Skip to main content

Artificial Intelligence in Astrophysics

  • Chapter
  • First Online:
Intelligent Astrophysics

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 39))

  • 485 Accesses

Abstract

Artificial intelligence and its subparts (like evolutionary algorithms, machine learning\(,\ldots \)) are search methods that can be used for solving optimization problems. A particular class of algorithms like bioinspired one mimic working principles from natural evolution (or swarm intelligence) by employing a population-based (swarm) approach, labelling each individual of the population with a fitness and including elements of random, albeit the random is directed through a selection process. In the contemporary astrophysical literature is a lot of research papers, that work with various machine learning methods, while evolutionary/swarm algorithms are almost neglected. In this chapter, we review the basic principles of evolutionary algorithms and discuss their purpose, structure and behaviour. In doing so, it is particularly shown how the fundamental understanding of natural evolutionary processes has cleared the ground for the origin of evolutionary algorithms. Major implementation variants and they are structural as well as functional elements are discussed. We also give a brief overview of usability areas of the algorithm and end with some general remarks of the limits of computing, including demonstration of its use on astrophysical data processing at the end.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agrawal, S., Singh, D.: Modified Nelder-Mead self organizing migrating algorithm for function optimization and its application. Appl. Soft Comput. 51, 341–350 (2017)

    Article  Google Scholar 

  2. Ashby, W.R.: Some consequences of Bremermann’s limit for information-processing systems. Cybern. Probl. Bionics, 76 (1968)

    Google Scholar 

  3. Askarzadeh, A.: A memory-based genetic algorithm for optimization of power generation in a microgrid. IEEE Trans. Sustain. Energy 9(3), 1081–1089 (2017)

    Article  Google Scholar 

  4. Bäck, T., Fogel, D.B., Michalewicz, Z.: Handbook of evolutionary computation. Release 97(1), B1 (1997)

    Google Scholar 

  5. Barricelli, N.A.: Numerical testing of evolution theories. part i: the-oretical introduction and basic tests. Acta Biotheoreiica (Parts I/II) 16 (1962)

    Google Scholar 

  6. Barricelli, N.A., et al.: Esempi numerici di processi di evoluzione. Methodos 6(21–22), 45–68 (1954)

    MathSciNet  Google Scholar 

  7. Beni, G., Wang, J.: Swarm intelligence in cellular robotic systems, In: Proceedings of NATO Advanced Workshop on Robots and Biological Systems, Tuscany, Italy, 26–30 June. NATO, NY (1989)

    Google Scholar 

  8. Bremermann, H.J.: Optimization through evolution and recombination. Self-Organ. Syst. 93, 106 (1962)

    Google Scholar 

  9. Bromová, P., Barina, D., Škoda, P., Vážný, J., Zendulka, J.: Classification of spectra of emission-line stars using feature extraction based on wavelet transform. In: Proceedings of 23rd Annual Astronomical Data Analysis Software and Systems (ADASS) Conference, pp. 1–9999 (2013)

    Google Scholar 

  10. Bromová, P., Škoda, P., Vážný, J.: Classification of spectra of emission line stars using machine learning techniques. Int. J. Autom. Comput. 11(3), 265–273 (2014)

    Article  Google Scholar 

  11. Bromová, P., Škoda, P., Zendulka, J.: Wavelet based feature extraction for clustering of be stars. In: Nostradamus 2013: Prediction, Modeling and Analysis of Complex Systems, pp. 467–474. Springer (2013)

    Google Scholar 

  12. Câmara, D.: 1 - evolution and evolutionary algorithms. In: Câmara, D. (ed.) Bio-inspired Networking, pp. 1 – 30. Elsevier, Amsterdam (2015)

    Google Scholar 

  13. David, N., Lubomír, M.: Self-organizing migrating algorithm used to control a semi-batch chemical reactor. In: 2013 13th International Conference on Control, Automation and Systems (ICCAS 2013), pp. 1266–1269. IEEE (2013)

    Google Scholar 

  14. Debosscher, J.: Automated classification of variable stars: application to the ogle and corot databases (2009)

    Google Scholar 

  15. Deep, K., et al.: A new hybrid self organizing migrating genetic algorithm for function optimization. In: 2007 IEEE Congress on Evolutionary Computation, pp. 2796–2803. IEEE (2007)

    Google Scholar 

  16. Dhiman, G., Kumar, V.: Astrophysics inspired multi-objective approach for automatic clustering and feature selection in real-life environment. Mod. Phys. Lett. B 32(31), 1850385 (2018)

    Article  Google Scholar 

  17. Diep, Q.B.: Self-organizing migrating algorithm team to team adaptive–soma t3a. In: 2019 IEEE Congress on Evolutionary Computation (CEC), pp. 1182–1187. IEEE (2019)

    Google Scholar 

  18. Dorigo, M., Di Caro, G.: Ant colony optimization: a new meta-heuristic. In: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), vol. 2, pp. 1470–1477. IEEE (1999)

    Google Scholar 

  19. dos Santos Coelho, L.: Self-organizing migrating strategies applied to reliability-redundancy optimization of systems. IEEE Trans. Reliab. 58(3), 501–510 (2009)

    Google Scholar 

  20. Engelbrecht, A.P.: Computational Intelligence: An Introduction. Wiley, Hoboken (2007)

    Google Scholar 

  21. Gajdoš, P., Zelinka, I.: On the influence of different number generators on results of the symbolic regression. Soft. Comput. 18(4), 641–650 (2014)

    Article  Google Scholar 

  22. Holland, J.H.: Genetic algorithms and the optimal allocation of trials. SIAM J. Comput. 2(2), 88–105 (1973)

    Article  MathSciNet  Google Scholar 

  23. Z. I. Anaytical programming - an overview, Accessed 28 June 2020

    Google Scholar 

  24. Ilachinski, A.: Cellular Automata: A Discrete Universe. World Scientific Publishing Company, Singapore (2001)

    Google Scholar 

  25. Invictible - an overview, Accessed 28 June 2020

    Google Scholar 

  26. Kadlec, P., Raida, Z.: Multi-objective self-organizing migrating algorithm applied to the design of electromagnetic components. IEEE Antennas Propag. Mag. 55(6), 50–68 (2013)

    Article  Google Scholar 

  27. Karaboga, D., Akay, B.: A comparative study of artificial bee colony algorithm. Appl. Math. Comput. 214(1), 108–132 (2009)

    Article  MathSciNet  Google Scholar 

  28. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95-International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (1995)

    Google Scholar 

  29. Kojecky, L., Zelinka, I., Prasad, A., Vantuch, T., Tomaszek, L.: Investigation on unconventional synthesis of astroinformatic data classifier powered by irregular dynamics. IEEE Intell. Syst. 33(4), 63–77 (2018)

    Article  Google Scholar 

  30. Kojecký, L., Zelinka, I., Šaloun, P.: Evolutionary synthesis of automatic classification on astroinformatic big data. J. Parallel Distrib. Comput., accepted, in print (2016)

    Google Scholar 

  31. Koziel, S., Yang, X.-S.: Computational Optimization, Methods and Algorithms, vol. 356. Springer, Berlin (2011)

    Google Scholar 

  32. Lee, S.: Multi-parameter optimization of cold energy recovery in cascade rankine cycle for lng regasification using genetic algorithm. Energy 118, 776–782 (2017)

    Article  Google Scholar 

  33. Lloyd, S.: Ultimate physical limits to computation (1999). arXiv:quant-ph/9908043

  34. Lloyd, S., Giovannetti, V., Maccone, L.: Physical limits to communication. Phys. Rev. Lett. 93(10), 100501 (2004)

    Article  Google Scholar 

  35. Mendel, G.: Attempts “u over plant hybrid negotiations of the natural research association in br ü nn, vol. iv for the year (1865). Abhand-lungen 3, 47 (1866)

    Google Scholar 

  36. Michalewicz, Z., Fogel, D.B.: How to Solve It: Modern Heuristics. Springer Science & Business Media (2013)

    Google Scholar 

  37. Mirjalili, S.: Genetic algorithm. Evolutionary Algorithms and Neural Networks, pp. 43–55. Springer, Berlin (2019)

    Google Scholar 

  38. Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)

    Article  Google Scholar 

  39. Passino, K.M.: Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst. Mag. 22(3), 52–67 (2002)

    Article  Google Scholar 

  40. Porter, J.M., Rivinius, T.: Classical be stars. Publ. Astron. Soc. Pac. 115(812), 1153 (2003)

    Article  Google Scholar 

  41. Rechenberg, I.: Evolution strategy: optimization of technical systems by means of biological evolution. Fromman-Holzboog, Stuttgart 104, 15–16 (1973)

    Google Scholar 

  42. Shoba, S., Rajavel, R.: A new genetic algorithm based fusion scheme in monaural casa system to improve the performance of the speech. J. Ambient Intell. Humaniz. Comput. 11(1), 433–446 (2020)

    Article  Google Scholar 

  43. Suri, S., Vijay, R.: A bi-objective genetic algorithm optimization of chaos-dna based hybrid approach. J. Intell. Syst. 28(2), 333–346 (2019)

    Article  Google Scholar 

  44. Swirski, P.: Of games with the universe: preconceptions of science in stanislaw lem’s" the invincible". Contemp. Lit. 35(2), 324–342 (1994)

    Article  Google Scholar 

  45. Thizy, O.: Classical be stars high resolution spectroscopy. In: Society for Astronomical Sciences Annual Symposium, vol. 27, p. 49 (2008)

    Google Scholar 

  46. Tuncer, A., Yildirim, M.: Dynamic path planning of mobile robots with improved genetic algorithm. Comput. Electr. Eng. 38(6), 1564–1572 (2012)

    Article  Google Scholar 

  47. Von Neumann, J., Kurzweil, R.: The Computer and the Brain. Yale University Press, London (2012)

    Google Scholar 

  48. Yang, X.-S.: A new metaheuristic bat-inspired algorithm. In: Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), pp. 65–74. Springer (2010)

    Google Scholar 

  49. Yang, X.-S., et al.: Firefly algorithm. Nature-Inspired Metaheuristic Algorithms, vol. 20, pp. 79–90 (2008)

    Google Scholar 

  50. Zelinka, I.: SOMA — Self-Organizing Migrating Algorithm, pp. 167–217. Springer, Berlin (2004)

    Google Scholar 

  51. Zelinka, I.: Soma–self-organizing migrating algorithm. New Optimization Techniques in Engineering, pp. 167–217. Springer, Berlin (2004)

    Google Scholar 

  52. Zelinka, I.: A survey on evolutionary algorithms dynamics and its complexity-mutual relations, past, present and future. Swarm Evol. Comput. 25, 2–14 (2015)

    Article  Google Scholar 

  53. Zelinka, I., Bukacek, M.: Soma swarm algorithm in computer games. In: International Conference on Artificial Intelligence and Soft Computing, pp. 395–406. Springer (2016)

    Google Scholar 

  54. Zelinka, I., Celikovskỳ, S., Richter, H., Chen, G.: Evolutionary Algorithms and Chaotic Systems, vol. 267. Springer, Berlin (2010)

    Google Scholar 

  55. Zelinka, I., Davendra, D.D., Šenkeřík, R., Jašek, R., Oplatkova, Z.: Analytical programming-a novel approach for evolutionary synthesis of symbolic structures. In: Evolutionary Algorithms, Eisuke Kita, IntechOpen. InTech (2011). https://doi.org/10.5772/16166.; Available from: https://www.intechopen.com/books/evolutionary-algorithms/analytical-programming-a-novel-approach-for-evolutionary-synthesis-of-symbolic-structures

  56. Zelinka, I., Oplatkova, Z., Nolle, L.: Analytic programming-symbolic regression by means of arbitrary evolutionary algorithms. Int. J. Simul. Syst. Sci. Technol. 6(9), 44–56 (2005)

    Google Scholar 

  57. Zickgraf, F.-J.: Kinematical structure of the circumstellar environments of galactic b [e]-type stars. Astron. Astrophys. 408(1), 257–285 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

The following grants are acknowledged for the financial support provided for this research: Grant of SGS No. SP2020/78, VSB-Technical University of Ostrava.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Zelinka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zelinka, I., Cong Truong, T., Quoc Bao, D., Kojecky, L., Amer, E. (2021). Artificial Intelligence in Astrophysics. In: Zelinka, I., Brescia, M., Baron, D. (eds) Intelligent Astrophysics. Emergence, Complexity and Computation, vol 39. Springer, Cham. https://doi.org/10.1007/978-3-030-65867-0_1

Download citation

Publish with us

Policies and ethics