to alleviate pest-induced yield losses. 
Notable among these are gene-pyramided elite cultivars, derived from marker- 
assisted selection, to manage multiple pests and their strains/biotypes (Divya et al. 
2018c). Also present is the array of transgenic rice lines with potent genes against 
all the guilds of insect pests. It is unfortunate that these products are not yet avail-
able for commercial use. Molecular approaches have also broadened our knowledge 
and identified unexplored facets for possible use in pest management. Finally, this 
flush in information has reiterated the evolutionary advantage of insect genome, 
mitogenome, and metagenome in facing any future challenges. A recent report on 
quick field selection for dsRNA resistance in western corn rootworm (Khajuria 
et al. 2018) exemplifies this. As summarized, representatives of each insect guild 
have evolved their own strategy to overcome plant resistance. Considering that, in 
the coming years, we are likely to be under pressure to grow more in less area, it is 
therefore imperative that we cut the losses in productivity due to insect pests. 
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We have made rapid strides in the past couple of decades toward this goal with 
emerging new tools and strategies. What is also clear is that the solution to the insect 
problem is unlikely to come from one area of study but from an amalgamation of 
information obtained from several different studies that can provide durable, effec-
tive, and targeted resistance to insect pests of rice. The caveat is that this is unlikely 
to be a one-time effort but must be a continuing one.
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