Skip to main content

GIS Fundamentals for Agriculture

  • Chapter
  • First Online:
Agro-geoinformatics

Part of the book series: Springer Remote Sensing/Photogrammetry ((SPRINGERREMO))

Abstract

GIS has been proved to be an effective technology for various agricultural applications, ranging from recording data, predicting crop growth, to supporting pesticide control and food safety regulations. As a system designed to capture, store, manipulate, analyze, manage, and present spatial or geographic data, GIS has been motivated to become one of the most dynamic computer application systems. Due to its powerful capability in collecting and updating real-time data, GIS has been identified as a significant bridge between data and agriculture communities. This chapter summarized the major GIS applications in Agriculture, including mapping and analytical techniques, spatial database for agricultural systems, modeling function, and decision support system. These applications have benefited various GIS user as well as agriculture communities. New technologies such as emerging Machine Leaning and Artificial Intelligence provide more opportunities in promoting GIS in more Agriculture applications and meanwhile generate more challenges in understanding global food production and security issues in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson, M. C., Kustas, W. P., Norman, J. M., Hain, C. R., Mecikalski, J. R., Schultz, L., et al. (2011). Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery. Hydrological Earth System Science, 15, 223–239.

    Article  Google Scholar 

  • Batjes, N. H. (1995). A homogenized soil data file for global environmental research: A subset of FAO, ISRIC and NRCS profiles (Working paper and preprint). Wageningen: ISRIC.

    Google Scholar 

  • Bellotti, A. C., Smith, L., & Lapointe, S. L. (1999). Recent advances in Cassava pest management. Annual Review of Entomology, 44, 343–370.

    Article  Google Scholar 

  • Bishr, Y. (1998). Overcoming the sematic and other barriers to GIS interoperability. International Journal of Geographical Information Science, 12(4), 299–314.

    Article  Google Scholar 

  • Boryan, C., Yang, Z., Mueller, R., & Craig, C. (2011). Monitoring US agriculture: The US department of agriculture, national agricultural statistics service, cropland data layer program. Geocarto International, 1, 1–18.

    Google Scholar 

  • Carbone, G. J., Narumalani, S., & King, M. (1996). Application of remote sensing and GIS technologies with physiological crop models. Photogrammetric Engineering and Remote Sensing, 62, 171–179.

    Google Scholar 

  • Carter, J. R. (1989). On defining the geographic information system. In W. J. Ripple (Ed.), Fundamentals of Geographic Information Systems: a compendium. Fall Church Virginia: ASPRS/ACSM.

    Google Scholar 

  • Chau, V. N., Holland, J., Cassells, S., & Tuohy, M. (2013). Using GIS to map impacts upon agriculture from extreme floods in Vietname. Applied Geography, 41, 65–74.

    Article  Google Scholar 

  • Corbett, J. D., & Carter, S. E. (1996). Using GIS to enhance agricultural planning: the example of inter-seasonal rainfall variability in Zimbabew. Transactions in GIS, 1, 207–218.

    Article  Google Scholar 

  • CSISS (Center for Spatial Information Science and Systems). (2009). Cropscape. Available at: https://nassgeodata.gmu.edu/CropScape/.

  • Del Grosso, S. J., Parton, W. J., Mosier, A. R., Hartman, M. D., Brenner, J., Ojima, D. S., & Schimel, D. S. (2001). Simulated interaction of carbon dynamics and nitrogen trace gas fluxes using the DAYCENT model. In M. Schaffer et al. (Eds.), Modeling carbon and nitrogen dynamics for soil management (pp. 303–332). Boca Raton: CRC Press.

    Google Scholar 

  • Devine, H. A., & Field, R. C. (1986). The gist of GIS. Journal of Forestry, 16, 17–22.

    Google Scholar 

  • Di, L., Rundquist, D. C., & Han, L. (1994). Modeling relationships between NDVI and precipitation during vegetation growth cycles. International Journal of Remote Sensing, 15(10), 2121–2136.

    Article  Google Scholar 

  • Di, L., Eugene, G. Y., Kang, L., Shrestha, R., & Bai, Y. (2017). RF-CLASS: A remote-sensing-based flood crop loss assessment cyber-service system for supporting crop statistics and insurance decision-making. Journal of Integrative Agriculture, 16(2), 408–423.

    Article  Google Scholar 

  • Dickinson, H., & Calkins, H. W. (1988). The economic evaluation of implementing a GIS. International Journal of Geographical Information Systems, 2, 307–327.

    Article  Google Scholar 

  • Diepen, C. A., Wolf, J., Keulen, H., & Rappoldt, C. (1989). WOFOST: A simulation model of crop production. Soil Use and Management, 5(1), 16–24.

    Article  Google Scholar 

  • Engel, B. A., Srinivasan, R., Arnold, J., Rewerts, C., & Brown, S. J. (1993). Nonpoint Source (NPS) pollution modeling using models integrated with geographic information systems (GIS). Water Science & Technology, 28(3–5), 685–690.

    Article  Google Scholar 

  • Fernandez, C. J., & Neal, T. T. (2007). Development of a web-based decision support system for crop managers: structural considerations and implementation case. Agronomy Journal, 99(3), 730–737.

    Article  Google Scholar 

  • FitzHugh, T. W., & Mackay, D. S. (2000). Impacts of input parameter spatial aggregation on an agricultural nonpoint source pollution model. Journal of Hydrology, 236(1–2), 35–53.

    Article  Google Scholar 

  • Gobin, A., Jone, R., Kirkby, M., Campling, P., Govers, G., Kosmas, C., & Gentile, A. R. (2004). Indicators for Pan-European assessment and monitoring of soil erosion by water. Environmental Science and Policy, 7, 25–38.

    Article  Google Scholar 

  • Gochis, D. J., Yu, W., & Yates, D. N. (2013). The WRF-Hydro model technical description and user’s guide, version 1.0. NCAR Technical Document, 120. Boulder, CO: Research Applications Laboratory.

    Google Scholar 

  • Goodchild, M. F. (1987). A spatial analytical perspective on GIS. International Journal of Geographical Information Systems, 1, 327–334.

    Article  Google Scholar 

  • Goodchild, M. F. (1988). Towards an enumeration and classification of GIS functions. In R. T. Aangeenbrug & Y. M. Schiffman (Eds.), International Geographic Information systems (IGIS) Symposium: The research Agenda. Fall Church: AAG.

    Google Scholar 

  • Han, W., Yang, Z., Di, L., & Mueller, R. (2012). CropScape: A web service based application for exploring and disseminating US conterminous geospatial cropland data products for decision support. Computers and Electronics in Agriculture, 84, 111–123.

    Article  Google Scholar 

  • Herrero, M., Gonzalez-Estrada, E., Thornton, P. K., Quiros, C., Waithaka, M. M., Ruiz, R., & Hoogenboom, G. (2007). IMPACT: Generic household-level databases and diagnostics tools for integrated crop-livestock systems analysis. Agricultural System, 92, 240–265.

    Article  Google Scholar 

  • Hutchinson, M. F., Nix, H. A., McMahon, J. P., & Ord, K. D. (1996). The development of a topographic and climate database for Africa. In Proceedings, third international conference integrating GIS and environment modeling. New Mexico.

    Google Scholar 

  • INSPIRE. (2008). INSPIRE. Available at http://inspire.jrc.it.

  • Janssen, S., Andersen, E., Athanasiadis, I. N., & Ittersum, M. K. (2009). A database for integrated assessment of European agriculture systems. Environmental Science & Policy, 12(5), 573–587.

    Article  Google Scholar 

  • Joshi, C., Leeuw, J. D., & Duren, I. C. V. (2004). Remote sensing and GIS applications for mapping and spatial modeling of invasive species. In Proceeding of ISPRS (pp. 1–9). Hannover, Germanny: ISPRS, MDPI

    Google Scholar 

  • Kalita, P. K., Kanwar, R. S., & Bischoff, J. H. (1992). Using the ADAPT model to simulate water table management effects in groundwater quality (ASAE Paper No. 92-2124). St. Joseph.

    Google Scholar 

  • Kirkby, M. J., & Cox, N. J. (1995). A climatic index for soil erosion potential (CSEP) including seasonal and vegetation factors. Catena, 25, 333–352.

    Article  Google Scholar 

  • Li, C., Frolking, S. E., & Frolking, T. A. (1992). A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity. Journal of Geophysical Research-Atmospheres, 97, 9759–9776.

    Article  Google Scholar 

  • Lin, Z. H., Mo, X. G., & Xiang, Y. Q. (2003). Research advances on crop growth models. ACTA Agronomica Sinica, 29(5), 750–758.

    Google Scholar 

  • Long, D. S., DeGloria, S. D., & Galbraith, J. M. (1991). Use of the global positioning system in soil survey. Journal of Soil and Water conservation, 46, 293–297.

    Google Scholar 

  • Longley, P. A., Goodchild, M. F., Maguire, D. J., & Rhind, D. W. (2005). Geographical information systems and sciences (2nd ed.). New York: Wiley.

    Google Scholar 

  • Loveland, T. R., Merchant, J. W., Brown, J. F., Ohlen, D. O., Reed, B. C., Olson, P., & Hutchinson, J. (1995). Map supplement: seasonal land-cover regions of the United States. Annals of the Association of American Geographers, 85(2), 339–355.

    Article  Google Scholar 

  • Lufafa, A., Tenywa, M. M., Isabirye, M., Majaliwa, M. J. G., & Woomer, P. L. (2003). Prediction of soil erosion in a Lake Victoria basin catchment using a GIS-based universal soil loss model. Agricultural Systems, 76(3), 883–894.

    Article  Google Scholar 

  • Luzio, M. D., Srinivasan, R., & Arnold, J. G. (2004). A GIS-coupled hydrological model system for the watershed assessment of agricultural nonpoint and point sources of pollution. Transactions in GIS, 8(1), 113–136.

    Article  Google Scholar 

  • Luzio, M. D., White, M. J., Arnold, J. G., Williams, J. R., & Kiniry, J. R. (2017). A large scale GIS geodatabase of soil parameters supporting the modeling of conservation practice alternatives in the United States. Journal of Geographic Information System, 9(3), 267–278.

    Article  Google Scholar 

  • Maguire, D. J. (1991). An overview and definition of GIS. In P. A. Longley, M. F. Goodchild, D. J. Maguire, & D. W. Rhind (Eds.), Geographic Information Systems. London: Wiley.

    Google Scholar 

  • Morton, J. F. (2007). The impact of climate change on smallholder and subsistence agriculture. Proceedings of the National Academy of Sciences of the United States of American (PNAS), 104(50), 19680–19685.

    Article  Google Scholar 

  • Narasimhan, B., & Srinivasan, R. (2005). Development and evaluation of soil moisture deficit index (SMDI) and evapotranspiration deficit index (ETDI) for agricultural drought monitoring. Agricultural and Forest Meteorology, 133, 69–88.

    Article  Google Scholar 

  • Newell, R. G., & Theriault, D. G. (1990). Is GIS just a combination of CAD and DBMS? Mapping awareness, 4(3), 42–45.

    Google Scholar 

  • Nishiguchi, O., & Yamagata, N. (2009). Agricultural information management system using GIS technology. Hitachi Review, 1, 265–270.

    Google Scholar 

  • Olesen, J. E., & Bindi, M. (2002). Consequences of climate change for European agricultural productivity, land use and policy. European Journal of Agronomy, 16(4), 239–262.

    Article  Google Scholar 

  • Olson, K. R., & Olson, G. W. (1985). Use of agronomic data and enterprise budgets in land assessment evaluations. Journal of Soil and Water Conservation, 40(5), 455–458.

    Google Scholar 

  • Parthasarathy, U. (2010). Importance of GIS in Agriculture. Financing Agriculture, 42(3), 6–10.

    Google Scholar 

  • Penning de Vries, F. W. T., Jansen, D. M., ten Berge, H. F. M., & Bakema, A. (1989). Simulation of ecophysiological processes of growth in several annual crops. Wageningen: Pudoc.

    Google Scholar 

  • Pierce, F. J., & Clay, D. (2007). GIS application in agriculture. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Priya, S., & Shibasaki, R. (2001). National spatial crop yield simulation using GIS-based crop production model. Ecological Modeling, 136(2–3), 113–129.

    Article  Google Scholar 

  • Rao, M. N., Waits, D. A., & Neilsen, M. L. (2000). A GIS-based modeling approach for implementation of sustainable farm management practices. Environmental Modeling & Software, 15, 745–753.

    Article  Google Scholar 

  • Reichle, et al. (2017). Assessment of the SMAP Level-4 Surface and Root Zone Soil Moisture Product Using In Situ Measurements. Journal of Hydrometeorology, 18, 2621–2645.

    Article  Google Scholar 

  • Richardson, C. W., & Wright, D. A. (1984). WGEN: a model for generating daily weather variables (Agricultural research services report no. 8). Washington, DC: US Department of Agriculture.

    Google Scholar 

  • Shen, Z., Liao, Q., Hong, Q., & Gong, Y. (2012). An overview of research on agricultural non-point source pollution modeling in China. Separation and Purification Technology, 84, 104–111.

    Article  Google Scholar 

  • Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W., Kaplan, J. O., Levis, S., Lucht, W., Sykes, M. T., Thonicke, K., & Venevsky, S. (2003). Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology, 9(2), 161–185.

    Article  Google Scholar 

  • Sood, K., Singh, S., Rana, R. S., Rana, A., Kalia, V., & Kaushal, A. (2015). Application of GIS in precision agriculture. In National seminar on “Precision farming technologies for high Himalayas”, India. https://doi.org/10.13140/RG.2.1.2221.3368.

    Chapter  Google Scholar 

  • Steyaert, L. T. (1996). Status of land data for environmental modeling and challenges for geographic information systems in land characterization. In M. F. Goodchild, L. T. Steyaert, B. O. Parks, C. Johnston, D. Maidment, M. Crane, & S. Glendinning (Eds.), GIS and environmental modeling: Progress and research issues. Canada: Wiley.

    Google Scholar 

  • Sui, D., & Goodchild, M. (2011). The convergence of GIS and social media: Challenges for GIScience. International Journal of Geographical Information Science, 25(11), 1737–1748.

    Article  Google Scholar 

  • Tang, J. (2015). Dynamic linkages between vegetation phenology and seasonal changes in water quality in the Choptank Watershed, USA. International Journal of Remote Sensing, 36(12), 3041–3057.

    Article  Google Scholar 

  • Trincheria, J. D., Craufurd, P., Harris, D., Mannke, F., Nyamangara, J., Rao, K. P. C., & Filho, W. L. (2015). Adapting agriculture to climate change by developing promising strategies using analogue locations in Eastern and Southern Africa: A systematic approach to develop practical solution. In W. L. Filho et al. (Eds.), Adapting African agriculture to climate change. Cham: Springer International Publishing.

    Google Scholar 

  • USDA. (1994). National soil characterization data. Soil Survey Laboratory, National Soil Survey Center, Soil Conservation Service, Lincoln, Nebraska.

    Google Scholar 

  • USDA-NRCS (U.S. Department of Agriculture-Natural Resources Conservation Service). (1995). Soil survey geographic (SSURGO) data base: Data use information. Fort Worth: National Cartography and GIS Center.

    Google Scholar 

  • Van Ittersum, M. K., & Donatelli, M. (2003). Special issue of European Journal of Agronomy: Modeling cropping systems. European Journal of Agronomy, 18(3–4), 187–194.

    Article  Google Scholar 

  • Wade, G., Mueller, R., Cook, P., & Doralswamy, P. (1994). AVHRR map products for crop condition assessment: a geographic information system approach. Photogrammetric Engineering and Remote Sensing, 60, 1145–1150.

    Google Scholar 

  • Wang, X., & Melesse, A. M. (2006). Effects of STATSGO and SSURGO as inputs on SWAT models snowmelt simulation. Journal of the American Water Resources Association, 121, 1217–1236.

    Article  Google Scholar 

  • Weygandt, S. S., Smirnova, T. G., Benjamin, S. G., Brundage, K. J., Sahm, S. R., Alexander, C. R., & Schwartz, B. E. (2009, June). The High Resolution Rapid Refresh (HRRR): An hourly updated convection resolving model utilizing radar reflectivity assimilation from the RUC/RR. In Preprints, 23rd conference on weather analysis and forecasting/19th conference on numerical weather prediction (Vol. 15). Omaha: American Meteorological Society A.

    Google Scholar 

  • Williams, J. R., Jones, C. A., & Dyke, P. T. (1983). A modeling approach to determine the relation between erosion and soil productivity. Transactions of the American society of Agricultural Engineers, 27, 129–144.

    Article  Google Scholar 

  • Wilson, J. P. (1999). Local, national, and global applications of GIS in agriculture. In P. A. Longley, M. F. Goodchild, D. J. Maguire, & D. W. Rhind (Eds.), Geographical information systems: Principles and technical issues. New York: Wiley.

    Google Scholar 

  • Wilson, J. P., Inskeep, W. P., Rubright, P. R., Cooksey, D., Jacobsen, J. S., & Snyder, R. D. (1993). Coupling geographic information systems and models for weed control and ground-water protection. Weed Technology, 7, 255–264.

    Article  Google Scholar 

  • Wratt, D. S., Tait, A., Griffiths, G., Espie, P., Jessen, M., Keys, J., et al. (2006). Climate for crops: Integrating climate data with information about soils and crop requirements to reduce risks in agricultural decision-making. Meteorological Application, 13, 305–315.

    Article  Google Scholar 

  • Xie, H., Chen, L., & Shen, Z. (2015). Assessment of agricultural best management practice using models: current issues and future perspectives. Water, 7(3), 1088–1108.

    Article  Google Scholar 

  • Yagci, A. L., Di, L., Deng, M., Yu, G., & Peng, C. (2011). Global agricultural drought mapping: results for the year 2011. IGRASS, July 2012.

    Google Scholar 

  • Yang, Z., Yu, G., Di, L., Zhang, B., Han, W., & Mueller, R. (2013). Web serviced-based vegetation condition monitoring system – VegScape. In IEEE International Geoscience and remote sensing symposium – IGARSS 2013. Melbourne, Australia: IEEE.

    Google Scholar 

  • Yu, G., Di, L., Zhang, B., Shao, Y., Shrestha, R., & Kang, L. (2013). Remote-sensing-based flood damage estimation using crop condition profiles. In Second international conference on agro-geoinformatics. Fairfax: IEEE.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junmei Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tang, J. (2021). GIS Fundamentals for Agriculture. In: Di, L., Üstündağ, B. (eds) Agro-geoinformatics. Springer Remote Sensing/Photogrammetry. Springer, Cham. https://doi.org/10.1007/978-3-030-66387-2_3

Download citation

Publish with us

Policies and ethics