Skip to main content

Cigarette Smoking and Neurological Disorders: From Exposure to Therapeutic Interventions

  • Chapter
  • First Online:
Environmental Contaminants and Neurological Disorders

Abstract

Tobacco smoking is a major global health problem that kills millions of individuals annually and is responsible for many preventable deaths. Cigarette smoke is accompanied by several harmful effects on human health. Tobacco smoke consists of many toxic and carcinogenic chemicals. Human beings are exposed to tobacco smoke by smoking or using tobacco products or by inhalation of tobacco smoke from the environment. Nicotine is a major component of tobacco which exerts neurotoxic effects and is responsible for morphological and neurobiological changes in brain resulting in various neurological diseases. Smoking is a major risk factor for many non-communicable diseases. These can be prevented by reducing smoking and introducing lifestyle changes. Moreover, smoking cessation programs are of utmost importance to reduce the risks associated with cigarette smoke. Several behavioural and pharmacological interventions can be adapted to mitigate the harmful effects of smoking. Moreover, limiting the exposure to passive smoke is also of paramount importance to minimize its harmful effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Das SK. Harmful health effects of cigarette smoking. Mol Cell Biochem. 2003;253(1–2):159–65.

    Article  CAS  Google Scholar 

  2. Cheraghi M, Salvi S. Environmental tobacco smoke (ETS) and respiratory health in children. Eur J Pediatr. 2009;168(8):897–905.

    Article  CAS  Google Scholar 

  3. US Department of Health and Human Services. The health consequences of smoking—50 years of progress: a report of the Surgeon General. Atlanta: US Department of Health and Human Services, Centers for Disease; 2014.

    Google Scholar 

  4. Fratiglioni L, Wang H-X. Smoking and Parkinson’s and Alzheimer’s disease: review of the epidemiological studies. Behav Brain Res. 2000;113(1–2):117–20.

    Article  CAS  Google Scholar 

  5. Gaysina D, Fergusson DM, Leve LD, Horwood J, Reiss D, Shaw DS, et al. Maternal smoking during pregnancy and offspring conduct problems: evidence from 3 independent genetically sensitive research designs. JAMA Psychiat. 2013;70(9):956–63.

    Article  Google Scholar 

  6. Jamal A, Phillips E, Gentzke AS, Homa DM, Babb SD, King BA, et al. Current cigarette smoking among adults—United States, 2016. Morb Mortal Wkly Rep. 2018;67(2):53.

    Article  Google Scholar 

  7. Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006;3(11):e442.

    Article  Google Scholar 

  8. Rodgman A, Smith C, Perfetti TA. The composition of cigarette smoke: a retrospective, with emphasis on polycyclic components. Hum Exp Toxicol. 2000;19(10):573–95.

    Article  CAS  Google Scholar 

  9. Baker RR. Smoke generation inside a burning cigarette: modifying combustion to develop cigarettes that may be less hazardous to health. Prog Energy Combust Sci. 2006;32(4):373–85.

    Article  CAS  Google Scholar 

  10. Swan GE, Lessov-Schlaggar CN. The effects of tobacco smoke and nicotine on cognition and the brain. Neuropsychol Rev. 2007;17(3):259–73.

    Article  Google Scholar 

  11. Ambrose JA, Barua RS. The pathophysiology of cigarette smoking and cardiovascular disease: an update. J Am Coll Cardiol. 2004;43(10):1731–7.

    Article  CAS  Google Scholar 

  12. Choi S, Krishnan J, Ruckmani K. Cigarette smoke and related risk factors in neurological disorders: an update. Biomed Pharmacother. 2017;85:79–86.

    Article  CAS  Google Scholar 

  13. Sabbagh MN, Lukas RJ, Sparks DL, Reid RT. The nicotinic acetylcholine receptor, smoking, and Alzheimer’s disease. J Alzheimers Dis. 2002;4(4):317–25.

    Article  CAS  Google Scholar 

  14. Melroy-Greif WE, Stitzel JA, Ehringer MA. Nicotinic acetylcholine receptors: upregulation, age-related effects and associations with drug use. Genes Brain Behav. 2016;15(1):89–107.

    Article  CAS  Google Scholar 

  15. Brody AL, Mandelkern MA, Jarvik ME, Lee GS, Smith EC, Huang JC, et al. Differences between smokers and nonsmokers in regional gray matter volumes and densities. Biol Psychiatry. 2004;55(1):77–84.

    Article  Google Scholar 

  16. Brody AL. Functional brain imaging of tobacco use and dependence. J Psychiatr Res. 2006;40(5):404–18.

    Article  Google Scholar 

  17. Liu G, Huang W, Moir RD, Vanderburg CR, Lai B, Peng Z, et al. Metal exposure and Alzheimer’s pathogenesis. J Struct Biol. 2006;155(1):45–51.

    Article  CAS  Google Scholar 

  18. Shih R, Glass T, Bandeen-Roche K, Carlson M, Bolla K, Todd A, et al. Environmental lead exposure and cognitive function in community-dwelling older adults. Neurology. 2006;67(9):1556–62.

    Article  CAS  Google Scholar 

  19. Weisskopf MG, Wright RO, Schwartz J, Spiro A III, Sparrow D, Aro A, et al. Cumulative lead exposure and prospective change in cognition among elderly men: the VA normative aging study. Am J Epidemiol. 2004;160(12):1184–93.

    Article  Google Scholar 

  20. Stewart W, Schwartz B, Davatzikos C, Shen D, Liu D, Wu X, et al. Past adult lead exposure is linked to neurodegeneration measured by brain MRI. Neurology. 2006;66(10):1476–84.

    Article  CAS  Google Scholar 

  21. Rowland AS, McKinstry RC. Lead toxicity, white matter lesions, and aging. Bengaluru: AAN Enterprises; 2006.

    Book  Google Scholar 

  22. Novotny TE, Bialous SA, Burt L, Curtis C, Costa VL, Iqtidar SU, et al. The environmental and health impacts of tobacco agriculture, cigarette manufacture and consumption. Bull World Health Organ. 2015;93:877–80.

    Article  Google Scholar 

  23. World Health Organization. WHO report on the global tobacco epidemic 2019: offer help to quit tobacco use. Geneva: World Health Organization; 2019.

    Google Scholar 

  24. Bonnie RJ, Stratton K, Kwan LY. Public health implications of raising the minimum age of legal access to tobacco products. Washington, DC: National Academies Press; 2015.

    Book  Google Scholar 

  25. Noland D, Drisko JA, Wagner L. Integrative and functional medical nutrition therapy: principles and practices. London: Springer Nature; 2020.

    Book  Google Scholar 

  26. World Health Organization. Cardiovascular diseases (CVDs). Geneva: World Health Organization; 2017.

    Google Scholar 

  27. Son Y-J, Lee H-J. Association between persistent smoking after a diagnosis of heart failure and adverse health outcomes: a systematic review and meta-analysis. Tob Induc Dis. 2020; 18(5):1-11

    Google Scholar 

  28. Villablanca AC, McDonald JM, Rutledge JC. Smoking and cardiovascular disease. Clin Chest Med. 2000;21(1):159–72.

    Article  CAS  Google Scholar 

  29. Harel-Meir M, Sherer Y, Shoenfeld Y. Tobacco smoking and autoimmune rheumatic diseases. Nat Clin Pract Rheumatol. 2007;3(12):707–15.

    Article  CAS  Google Scholar 

  30. Bernhard D, Moser C, Backovic A, Wick G. Cigarette smoke—an aging accelerator? Exp Gerontol. 2007;42(3):160–5.

    Article  CAS  Google Scholar 

  31. Alonso JR, Cardellach F, López S, Casademont J, Miró Ò. Carbon monoxide specifically inhibits cytochrome c oxidase of human mitochondrial respiratory chain. Pharmacol Toxicol. 2003;93(3):142–6.

    Article  CAS  Google Scholar 

  32. Ahn C, Mulligan P. Smoking-the bane of wound healing: biomedical interventions and social influences. Adv Skin Wound Care. 2008;21(5):227–36.

    Article  Google Scholar 

  33. Kosecik M, Erel O, Sevinc E, Selek S. Increased oxidative stress in children exposed to passive smoking. Int J Cardiol. 2005;100(1):61–4.

    Article  Google Scholar 

  34. Ozguner F, Koyu A, Cesur G. Active smoking causes oxidative stress and decreases blood melatonin levels. Toxicol Ind Health. 2005;21(10):21–6.

    Article  CAS  Google Scholar 

  35. Ulvik A, Ebbing M, Hustad S, Midttun Ø, Nygard O, Vollset SE, et al. Long-and short-term effects of tobacco smoking on circulating concentrations of B vitamins. Clin Chem. 2010;56(5):755–63.

    Article  CAS  Google Scholar 

  36. Bezard E, Brotchie JM, Gross CE. Pathophysiology of levodopa-induced dyskinesia: potential for new therapies. Nat Rev Neurosci. 2001;2(8):577–88.

    Article  CAS  Google Scholar 

  37. Piao W-H, Campagnolo D, Dayao C, Lukas RJ, Wu J, Shi F-D. Nicotine and inflammatory neurological disorders. Acta Pharmacol Sin. 2009;30(6):715–22.

    Article  CAS  Google Scholar 

  38. Quik M, Bordia T, O’Leary K. Nicotinic receptors as CNS targets for Parkinson’s disease. Biochem Pharmacol. 2007;74(8):1224–34.

    Article  CAS  Google Scholar 

  39. Park HJ, Lee PH, Ahn YW, Choi YJ, Lee G, Lee DY, et al. Neuroprotective effect of nicotine on dopaminergic neurons by anti-inflammatory action. Eur J Neurosci. 2007;26(1):79–89.

    Article  Google Scholar 

  40. Quik M, Parameswaran N, McCallum SE, Bordia T, Bao S, McCormack A, et al. Chronic oral nicotine treatment protects against striatal degeneration in MPTP-treated primates. J Neurochem. 2006;98(6):1866–75.

    Article  CAS  Google Scholar 

  41. Quik M. Smoking, nicotine and Parkinson’s disease. Trends Neurosci. 2004;27(9):561–8.

    Article  CAS  Google Scholar 

  42. Janhunen S, Ahtee L. Differential nicotinic regulation of the nigrostriatal and mesolimbic dopaminergic pathways: implications for drug development. Neurosci Biobehav Rev. 2007;31(3):287–314.

    Article  CAS  Google Scholar 

  43. Soto-Otero R, Méndez-Álvarez E, Hermida-Ameijeiras A, López-Real AMA, Labandeira-Garcı́a JL. Effects of (−)-nicotine and (−)-cotinine on 6-hydroxydopamine-induced oxidative stress and neurotoxicity: relevance for Parkinson’s disease. Biochem Pharmacol. 2002;64(1):125–35.

    Google Scholar 

  44. Howard LA, Miksys S, Hoffmann E, Mash D, Tyndale RF. Brain CYP2E1 is induced by nicotine and ethanol in rat and is higher in smokers and alcoholics. Br J Pharmacol. 2003;138(7):1376–86.

    Article  CAS  Google Scholar 

  45. Miksys S, Tyndale R. Nicotine induces brain CYP enzymes: relevance to Parkinson’s disease. Parkinson’s disease and related disorders. Berlin: Springer; 2006. p. 177–80.

    Google Scholar 

  46. Mann A, Miksys S, Lee A, Mash DC, Tyndale RF. Induction of the drug metabolizing enzyme CYP2D in monkey brain by chronic nicotine treatment. Neuropharmacology. 2008;55(7):1147–55.

    Article  CAS  Google Scholar 

  47. Cormier A, Morin C, Zini R, Tillement J-P, Lagrue G. Nicotine protects rat brain mitochondria against experimental injuries. Neuropharmacology. 2003;44(5):642–52.

    Article  CAS  Google Scholar 

  48. Newman MB, Arendash GW, Shytle RD, Bickford PC, Tighe T, Sanberg PR. Nicotine’s oxidative and antioxidant properties in CNS. Life Sci. 2002;71(24):2807–20.

    Article  CAS  Google Scholar 

  49. Xie Y-X, Bezard E, Zhao B-L. Investigating the receptor-independent neuroprotective mechanisms of nicotine in mitochondria. J Biol Chem. 2005;280(37):32405–12.

    Article  CAS  Google Scholar 

  50. Yoshikawa H, Kurokawa M, Ozaki N, Nara K, Atou K, Takada E, et al. Nicotine inhibits the production of proinflammatory mediators in human monocytes by suppression of I-κB phosphorylation and nuclear factor-κB transcriptional activity through nicotinic acetylcholine receptor α7. Clin Exp Immunol. 2006;146(1):116–23.

    Article  CAS  Google Scholar 

  51. Picciotto MR, Zoli M. Neuroprotection via nAChRs: the role of nAChRs in neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease. Front Biosci. 2008;13(2):492–504.

    Article  CAS  Google Scholar 

  52. Quik M, McIntosh JM. Striatal α6* nicotinic acetylcholine receptors: potential targets for Parkinson’s disease therapy. J Pharmacol Exp Ther. 2006;316(2):481–9.

    Article  CAS  Google Scholar 

  53. Perez XA, Bordia T, Mcintosh JM, Grady SR, Quik M. Long-term nicotine treatment differentially regulates striatal a6a4b2* and a6 (nona4) b2* nAChR expression and function. Mol Pharmacol. 2008;74(3):844.

    Article  CAS  Google Scholar 

  54. Takeuchi H, Yanagida T, Inden M, Takata K, Kitamura Y, Yamakawa K, et al. Nicotinic receptor stimulation protects nigral dopaminergic neurons in rotenone-induced Parkinson’s disease models. J Neurosci Res. 2009;87(2):576–85.

    Article  CAS  Google Scholar 

  55. Shytle RD, Mori T, Townsend K, Vendrame M, Sun N, Zeng J, et al. Cholinergic modulation of microglial activation by α7 nicotinic receptors. J Neurochem. 2004;89(2):337–43.

    Article  CAS  Google Scholar 

  56. Khwaja M, McCormack A, McIntosh JM, Di Monte DA, Quik M. Nicotine partially protects against paraquat-induced nigrostriatal damage in mice; link to α6β2* nAChRs. J Neurochem. 2007;100(1):180–90.

    Article  CAS  Google Scholar 

  57. Exley R, Cragg S. Presynaptic nicotinic receptors: a dynamic and diverse cholinergic filter of striatal dopamine neurotransmission. Br J Pharmacol. 2008;153(S1):S283–S97.

    Article  CAS  Google Scholar 

  58. Garrido R, Mattson MP, Hennig B, Toborek M. Nicotine protects against arachidonic-acid-induced caspase activation, cytochrome c release and apoptosis of cultured spinal cord neurons. J Neurochem. 2001;76(5):1395–403.

    Article  CAS  Google Scholar 

  59. Toborek M, Garrido R, Malecki A, Kaiser S, Mattson MP, Hennig B, et al. Nicotine attenuates arachidonic acid-induced overexpression of nitric oxide synthase in cultured spinal cord neurons. Exp Neurol. 2000;161(2):609–20.

    Article  CAS  Google Scholar 

  60. Mai H, May WS, Gao F, Jin Z, Deng X. A functional role for nicotine in Bcl2 phosphorylation and suppression of apoptosis. J Biol Chem. 2003;278(3):1886–91.

    Article  CAS  Google Scholar 

  61. Orr C, Rowe D, Halliday G. An inflammatory review of Parkinson’s disease. Prog Neurobiol. 2002;68(5):325–40.

    Article  CAS  Google Scholar 

  62. Roceri M, Molteni R, Fumagalli F, Racagni G, Gennarelli M, Corsini GU, et al. Stimulatory role of dopamine on fibroblast growth factor-2 expression in rat striatum. J Neurochem. 2001;76(4):990–7.

    Article  CAS  Google Scholar 

  63. Matarredona ER, Santiago M, Venero JL, Cano J, Machado A. Group II metabotropic glutamate receptor activation protects striatal dopaminergic nerve terminals against MPP+-induced neurotoxicity along with brain-derived neurotrophic factor induction. J Neurochem. 2001;76(2):351–60.

    Article  CAS  Google Scholar 

  64. Sutherland GT, Siebert GA, Kril JJ, Mellick GD. Knowing me, knowing you: can a knowledge of risk factors for Alzheimer’s disease prove useful in understanding the pathogenesis of Parkinson’s disease? J Alzheimers Dis. 2011;25(3):395–415.

    Article  Google Scholar 

  65. Heininger K. A unifying hypothesis of Alzheimer’s disease. IV. Causation and sequence of events. Rev Neurosci. 2000;11(Suppl):213–328.

    Google Scholar 

  66. Debanne SM, Bielefeld RA, Cheruvu VK, Fritsch T, Rowland DY. Alzheimer’s disease and smoking: bias in cohort studies. J Alzheimers Dis. 2007;11(3):313–21.

    Article  CAS  Google Scholar 

  67. Breteler MM. Vascular risk factors for Alzheimer’s disease: an epidemiologic perspective. Neurobiol Aging. 2000;21(2):153–60.

    Article  CAS  Google Scholar 

  68. Rocca WA, Petersen RC, Knopman DS, Hebert LE, Evans DA, Hall KS, et al. Trends in the incidence and prevalence of Alzheimer’s disease, dementia, and cognitive impairment in the United States. Alzheimers Dement. 2011;7(1):80–93.

    Article  Google Scholar 

  69. Bowirrat A, Treves T, Friedland R, Korczyn A. Prevalence of Alzheimer’s type dementia in an elderly Arab population. Eur J Neurol. 2001;8(2):119–23.

    Article  CAS  Google Scholar 

  70. Durazzo TC, Insel PS, Weiner MW, Initiative ADN. Greater regional brain atrophy rate in healthy elderly subjects with a history of cigarette smoking. Alzheimers Dement. 2012;8(6):513–9.

    Article  Google Scholar 

  71. Almeida OP, Garrido GJ, Lautenschlager NT, Hulse GK, Jamrozik K, Flicker L. Smoking is associated with reduced cortical regional gray matter density in brain regions associated with incipient Alzheimer disease. Am J Geriatr Psychiatry. 2008;16(1):92–8.

    Article  Google Scholar 

  72. Zhang X, Salmeron BJ, Ross TJ, Geng X, Yang Y, Stein EA. Factors underlying prefrontal and insula structural alterations in smokers. Neuroimage. 2011;54(1):42–8.

    Article  Google Scholar 

  73. Gallinat J, Meisenzahl E, Jacobsen LK, Kalus P, Bierbrauer J, Kienast T, et al. Smoking and structural brain deficits: a volumetric MR investigation. Eur J Neurosci. 2006;24(6):1744–50.

    Article  Google Scholar 

  74. Krueger CE, Dean DL, Rosen HJ, Halabi C, Weiner M, Miller BL, et al. Longitudinal rates of lobar atrophy in frontotemporal dementia, semantic dementia, and Alzheimer’s disease. Alzheimer Dis Assoc Disord. 2010;24(1):43.

    Article  Google Scholar 

  75. Block ML, Calderón-Garcidueñas L. Air pollution: mechanisms of neuroinflammation and CNS disease. Trends Neurosci. 2009;32(9):506–16.

    Article  CAS  Google Scholar 

  76. Kwan J, Horsfield G, Bryant T, Gawne-Cain M, Durward G, Byrne CD, et al. IL-6 is a predictive biomarker for stroke associated infection and future mortality in the elderly after an ischemic stroke. Exp Gerontol. 2013;48(9):960–5.

    Article  CAS  Google Scholar 

  77. Di Raimondo D, Tuttolomondo A, Buttà C, Miceli S, Licata G, Pinto A. Effects of ACE-inhibitors and angiotensin receptor blockers on inflammation. Curr Pharm Des. 2012;18(28):4385–413.

    Article  Google Scholar 

  78. Tuttolomondo A, Di Sciacca R, Di Raimondo D, Pedone C, La Placa S, Pinto A, et al. Effects of clinical and laboratory variables and of pretreatment with cardiovascular drugs in acute ischaemic stroke: a retrospective chart review from the GIFA study. Int J Cardiol. 2011;151(3):318–22.

    Article  Google Scholar 

  79. Hackshaw A, Morris JK, Boniface S, Tang J-L, Milenković D. Low cigarette consumption and risk of coronary heart disease and stroke: meta-analysis of 141 cohort studies in 55 study reports. BMJ. 2018;360:j5855.

    Article  Google Scholar 

  80. Panagiotakos DB, Pitsavos C, Chrysohoou C, Skoumas J, Masoura C, Toutouzas P, et al. Effect of exposure to secondhand smoke on markers of inflammation: the ATTICA study. Am J Med. 2004;116(3):145–50.

    Article  CAS  Google Scholar 

  81. Friend K, Mernoff S, Block P, Reeve G. Smoking rates and smoking cessation among individuals with multiple sclerosis. Disabil Rehabil. 2006;28(18):1135–41.

    Article  CAS  Google Scholar 

  82. Hawkes C. Smoking is a risk factor for multiple sclerosis: a metanalysis. Mult Scler J. 2007;13(5):610–5.

    Article  CAS  Google Scholar 

  83. Koch M, van Harten A, Uyttenboogaart M, De Keyser J. Cigarette smoking and progression in multiple sclerosis. Neurology. 2007;69(15):1515–20.

    Article  Google Scholar 

  84. Wingerchuk DM. Smoking: effects on multiple sclerosis susceptibility and disease progression. Ther Adv Neurol Disord. 2012;5(1):13–22.

    Article  Google Scholar 

  85. Pierce JP, White VM, Emery SL. What public health strategies are needed to reduce smoking initiation? Tob Control. 2012;21(2):258–64.

    Article  Google Scholar 

  86. Organization WH. WHO framework convention on tobacco control. New Delhi: WHO Regional Office for South-East Asia; 2004.

    Google Scholar 

  87. World Health Organization. WHO report on the global tobacco epidemic, 2019. Geneva: World Health Organization; 2019.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, Y.H. et al. (2021). Cigarette Smoking and Neurological Disorders: From Exposure to Therapeutic Interventions. In: Akash, M.S.H., Rehman, K. (eds) Environmental Contaminants and Neurological Disorders. Emerging Contaminants and Associated Treatment Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-66376-6_6

Download citation

Publish with us

Policies and ethics