Skip to main content

Bisphenol A and Neurological Disorders: From Exposure to Preventive Interventions

  • Chapter
  • First Online:
Environmental Contaminants and Neurological Disorders

Abstract

Massive use of man-made chemicals has brought a lot of significant alterations in our environment as a whole. Among them, Bisphenol-A (BPA) is the most commonly used in the manufacturing of synthetic polycarbonates, plastics, thermal paper and epoxy resin. BPA is majorly found in the surroundings of human and particularly in drinking water. There is a lot of data and research studies which provide detailed data concerning the presence of BPA in water, food and indoor environment as well as in fluid and tissues of human body. The outcomes of BPA exposure on human behavior are relatively new issue and it has also become a special concern due to its potential effects on children. Although little data is available related to neurological disorders to BPA exposure, an association between BPA exposure with altered neurobehavior has been reported, including attention deficit, aggressive behavior, depression, hyperactivity and anxiety in children. It has been observed that BPA exposure during the critical window of development in children causes disruption of brain. Previous studies suggested that prenatal exposure of BPA may have negative impact on neurobehavioral functioning in children and it may be sex dependent. Therefore, it has become necessary to be watchful towards the potential adverse effects of pervasive exposure of low doses, although more studies are required in humans to rule out the correlation between exposure of BPA and its outcomes on humans. Meanwhile, it is prudent to inform and educate the women who are planning or undergoing pregnancy about the outcomes of BPA exposure and measures to avoid and reduce their exposure. The main objective of this chapter is to explore and summarize the neurological effects of BPA exposure, and from a public health perspective, preventive measures and policies have also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vandenberg LN, Chahoud I, Heindel JJ, Padmanabhan V, Paumgartten FJ, Schoenfelder G. Urinary, circulating, and tissue biomonitoring studies indicate widespread exposure to bisphenol A. Environ Health Perspect. 2010;118(8):1055–70.

    Article  CAS  Google Scholar 

  2. Vogel SA. The politics of plastics: the making and unmaking of bisphenol A “safety”. Am J Public Health. 2009;99(S3):S559–S66.

    Article  Google Scholar 

  3. Rubin MM. Antenatal exposure to DES: lessons learned… future concerns. Obstet Gynecol Surv. 2007;62(8):548–55.

    Article  Google Scholar 

  4. Barr DB, Breysse PN, Chapin R, Marcus M. NTP-CERHR expert panel update on the reproductive and developmental toxicity of di (2-ethylhexyl) phthalate. Reprod Toxicol. 2006;22:291–399.

    Article  CAS  Google Scholar 

  5. Rochester JR, Bolden AL. Bisphenol S and F: a systematic review and comparison of the hormonal activity of bisphenol A substitutes. Environ Health Perspect. 2015;123(7):643–50.

    Article  CAS  Google Scholar 

  6. LaKind JS, Naiman DQ. Daily intake of bisphenol A and potential sources of exposure: 2005–2006 National Health and Nutrition Examination Survey. J Expo Sci Environ Epidemiol. 2011;21(3):272–9.

    Article  CAS  Google Scholar 

  7. Goodson A, Summerfield W, Cooper I. Survey of bisphenol A and bisphenol F in canned foods. Food Addit Contam. 2002;19(8):796–802.

    Article  CAS  Google Scholar 

  8. Vandenberg LN, Gerona RR, Kannan K, Taylor JA, van Breemen RB, Dickenson CA, et al. A round robin approach to the analysis of bisphenol A (BPA) in human blood samples. Environ Health. 2014;13(1):25.

    Article  CAS  Google Scholar 

  9. Ouchi K, Watanabe S. Measurement of bisphenol A in human urine using liquid chromatography with multi-channel coulometric electrochemical detection. J Chromatogr B. 2002;780(2):365–70.

    Article  CAS  Google Scholar 

  10. Rubin BS. Bisphenol A: an endocrine disruptor with widespread exposure and multiple effects. J Steroid Biochem Mol Biol. 2011;127(1–2):27–34.

    Article  CAS  Google Scholar 

  11. Vandenberg LN, Chahoud I, Heindel JJ, Padmanabhan V, Paumgartten FJ, Schoenfelder G. Urinary, circulating, and tissue biomonitoring studies indicate widespread exposure to bisphenol A. Cien Saude Colet. 2012;17(2):407–34.

    Article  Google Scholar 

  12. Flint S, Markle T, Thompson S, Wallace E. Bisphenol A exposure, effects, and policy: a wildlife perspective. J Environ Manage. 2012;104:19–34.

    Article  CAS  Google Scholar 

  13. Huang Y, Wong C, Zheng J, Bouwman H, Barra R, Wahlström B, et al. Bisphenol A (BPA) in China: a review of sources, environmental levels, and potential human health impacts. Environ Int. 2012;42:91–9.

    Article  CAS  Google Scholar 

  14. Nam S-H, Seo Y-M, Kim M-G. Bisphenol A migration from polycarbonate baby bottle with repeated use. Chemosphere. 2010;79(9):949–52.

    Article  CAS  Google Scholar 

  15. Liao C, Liu F, Kannan K. Bisphenol S, a new bisphenol analogue, in paper products and currency bills and its association with bisphenol A residues. Environ Sci Technol. 2012;46(12):6515–22.

    Article  CAS  Google Scholar 

  16. Michałowicz J. Bisphenol A—sources, toxicity and biotransformation. Environ Toxicol Pharmacol. 2014;37(2):738–58. Epub 2014/03/19.eng.

    Article  CAS  Google Scholar 

  17. Sodré FF, Locatelli MAF, Jardim WF. Occurrence of emerging contaminants in Brazilian drinking waters: a sewage-to-tap issue. Water Air Soil Pollut. 2010;206(1–4):57–67.

    Article  CAS  Google Scholar 

  18. Félix-Cañedo TE, Durán-Álvarez JC, Jiménez-Cisneros B. The occurrence and distribution of a group of organic micropollutants in Mexico City’s water sources. Sci Total Environ. 2013;454:109–18.

    Article  CAS  Google Scholar 

  19. Nakamura K, Itoh K, Yoshimoto K, Sugimoto T, Fushiki S. Prenatal and lactational exposure to low-doses of bisphenol A alters brain monoamine concentration in adult mice. Neurosci Lett. 2010;484(1):66–70.

    Article  CAS  Google Scholar 

  20. Knaak JB, Sullivan LJ. Metabolism of bisphenol A in the rat. Toxicol Appl Pharmacol. 1966;8(2):175–84.

    Article  CAS  Google Scholar 

  21. Jaeg JP, Perdu E, Dolo L, Debrauwer L, Cravedi J-P, Zalko D. Characterization of new bisphenol A metabolites produced by CD1 mice liver microsomes and S9 fractions. J Agric Food Chem. 2004;52(15):4935–42.

    Article  CAS  Google Scholar 

  22. Kovacic P. How safe is bisphenol A? Fundamentals of toxicity: metabolism, electron transfer and oxidative stress. Amsterdam: Elsevier; 2010.

    Google Scholar 

  23. Nakamura K, Itoh K, Dai H, Han L, Wang X, Kato S, et al. Prenatal and lactational exposure to low-doses of bisphenol A alters adult mice behavior. Brain Dev. 2012;34(1):57–63.

    Article  Google Scholar 

  24. Cunha S, Cunha C, Ferreira A, Fernandes J. Determination of bisphenol A and bisphenol B in canned seafood combining QuEChERS extraction with dispersive liquid–liquid microextraction followed by gas chromatography–mass spectrometry. Anal Bioanal Chem. 2012;404(8):2453–63.

    Article  CAS  Google Scholar 

  25. Rees Clayton EM, Todd M, Dowd JB, Aiello AE. The impact of bisphenol A and triclosan on immune parameters in the US population, NHANES 2003–2006. Environ Health Perspect. 2011;119(3):390–6.

    Article  CAS  Google Scholar 

  26. Gulnaz O, Dincer S. Biodegradation of bisphenol A by Chlorella vulgaris and Aeromonas hydrophilia. J Appl Biol Sci. 2009;3(2):79–84.

    Google Scholar 

  27. Hirooka T, Nagase H, Uchida K, Hiroshige Y, Ehara Y, Nishikawa J, et al. Biodegradation of bisphenol A and disappearance of its estrogenic activity by the green alga Chlorella fusca var. vacuolata. Environ Toxicol Chem. 2005;24(8):1896–901.

    Article  CAS  Google Scholar 

  28. Gattullo CE, Bährs H, Steinberg CE, Loffredo E. Removal of bisphenol A by the freshwater green alga Monoraphidium braunii and the role of natural organic matter. Sci Total Environ. 2012;416:501–6.

    Article  CAS  Google Scholar 

  29. Loffredo E, Traversa A, Senesi N. Biodecontamination of water from bisphenol A using ligninolytic fungi and the modulation role of humic acids. Ecotoxicol Environ Saf. 2012;79:288–93.

    Article  CAS  Google Scholar 

  30. Hirano T, Honda Y, Watanabe T, Kuwahara M. Degradation of bisphenol A by the lignin-degrading enzyme, manganese peroxidase, produced by the white-rot basidiomycete, Pleurotus ostreatus. Biosci Biotechnol Biochem. 2000;64(9):1958–62.

    Article  CAS  Google Scholar 

  31. Cajthaml T, Křesinová Z, Svobodová K, Möder M. Biodegradation of endocrine-disrupting compounds and suppression of estrogenic activity by ligninolytic fungi. Chemosphere. 2009;75(6):745–50.

    Article  CAS  Google Scholar 

  32. Wen C, Yuichi H, Masako S, Michihiko S, Nakahido K, Cakira H. Biodegradation of BPA by fungi. Appl Biochem Biotechnol. 2005;120:0273–2289.

    Google Scholar 

  33. Kamaraj M, Manjudevi M, Sivaraj R. Degradation of bisphenol A by Aspergillus Sp. isolated from tannery industry effluent. Int J Pharm Life Sci. 2012;3(4):1585–9.

    CAS  Google Scholar 

  34. Shin E, Choi HT, Song H. Biodegradation of endocrine-disrupting bisphenol A by white rot fungus Irpex lacteus. J Microbiol Biotechnol. 2007;17(7):1147.

    CAS  Google Scholar 

  35. Arboleda C, Cabana H, De Pril E, Jones JP, Jiménez G, Mejía A, et al. Elimination of bisphenol A and triclosan using the enzymatic system of autochthonous Colombian forest fungi. ISRN Biotechnol. 2013;2013:1.

    Article  CAS  Google Scholar 

  36. Atkinson A, Roy D. In vivo DNA adduct formation by bisphenol A. Environ Mol Mutagen. 1995;26(1):60–6.

    Article  CAS  Google Scholar 

  37. Bae S, Kim JH, Lim Y-H, Park HY, Hong Y-C. Associations of bisphenol A exposure with heart rate variability and blood pressure. Hypertension. 2012;60(3):786–93.

    Article  CAS  Google Scholar 

  38. Lang IA, Galloway TS, Scarlett A, Henley WE, Depledge M, Wallace RB, et al. Association of urinary bisphenol A concentration with medical disorders and laboratory abnormalities in adults. JAMA. 2008;300(11):1303–10.

    Article  CAS  Google Scholar 

  39. Sugiura-Ogasawara M, Ozaki Y, Sonta SI, Makino T, Suzumori K. Exposure to bisphenol A is associated with recurrent miscarriage. Hum Reprod. 2005;20(8):2325–9.

    Article  CAS  Google Scholar 

  40. Cantonwine D, Meeker JD, Hu H, Sánchez BN, Lamadrid-Figueroa H, Mercado-García A, et al. Bisphenol A exposure in Mexico City and risk of prematurity: a pilot nested case control study. Environ Health. 2010;9(1):62.

    Article  CAS  Google Scholar 

  41. Meeker JD, Ehrlich S, Toth TL, Wright DL, Calafat AM, Trisini AT, et al. Semen quality and sperm DNA damage in relation to urinary bisphenol A among men from an infertility clinic. Reprod Toxicol. 2010;30(4):532–9.

    Article  CAS  Google Scholar 

  42. Li D-K, Zhou Z, Miao M, He Y, Wang J, Ferber J, et al. Urine bisphenol-A (BPA) level in relation to semen quality. Fertil Steril. 2011;95(2):625–30.e4.

    Article  CAS  Google Scholar 

  43. De Jong KA, Walder K, Gibert Y. Early-life exposure of bisphenol A and obesity. In: Bisphenol A: sources, risks of environmental exposure and human health effects; 2014. p. 1.

    Google Scholar 

  44. Akash MSH, Sabir S, Rehman K. Bisphenol A-induced metabolic disorders: from exposure to mechanism of action. Environ Toxicol Pharmacol. 2020;77:103373. Epub 2020/03/23.eng.

    Article  CAS  Google Scholar 

  45. Haq MEU, Akash MSH, Rehman K, Mahmood MH. Chronic exposure of bisphenol A impairs carbohydrate and lipid metabolism by altering corresponding enzymatic and metabolic pathways. Environ Toxicol Pharmacol. 2020;78:103387. Epub 2020/04/28.eng.

    Article  CAS  Google Scholar 

  46. Irshad K, Rehman K, Sharif H, Tariq M, Murtaza G, Ibrahim M, et al. Bisphenol A as an EDC in metabolic disorders. In: Akash MSH, Rehman K, Hashmi MZ, editors. Endocrine disrupting chemicals-induced metabolic disorders and treatment strategies. Cham: Springer International; 2021. p. 251–63.

    Chapter  Google Scholar 

  47. Haq MEU, Akash MSH, Sabir S, Mahmood MH, Rehman K. Human exposure to bisphenol A through dietary sources and development of diabetes mellitus: a cross-sectional study in Pakistani population. Environ Sci Pollut Res Int. 2020;27(21):26262–75. Epub 2020/05/04.eng.

    Article  CAS  Google Scholar 

  48. Inadera H. Neurological effects of bisphenol A and its analogues. Int J Med Sci. 2015;12(12):926–36. Pubmed Central PMCID: PMC4661290. Epub 2015/12/15.eng.

    Article  CAS  Google Scholar 

  49. Shankar A, Teppala S. Relationship between urinary bisphenol A levels and diabetes mellitus. J Clin Endocrinol Metabol. 2011;96(12):3822–6.

    Article  CAS  Google Scholar 

  50. Wang T, Li M, Chen B, Xu M, Xu Y, Huang Y, et al. Urinary bisphenol A (BPA) concentration associates with obesity and insulin resistance. J Clin Endocrinol Metabol. 2012;97(2):E223–E7.

    Article  CAS  Google Scholar 

  51. Patisaul HB, Fortino AE, Polston EK. Neonatal genistein or bisphenol-A exposure alters sexual differentiation of the AVPV. Neurotoxicol Teratol. 2006;28(1):111–8.

    Article  CAS  Google Scholar 

  52. Hanoune J. Evidence of altered brain sexual differentiation in mice exposed perinatally to low, environmentally relevant levels of bisphenol A. Médecine Thérapeutique/médecine de la reproduction. 2007;9(1):10.

    Google Scholar 

  53. Rubin BS, Lenkowski JR, Schaeberle CM, Vandenberg LN, Ronsheim PM, Soto AM. Evidence of altered brain sexual differentiation in mice exposed perinatally to low, environmentally relevant levels of bisphenol A. Endocrinology. 2006;147(8):3681–91.

    Article  CAS  Google Scholar 

  54. Porrini S, Belloni V, Della Seta D, Farabollini F, Giannelli G, Dessì-Fulgheri F. Early exposure to a low dose of bisphenol A affects socio-sexual behavior of juvenile female rats. Brain Res Bull. 2005;65(3):261–6.

    Article  CAS  Google Scholar 

  55. Miyagawa K, Narita M, Narita M, Akama H, Suzuki T. Memory impairment associated with a dysfunction of the hippocampal cholinergic system induced by prenatal and neonatal exposures to bisphenol-A. Neurosci Lett. 2007;418(3):236–41.

    Article  CAS  Google Scholar 

  56. Wolstenholme JT, Taylor JA, Shetty SR, Edwards M, Connelly JJ, Rissman EF. Gestational exposure to low dose bisphenol A alters social behavior in juvenile mice. PLoS One. 2011;6(9):e25448.

    Article  CAS  Google Scholar 

  57. Narita M, Miyagawa K, Mizuo K, Yoshida T, Suzuki T. Changes in central dopaminergic systems and morphine reward by prenatal and neonatal exposure to bisphenol-A in mice: evidence for the importance of exposure period. Addict Biol. 2007;12(2):167–72.

    Article  CAS  Google Scholar 

  58. Leranth C, Hajszan T, Szigeti-Buck K, Bober J, MacLusky NJ. Bisphenol A prevents the synaptogenic response to estradiol in hippocampus and prefrontal cortex of ovariectomized nonhuman primates. Proc Natl Acad Sci. 2008;105(37):14187–91.

    Article  CAS  Google Scholar 

  59. Nakagami A, Negishi T, Kawasaki K, Imai N, Nishida Y, Ihara T, et al. Alterations in male infant behaviors towards its mother by prenatal exposure to bisphenol A in cynomolgus monkeys (Macaca fascicularis) during early suckling period. Psychoneuroendocrinology. 2009;34(8):1189–97.

    Article  CAS  Google Scholar 

  60. Braun JM, Yolton K, Dietrich KN, Hornung R, Ye X, Calafat AM, et al. Prenatal bisphenol A exposure and early childhood behavior. Environ Health Perspect. 2009;117(12):1945–52.

    Article  CAS  Google Scholar 

  61. Braun JM, Kalkbrenner AE, Calafat AM, Yolton K, Ye X, Dietrich KN, et al. Impact of early-life bisphenol A exposure on behavior and executive function in children. Pediatrics. 2011;128(5):873–82.

    Article  Google Scholar 

  62. Perera F, Vishnevetsky J, Herbstman JB, Calafat AM, Xiong W, Rauh V, et al. Prenatal bisphenol A exposure and child behavior in an inner-city cohort. Environ Health Perspect. 2012;120(8):1190–4.

    Article  CAS  Google Scholar 

  63. Harley KG, Gunier RB, Kogut K, Johnson C, Bradman A, Calafat AM, et al. Prenatal and early childhood bisphenol A concentrations and behavior in school-aged children. Environ Res. 2013;126:43–50.

    Article  CAS  Google Scholar 

  64. Miodovnik A, Engel SM, Zhu C, Ye X, Soorya LV, Silva MJ, et al. Endocrine disruptors and childhood social impairment. Neurotoxicology. 2011;32(2):261–7.

    Article  CAS  Google Scholar 

  65. Williams SA, Jasarevic E, Vandas GM, Warzak DA, Geary DC, Ellersieck MR, et al. Effects of developmental bisphenol A exposure on reproductive-related behaviors in California mice (Peromyscus californicus): a monogamous animal model. PLoS One. 2013;8(2):e55698.

    Article  CAS  Google Scholar 

  66. Chevrier J, Gunier RB, Bradman A, Holland NT, Calafat AM, Eskenazi B, et al. Maternal urinary bisphenol A during pregnancy and maternal and neonatal thyroid function in the CHAMACOS study. Environ Health Perspect. 2013;121(1):138–44.

    Article  CAS  Google Scholar 

  67. Cox KH, Gatewood JD, Howeth C, Rissman EF. Gestational exposure to bisphenol A and cross-fostering affect behaviors in juvenile mice. Horm Behav. 2010;58(5):754–61.

    Article  CAS  Google Scholar 

  68. Yolton K, Xu Y, Strauss D, Altaye M, Calafat AM, Khoury J. Prenatal exposure to bisphenol A and phthalates and infant neurobehavior. Neurotoxicol Teratol. 2011;33(5):558–66.

    Article  CAS  Google Scholar 

  69. Weiss B. The intersection of neurotoxicology and endocrine disruption. Neurotoxicology. 2012;33(6):1410–9.

    Article  CAS  Google Scholar 

  70. Galloway T, Cipelli R, Guralnik J, Ferrucci L, Bandinelli S, Corsi AM, et al. Daily bisphenol A excretion and associations with sex hormone concentrations: results from the InCHIANTI adult population study. Environ Health Perspect. 2010;118(11):1603–8.

    Article  CAS  Google Scholar 

  71. Kundakovic M, Gudsnuk K, Franks B, Madrid J, Miller RL, Perera FP, et al. Sex-specific epigenetic disruption and behavioral changes following low-dose in utero bisphenol A exposure. Proc Natl Acad Sci. 2013;110(24):9956–61.

    Article  CAS  Google Scholar 

  72. Ishido M, Yonemoto J, Morita M. Mesencephalic neurodegeneration in the orally administered bisphenol A-caused hyperactive rats. Toxicol Lett. 2007;173(1):66–72.

    Article  CAS  Google Scholar 

  73. Matsuda S, Matsuzawa D, Ishii D, Tomizawa H, Sutoh C, Nakazawa K, et al. Effects of perinatal exposure to low dose of bisphenol A on anxiety like behavior and dopamine metabolites in brain. Prog Neuropsychopharmacol Biol Psychiatry. 2012;39(2):273–9.

    Article  CAS  Google Scholar 

  74. Patisaul HB, Sullivan AW, Radford ME, Walker DM, Adewale HB, Winnik B, et al. Anxiogenic effects of developmental bisphenol A exposure are associated with gene expression changes in the juvenile rat amygdala and mitigated by soy. PLoS One. 2012;7(9):e43890.

    Article  CAS  Google Scholar 

  75. Adewale HB, Todd KL, Mickens JA, Patisaul HB. The impact of neonatal bisphenol-A exposure on sexually dimorphic hypothalamic nuclei in the female rat. Neurotoxicology. 2011;32(1):38–49.

    Article  CAS  Google Scholar 

  76. Sullivan AW, Beach EC, Stetzik LA, Perry A, D'Addezio AS, Cushing BS, et al. A novel model for neuroendocrine toxicology: neurobehavioral effects of BPA exposure in a prosocial species, the prairie vole (Microtus ochrogaster). Endocrinology. 2014;155(10):3867–81.

    Article  CAS  Google Scholar 

  77. Itoh K, Yaoi T, Fushiki S. Bisphenol A, an endocrine-disrupting chemical, and brain development. Neuropathology. 2012;32(4):447–57.

    Article  Google Scholar 

  78. Vandenberg LN, Maffini MV, Sonnenschein C, Rubin BS, Soto AM. Bisphenol-A and the great divide: a review of controversies in the field of endocrine disruption. Endocr Rev. 2009;30(1):75–95.

    Article  CAS  Google Scholar 

  79. Vandenberg LN, Colborn T, Hayes TB, Heindel JJ, Jacobs DR Jr, Lee D-H, et al. Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev. 2012;33(3):378–455.

    Article  CAS  Google Scholar 

  80. Kawai K, Nozaki T, Nishikata H, Aou S, Takii M, Kubo C. Aggressive behavior and serum testosterone concentration during the maturation process of male mice: the effects of fetal exposure to bisphenol A. Environ Health Perspect. 2003;111(2):175–8.

    Article  CAS  Google Scholar 

  81. Narita M, Miyagawa K, Mizuo K, Yoshida T, Suzuki T. Prenatal and neonatal exposure to low-dose of bisphenol-A enhance the morphine-induced hyperlocomotion and rewarding effect. Neurosci Lett. 2006;402(3):249–52.

    Article  CAS  Google Scholar 

  82. Ryan BC, Vandenbergh JG. Developmental exposure to environmental estrogens alters anxiety and spatial memory in female mice. Horm Behav. 2006;50(1):85–93.

    Article  CAS  Google Scholar 

  83. Gioiosa L, Parmigiani S, Vom Saal FS, Palanza P. The effects of bisphenol A on emotional behavior depend upon the timing of exposure, age and gender in mice. Horm Behav. 2013;63(4):598–605.

    Article  CAS  Google Scholar 

  84. Nakamura K, Itoh K, Yaoi T, Fujiwara Y, Sugimoto T, Fushiki S. Murine neocortical histogenesis is perturbed by prenatal exposure to low doses of bisphenol A. J Neurosci Res. 2006;84(6):1197–205.

    Article  CAS  Google Scholar 

  85. Martini M, Miceli D, Gotti S, Viglietti-Panzica C, Fissore E, Palanza P, et al. Effects of perinatal administration of bisphenol A on the neuronal nitric oxide synthase expressing system in the hypothalamus and limbic system of CD1 mice. J Neuroendocrinol. 2010;22(9):1004–12.

    Article  CAS  Google Scholar 

  86. Tian YH, Baek JH, Lee SY, Jang CG. Prenatal and postnatal exposure to bisphenol A induces anxiolytic behaviors and cognitive deficits in mice. Synapse. 2010;64(6):432–9.

    Article  CAS  Google Scholar 

  87. Suzuki T, Mizuo K, Nakazawa H, Funae Y, Fushiki S, Fukushima S, et al. Prenatal and neonatal exposure to bisphenol-A enhances the central dopamine D1 receptor-mediated action in mice: enhancement of the methamphetamine-induced abuse state. Neuroscience. 2003;117(3):639–44.

    Article  CAS  Google Scholar 

  88. Zhou R, Bai Y, Yang R, Zhu Y, Chi X, Li L, et al. Abnormal synaptic plasticity in basolateral amygdala may account for hyperactivity and attention-deficit in male rat exposed perinatally to low-dose bisphenol-A. Neuropharmacology. 2011;60(5):789–98.

    Article  CAS  Google Scholar 

  89. Fujimoto T, Kubo K, Aou S. Prenatal exposure to bisphenol A impairs sexual differentiation of exploratory behavior and increases depression-like behavior in rats. Brain Res. 2006;1068(1):49–55.

    Article  CAS  Google Scholar 

  90. Ishido M, Masuo Y, Terasaki M, Morita M. Rat hyperactivity by bisphenol A, but not by its derivatives, 3-hydroxybisphenol A or bisphenol A 3, 4-quinone. Toxicol Lett. 2011;206(3):300–5.

    Article  CAS  Google Scholar 

  91. Fujimoto T, Kubo K, Nishikawa Y, Aou S. Postnatal exposure to low-dose bisphenol A influences various emotional conditions. J Toxicol Sci. 2013;38(4):539–46.

    Article  CAS  Google Scholar 

  92. Poimenova A, Markaki E, Rahiotis C, Kitraki E. Corticosterone-regulated actions in the rat brain are affected by perinatal exposure to low dose of bisphenol A. Neuroscience. 2010;167(3):741–9.

    Article  CAS  Google Scholar 

  93. Adriani W, Seta DD, Dessì-Fulgheri F, Farabollini F, Laviola G. Altered profiles of spontaneous novelty seeking, impulsive behavior, and response to D-amphetamine in rats perinatally exposed to bisphenol A. Environ Health Perspect. 2003;111(4):395–401.

    Article  CAS  Google Scholar 

  94. Xu X-h, Zhang J, Wang Y-m, Ye YP, Luo Q-q. Perinatal exposure to bisphenol-A impairs learning-memory by concomitant down-regulation of N-methyl-D-aspartate receptors of hippocampus in male offspring mice. Horm Behav. 2010;58(2):326–33.

    Article  CAS  Google Scholar 

  95. Carr RL, Bertasi FR, Betancourt AM, Bowers SD, Gandy BS, Ryan PL, et al. Effect of neonatal rat bisphenol A exposure on performance in the Morris water maze. J Toxicol Environ Health Pt A Curr Issues. 2003;66(21):2077–88.

    Article  CAS  Google Scholar 

  96. Kubo K, Arai O, Ogata R, Omura M, Hori T, Aou S. Exposure to bisphenol A during the fetal and suckling periods disrupts sexual differentiation of the locus coeruleus and of behavior in the rat. Neurosci Lett. 2001;304(1–2):73–6.

    Article  CAS  Google Scholar 

  97. Aloisi AM, Della Seta D, Ceccarelli I, Farabollini F. Bisphenol-A differently affects estrogen receptors-α in estrous-cycling and lactating female rats. Neurosci Lett. 2001;310(1):49–52.

    Article  CAS  Google Scholar 

  98. Evans SF, Kobrosly RW, Barrett ES, Thurston SW, Calafat AM, Weiss B, et al. Prenatal bisphenol A exposure and maternally reported behavior in boys and girls. Neurotoxicology. 2014;45:91–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akash, M.S.H., Ejaz ul Haq, M., Sharif, H., Rehman, K. (2021). Bisphenol A and Neurological Disorders: From Exposure to Preventive Interventions. In: Akash, M.S.H., Rehman, K. (eds) Environmental Contaminants and Neurological Disorders. Emerging Contaminants and Associated Treatment Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-66376-6_9

Download citation

Publish with us

Policies and ethics