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Abstract The goal of this paper is to present a short survey of some of
Lorenzen’s contributions to constructive mathematics, and its influence on
recent developments in mathematical logic and constructive algebra. We
also present some work in measure theory which uses these contributions
in an essential way.

Introduction

The school of mathematics in Germany between the two world wars – Noe-
ther, Herglotz, Artin, Schmidt, Krull, Hasse, . . . – was truly exceptional. This
is described in P. Roquette’s survey (2018), which emphasizes in particular
the importance of the work of Hasse. Lorenzen was Hasse’s student, and so
was in direct contact with several members of this school.

A new feature was the use of highly non-effective methods in algebra. The
axiom of choice was used to show the existence of prime ideals (Krull), or to
show the existence of the real or algebraic closure of a given field. A striking
example was the use of real algebraic closures by Artin and Schreier (1927)
to solve Hilbert’s 17th problem.

Lorenzen was quite unique in this group of mathematicians in being
aware of mathematical logic, in particular the contribution of Gentzen. He
was able to connect his work in algebra, analysing the use of lattice theory,
which started in Dedekind’s analysis of ideal numbers, with proof theory.
While connections between lattice theory and logic were known since the
work of Peirce (1885) and Schröder (1890–1910), connections between lattice
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theory and proof theory were quite original.1

The work Neuwirth 2020 presents a detailed analysis of this unique
situation, containing the following extract of a letter from Krull to Scholz
(1953), which illustrates well how Lorenzen’s contribution was perceived:

In working with the uncountable, in particular with the well-ordering theorem, I
always had the feeling that one uses fictions there that need to be replaced some
day by more reasonable concepts. But I was not getting upset over it, because I
was convinced that in a careful application of the common “fictions”, nothing
false comes out, and because I was firmly counting on the man who would some
day put all in order. Lorenzen has now found according to my conviction the
right way . . . .

The goal of this paper is to present a short survey of some of Lorenzen’s
work in constructive mathematics, and its influence on recent developments
in mathematical logic and constructive algebra. We also present some work
in measure theory which uses Lorenzen’s contributions in an essential way.

1 Lorenzen’s analysis of Gentzen’s work

1.1 The consistency proof

Lorenzen (1951a) presents Gentzen’s consistency proof as a proof about an
infinitary cut-free calculus showing that the cut rule is admissible (“zulässig”).
Two highly original features of his argument are that the metatheory is
constructive (with use of generalised inductive definitions) and that there
is no ordinal analysis. At about the same time, and independently, P. S.
Novikov (1943) had a similar analysis, and also introduced the notion of
an admissible/derivable rule (Citkin 2016). For a historical presentation of
Lorenzen’s work on infinitary calculus, see Coquand and Neuwirth 2020.

Apart from Novikov, most treatments in proof theory (Gentzen, Schütte,
Takeuti) involve ordinal analysis. From a constructive point of view (and
for me personally), the purely inductive presentation is much clearer. One
objection against this use of infinitary calculus is that, for a consistency
proof of arithmetic, the use of generalized inductive definitions is too strong.
Indeed, for this purpose the negative translation works just as well, by
a purely syntactical argument. Furthermore, an ordinal analysis presents
very refined information about what is going on in proofs of arithmetic,
information that we cannot get by Lorenzen’s proof. However, Lorenzen’s
argument provides, as we shall see below, an effective description of the
free σ-complete Boolean algebra on a given Boolean algebra, and this is
definitely interesting from a mathematical point of view.

1 The only exception seems to have been the previous work of Skolem (1920).
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For establishing the consistency of stronger calculi, such as Π1
1-analysis,

one can even argue that ordinal analysis is, from a constructive point of view,
a kind of diversion. For instance, Takeuti proves consistency of this system
with a system of ordinal diagrams in a finitary way. To have a constructive
explanation of Π1

1-comprehension, however, one needs furthermore, as em-
phasized, e.g., in Kreisel’s (1964) review of Takeuti’s proof or in Feferman’s
(1977) review of Takeuti’s book on proof theory, to explain that ordinal
diagrams are well-founded in an intuitionistic theory of inductive definitions.
A direct explanation of Π1

1-comprehension in an intuitionistic theory of
inductive definitions (such as one obtained by use of Buchholz’s Ω-rule;
Buchholz and Schütte 1988) seems thus to be preferred.

To allow generalized-inductively defined objects in a constructive setting
was highly original. Apart from Novikov, the only example of this I could
find are proofs in the book Notes on Constructive Mathematics (1968) by
Martin-Löf. There, however, infinitary objects are not represented directly,
but only via coding as recursively enumerable sets (which arguably obscures
the main ideas).

In their paper 1959, Lorenzen and Myhill analyse different ways to define
subsets of natural numbers and introduce the stratification given in Table 1.

(i) By explicit definition, quantifying only over natural numbers
(ii) By inductive definition, quantifying only over natural numbers

(iii) By explicit definition, quantifying only over the (denumerable) totality of sets previ-
ously obtained

(iv) By inductive definition, with the same restriction on quantifiers
(v) By uninhibited use of function-quantifiers

Table 1 Lorenzen–Myhill stratification of definitions of sets.

Use of generalized inductive definitions (iv) is presented as the “method
of Lorenzen” exposed in Lorenzen 1955, with the comment that it “exhausts
those means of definition at present known which are acceptable from a
standpoint which rejects the actual infinite” (p. 48). The last method (v)
is impredicativity, which has no constructive justification. This logical de-
scription of methods used in mathematics is quite similar to the one of
Martin-Löf in his paper 2008.

The method (iv) goes beyond what has been called “predicative” mathe-
matics, after the work of Schütte (1965) and Feferman (1964), but it is needed
in constructive mathematics, as shown by Lorenzen in his analysis of the
Cantor–Bendixson Theorem, which we explain below.
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1.2 The inversion principle

In Lorenzen’s description of the mathematical universe, we have a calculus
of inductively defined objects and inductive proofs/recursively defined
functions on these objects.

For instance, we inductively describe the natural numbers by two produc-
tion rules, → | and x → x|,
but we also inductively describe the relation of equality, by the two produc-
tion rules → |= | and x= y → x| = y|.

One important discovery of Lorenzen is the inversion principle (Lorenzen
1955). Let us illustrate this principle on the example of the above inductive
description of equality. We have as an admissible rule (this notion was also
introduced by Lorenzen) | = x| → ⊥,

since there is no way to derive an equality of the form | = x|. Similarly, we
see that

x| = y| → x= y
is an admissible rule.

This way of describing objects and proofs is now common practice in
computer science. It is, e.g., used extensively for expressing and proving
properties of the semantics of programming languages (as in Kahn’s natural
semantics; Kahn 1987) in interactive proof systems. Just to give an example,
Lorenzen’s paper 1951b could almost be written as it is in proof systems for
type theory.

In 1992, we noticed that this inversion principle corresponds to the notions
of pattern-matching and case notation in functional programming (Coquand
1992). This provides a convenient notation for inductive proofs, which
is closely connected to the work Hallnäs and Schroeder-Heister 1990 on
definitional reflection. More recent works in this direction are N. Zeilberger’s
2009 and J. Cockx’ Ph.D. thesis (2017).

1.3 Distributive lattices and entailment relations

With respect to this topic, Lorenzen seems to be now mainly known for the
following result, which is actually only implicit in his fundamental paper
1951a.

Theorem 1 A lattice is distributive if, and only if, it satisfies the (cut) rule

a∧c � b a � b∨c
a� b
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This result is cited, e.g., in Curry’s book 1976 (Theorem B9, Chap. 4). The
paper Lorenzen 1951a actually contains a deeper application of proof theory
to the study of distributive lattices, via the notion of an entailment relation.
An entailment relation E,� is a relation a1, . . . , an � b1, . . . , bm between finite
subsets of a given abstract2 set E such that

1. X �Y if X and Y intersect,
2. X �Y if X′ �Y′ and X′⊆ X and Y′⊆Y,
3. X �Y if X, a �Y and X �Y, a.

We can have n = 0 or m = 0, which means that, in this way, we present
bounded distributive lattices, i.e., ones with a greatest and a least element.
Earlier, Lorenzen (1953) also considered the notion of an unbounded entail-
ment relation, where m and n have to be > 0.

Entailment relation is the key notion for presenting distributive lattices/
spectral spaces in an elegant way, as explained in Cederquist and Coquand
2000. If D is a (bounded) distributive lattice, an interpretation of E,� is a map
j : E→D such that X �Y implies

∧
j(X)� ∨

j(Y). By universal algebra, there
exists a universal interpretation i : E→L: it is an interpretation such that, for
any other interpretation j : E→D, there is a unique map f : L→D such that
j= f i. The following result is essentially stated as such in Lorenzen 1951a.3

Theorem 2 (Cederquist and Coquand 2000) Let E,� be an entailment relation.
If L, i : E → L is the universal interpretation then we have X �Y if, and only if,∧

i(X)� ∨
i(Y).

Let us give an example from algebra. On a given integral domain R, a
valuation for R is a domain V⊇R in the field K of fractions of R such that,
for any a �= 0 in K, we have either a ∈V or a−1 ∈V. A fundamental result,
proved using Zorn’s Lemma, is that an element of K is integral over R (i.e.,
the root of a unitary polynomial in R[X]) if, and only if, it belongs to all
valuation domains. Lorenzen was able to describe directly and effectively
an unbounded entailment relation X �Y where X and Y are finite sets of non-
zero elements of K, which, classically, would be equivalent to the following
relation: for all valuation domains V, there exist a in X and b in Y such that
b/a is in V.

Lorenzen’s (1953) description was the following. If x1, . . . , xn are elements
in the fraction field of R, we write (x1, . . . , xn) for the R-module generated
by x1, . . . , xn.

Theorem 3 The relation (for non-zero elements of the field of fractions of R)

a1, . . . , an � b1, . . . , bm ↔ 1 ∈ ∑
i>0

(
a1b−1

1 , . . . , anb−1
m

)i

2 By this, we mean that E does not need to be a set of syntactically defined objects but
can be a set of objects in an arbitrary mathematical structure.
3 There is a similar result for connecting unbounded distributive lattices and unbounded
entailment relations.
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is an (unbounded) entailment relation which is classically equivalent to the fact that
if V is an arbitrary valuation domain then we have bi/aj ∈V for some i, j.

See Coquand, Lombardi, and Neuwirth 2019 for different proofs and
comments on this result. For instance, a �b holds if, and only if, b is integral
over a. In particular, b is integral over R if, and only if, we have 1�b, which
can be seen as a constructive version of the result that an element is integral
if, and only if, it belongs to all valuation domains. We think this example
illustrates well the way Lorenzen’s work provides a constructive analysis of
non-effective methods in algebra (as evocated in Krull’s letter cited in the
introduction).

This was in part rediscovered in Coquand and Persson 2001, but expressed
there for a bounded entailment relation X �Y on K representing classically
the relation: if all elements of X are in V then some element of Y is in V.

2 Proof-theoretic analysis of point-free spaces

In this section, we want to present Lorenzen’s (1958) analysis of Cantor–
Bendixson’s Theorem. It states that if F is a closed subset of [0, 1] then we
can find a closed subset K⊆ F which is perfect (i.e., K has no isolated points)
and such that F−K is countable. Since K has the power of the continuum if
it is not empty, this shows that the continuum hypothesis holds for closed
subsets of [0, 1]. The way we build K is by a transfinite process: we first define
the derivative F′ of F obtained by removing from F its isolated point, and we
iterate this operation (maybe transfinitely) in order to get a fixed point K = K′.
The analysis of this theorem was crucially needed in Kreisel’s paper 1959.
Defining the kernel requires, a priori, being at stage (v) of the Lorenzen–
Myhill stratification in Table 1. What is remarkable about this result is
that, as shown by Kreisel, Cantor–Bendixson’s Theorem requires methods
going beyond what has been called “predicative mathematics” by Feferman
(1977) and Schütte (1965), but, and this is Lorenzen’s contribution, it can
be captured constructively using Method (iv) of Table 1. In characteristic
manner, Lorenzen presents in his 1958 only the main idea, without ever
providing all the details (they can be found in the proof of Theorem 1 of
Kreisel 1959).

In order to present this analysis as simply as possible, we will do it for
Cantor space instead of [0, 1] (as is done in Lorenzen 1958). As a set of points,
the Cantor space is the set Ω of infinite binary sequences ω = ω0, ω1, ω2, . . .
As a point-free space, where we describe directly in algebraic (and effective)
terms its compact open subsets, it can be seen as the Boolean algebra C of
propositional logic, i.e., the Boolean algebra freely generated by countably
many formal atoms written ωk=1 or ωk= 0. For instance, ω1= 0 ∧ ω3 = 1
represents a compact open subset of Ω, namely all sequences ω such that
ω1= 0 and ω3= 1. We write σ, σ1, etc. for finite binary sequences. Each such
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finite sequence σ represents a compact open subset, namely the set of all
infinite sequences extending σ. Seen as a set of sequences, σ is equal to the
union of the two sets defined by its direct extensions σ0 and σ1.

Using this representation, an open subset U of Ω can be represented
as a predicate U(σ) such that U(σ) holds if, and only if, we have both
U(σ0) and U(σ1). In terms of sets of infinite sequences, U(σ) expresses that
the compact open set represented by σ is a subset of the open set represented
by U. Dually, such a predicate can also be thought of as representing the
closed subset complement F = Ω\U. As explained above, the main operation
in Cantor–Bendixson’s Theorem is the forming of the derivative of a closed
subset, which is obtained by taking away the isolated points of this subset.
Dually, this can be understood as an operation U′ ⊇ U on open subsets U
such that Ω\U′ is the derivative of Ω\U.

One crucial insight of Lorenzen is that we can define U′ in terms of an
operation on predicates on finite binary sequences. We can indeed express
the fact that σ contains at most one point of Ω\U as follows: at level 1,
we have U(σ0) or U(σ1), at level 2, we have U(σ0)∧U(σ10) or U(σ0)∧
U(σ11) or U(σ1)∧U(σ00) or U(σ1)∧U(σ01), and so on. We can thus write
a formula A(U, σ) involving a universal quantification on natural numbers,
such that A(U, σ) expresses that σ, seen as a set of infinite sequences, contains
at most one point in Ω\U. The inductive definition of U′ is then

1. U′(σ0)∧U′(σ1) → U′(σ),
2. A(U, σ) → U′(σ),

and U′(σ) expresses classically that there are only finitely many points of F
in the compact open set represented by σ.

The kernel of F is obtained by iterating (maybe transfinitely) the derivative
operation for F. In terms of open sets, this can be represented by the following
inductive definition:

1. U(σ) → V(σ),
2. V(σ0)∧V(σ1) → V(σ),
3. A(V, σ) → V(σ).

With this definition, we have that Ω\V represents the kernel of Ω\U. Since
the predicate A(V, σ) involves a universal quantification on natural numbers,
this description of the kernel uses a generalized inductive definition (Lorenzen
and Myhill 1959), but it is constructive and does not involve a classical
theory of uncountable ordinals.
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3 Measure theory

3.1 Borel subsets of Cantor space

The analysis by Lorenzen of Gentzen’s cut-elimination contains an effective
description the σ-complete Boolean algebra generated by a given Boolean
algebra. More generally, given an entailment relation E,� as defined above,
Lorenzen describes the σ-complete Boolean algebra B with an interpretation
v : E→ B universal for this property. He then proves

Theorem 4 For the universal σ-complete Boolean algebra B with an interpretation
v : E→ B, we have

a1, . . . , an � b1, . . . , bm ↔ v(a1)∧· · ·∧v(an) � v(b1)∨· · ·∨v(bm).

This result is cited in the reference Beth 1959 (which might, surprisingly,
be the only published reference to this remarkable result from the paper
Lorenzen 1951a). If we start from the Boolean algebra C of propositional logic,
which is the Boolean algebra generated from countably many atoms, we
get a σ-complete Boolean algebra B. As explained above, C can be seen as
a point-free presentation of Cantor space, which is the set Ω of all infinite
binary sequences ω = ω0, ω1, . . . The algebra B can then in turn be seen as
a point-free presentation of the σ-complete Boolean algebra of Borel sets on
Cantor space. This was noticed by Martin-Löf (1968). If we start from the
Boolean algebra with two elements, we get the σ-complete Boolean algebra
of hyperarithmetical propositions.

In this point-free view, a Borel set X is given inductively: X is a proposi-
tional formula or X is of the form

∨
n Xn or X is of the form

∧
n Xn. Lorenzen

defines a sequent calculus X1, . . . , Xn � Y1, . . . , Ym and proves that the cut
rule is admissible. This means that we can prove the rule

Γ, X �Δ Γ � X, Δ
Γ �Δ

by case analysis and induction on the two given derivations. Essentially the
same argument is done in Martin-Löf 1968.

We can define X ⊆ Y by X �Y. We have X ⊆ X by induction on X and,
using cut-elimination, X⊆ Z if X⊆Y and Y⊆ Z. Indeed, if we have X �Y
and Y � Z then by weakening we get X �Y, Z and X,Y � Z, and then by
cut-elimination we get X �Z.

An example of a point-free description is the set of normal binary se-
quences

N =
∧
k

∨
m

∧
n�m

bn,k

with bn,k a point-free representation of
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{
ω∈Ω

∣∣∣ −1
k
� Σi<n(2ωi−1)

n
� 1

k

}
.

In the classical approach this is thought of as a set of points (the complement
of which is not countable and of measure 0). In the present setting, it is
a purely symbolic expression. A satisfactory theory of the measures of
Borel sets should prove that this set, defined in this “symbolic” way, is of
measure 1.

3.2 Borel’s measure problem

As explained above, Borel sets can be described inductively. The following
is then a natural question: Can we define the measure μ(X) of a Borel
set X by induction on X? Borel’s (1894) own formulation was the following
(for subsets of [0, 1]): we design a formal theory which describes how the
measure should work, and we have to prove that this formal theory is
consistent.

As presented by Lusin (1930), the question can be seen as a coherence
problem: we have to provide an inductive definition of the measure μ(X) of
a Borel set X such that X �Y → μ(X)� μ(Y). Lusin, in his book 1930, asked
for a purely inductive solution of this problem, and called this question
Borel’s measure problem.

3.3 An inductive solution of Borel’s measure problem

In 1959 (p. 48), Lorenzen and Myhill wrote, referring to the stratification in
Table 1:

We regard as important the problem of determining what sets, relative to the
function-quantifier hierarchy, are definable by this method. For Method (iv)
exhausts those means of definition at present known which are acceptable
from a standpoint which rejects the actual infinite; so that the determination
of the extent to which sets definable by this method penetrate the function-
quantifier hierarchy would be of no small significance from the point of view of
foundations. For it would yield a quantitative measure of the extent to which
discourse involving the quantifiers

∧
f and

∨
f , which seems to refer to an actual

infinite, can be so paraphrased as to avoid such statements.

We provide here such an analysis for measure theory. In the usual treatment
(Lebesgue, Daniell, Bourbaki), it refers to an actual infinite. It can, however,
as we explain here, be described purely at the level of Method (iv), i.e.,
using generalized inductive definitions.

Here, I show how to recursively define r < μ(X) as a hyperarithmetical
proposition by induction on X. We take the usual measure on Cantor space:
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if X is a propositional formula, μ(X) is a rational and r < μ(X) is 0 or 1. For
instance, μ(ω1= 0 ∧ ω3=1) = 1/4.

The approach of Borel (1894), inspired by the work of Drach, is to spec-
ify abstractly what properties any measure should satisfy, and to prove
then that these conditions do not produce any contradiction. The con-
dition is that the measure of a disjoint countable union be the sum of
the measures (and to require in particular that this sum actually con-
verges).

Here is a simple example of the potential coherence problem in this spec-
ification. If we define X0 =

∧
k[ωk = 0] and Xn+1 =

∧
i<n[ωi = 0]∧ [ωn = 1],

we have 1 =
∨

n Xn and μ(1) = 1 and μ(X0) = 0 and μ(Xn+1) = 1/2n+1.
We see that we have two ways to write 1 as a disjoint sum of elements:
either as 1 itself or as the disjoint sum of the Xn. We can then check the
consistency of these two possible ways to compute μ(1) since we have
1 = 0+ 1/2+ 1/4+ · · ·.

The main difficulty in this inductive approach is how to define r< μ(X)
if X is a disjunction or conjunction. The problem is that if X is, for instance,
a disjunction

∨
n Xn, not necessarily disjoint, then μ(X) is not a function of

the sequence μ(Xn) anymore. There is thus a problem in defining μ(X) by
induction on X.

One solution is provided by the remarkable paper of F. Riesz (1930): if
X is the disjunction of the family Xn then the function μX : b �→ μ(b∧X) on
propositional formulas can be defined in terms of μXn .

The recursive definition of F. Riesz is, for X =
∨

n Xn, given by

μX(b) =
∨

b=b1,...,bkn1<···<nk

k

∑
κ=1

μXnκ
(bκ),

where b = b1, . . . , bk is a partition of b.
If X = c then we can compute r < μ(b∧c), and this is the value of

r < μ(b∧X).
If X =

∨
n Xn then r < μ(b∧X) is the formula

∨
b=b1,...,bk

r=r1+···+rk
n1<···<nk

k∧
κ=1

(
rκ < μ(bκ∧Xnκ )

)
.

For X =
∧

n Xn, we should have μ(b∧X) = μ(b)−μ(b∧∨n X′
n), where X′

n is
the formal complement of Xn and

μ
(

b∧∨
n

X′
n

)
=

∨
b=b1,...,bkn1<···<nk

k

∑
κ=1

μ(bκ∧X′
nκ
).

From this, we deduce the value of r < μ(b∧X) as the formula
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∨
r<s

∧
b=b1,...,bk
n1<···<nk

∨
s=s1+···+sk

k∧
κ=1

sκ < μ(bκ∧Xnκ ).

Using these equations recursively, we define r < μ(b∧X) as a hyperarithmeti-
cal formula.

In this way, we get a purely inductive description of measure theory. We
are at stage (iv) of Lorenzen and Myhill’s stratification in Table 1. The proof
given by Riesz (and by Lebesgue, Daniell, Bourbaki) that the definitions
work, however, uses impredicative arguments that are at stage (v) of this
stratification. The new discovery is that it is possible to show in a purely
inductive way the following result.

Theorem 5 If X � Y then
[
r < μ(b∧X)

]
�

[
r < μ(b∧Y)

]
. Hence if X and Y

define the same Borel subset of Cantor space, μ(X)= μ(Y).

This shows the consistency of our definition: if X and Y represent the same
Borel set then r < μ(b∧X) and r < μ(b∧Y) are equal.

This analysis is provided in Coquand 2004, where I also give a presenta-
tion of measure theory using only generalized inductive definitions and no
impredicative arguments.

As an application, we can show, purely inductively, that r < μ(1∧N) is
provable for each r< 1, where N is the symbolic representation of the set
of normal binary sequences described above. We get in this way a proof of
μ(N)=1 which involves only inductive reasoning.

4 Game semantics

In this last section, I briefly present Lorenzen’s extremely original work
on game semantics. A formula is seen as specifying a game between two
players, the proponent and the opponent, who argue about the truth value of
the formula. A proof of the formula is then seen as a winning strategy for
the proponent in this game. Lorenzen (1959) has, for instance, a suggestive
analysis of the formula ¬¬a → a and of why it is not intuitionistically
valid. The idea is to consider a statement a for which the opponent has a
proof which is not known by the proponent. If the opponent asserts ¬¬a,
the proponent (who does not know the proof of a) has to challenge the
opponent by asserting ¬a (hoping that the opponent does not know the
proof of a either). But then the opponent wins by giving the proof of a.

Lorenzen (1959) mentions that we can get an interpretation of classical
logic by allowing the proponent to backtrack. In Coquand 1995, I suggested
an analysis of cut-elimination based on this interpretation, describing cut-
elimination as an interaction between two strategies that can both backtrack.
We can in this way give a proof of termination of the cut-elimination process,
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essentially different from the one of Gentzen. This has recently been used
by F. Aschieri (2017) to provide a nontrivial refinement of Gentzen’s upper
bound (with a tower of exponentials) for the depth of the resulting proof
obtained by the cut-elimination process in terms of the level of backtracking of
the strategies. For instance, if one strategy has only one level of backtracking,
the upper bound is given by a single exponential (whatever the complexity
of the cut formula).

This idea of game interpretation has also been refined in various ways.
An extension of this interpretation to analysis is described in Berardi, Bezem,
and Coquand 1995, giving in particular a different interpretation than the
one of Spector (1961). See also the interpretation of the axiom of determinacy
in Hida 2012.
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