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Abstract In this article we give an overview, from a philosophical point
of view, of Lorenzen’s construction of the natural and the real numbers.
Particular emphasis is placed on Lorenzen’s classification in the tradition of
predicative approaches that stretches from Poincaré to Feferman.

1 Introduction

German philosophy of science (Wissenschaftstheorie) in the second half of
the 20th century was dominated by two outstanding personalities: Paul
Lorenzen and Wolfgang Stegmüller. Both are witnesses to a common yet
very differently interpreted heritage of logical empiricism: Stegmüller sit-
uates the project of a formal semantics in the tradition following Carnap;
Lorenzen “takes over” only the insight to understand philosophy of sci-
ence as the theory of the language of science, and develops a constructive
philosophy characterized by a phenomenological-operative approach to
mathematics (cf. Gethmann 1991 and Thiel 2014): “Constructive philosophy
is phenomenology after the linguistic turn” (Gethmann and Siegwart 1994,
228).

In 1962, Lorenzen joined his friend Wilhelm Kamlah at the University
of Erlangen, and together they wrote the textbook Logische Propädeutik: Ei-
ne Vorschule des vernünftigen Denkens (“Logical propaedeutic: A pre-school
of reasonable thinking”; 1967), which became a kind of manifesto of the
“Erlangen School” (cf. Mittelstraß 2008; 2016). The first members of this
school were Kuno Lorenz, Jürgen Mittelstraß, Christian Thiel, Peter Janich,
Hans-Jürgen Schneider, Friedrich Kambartel and Carl Friedrich Gethmann.
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The monumental Enzyklopädie Philosophie und Wissenschaftstheorie, published
by Mittelstraß, is an application of the “Erlangen Program”, originally devel-
oped in logic and mathematics, to all areas of philosophy and philosophy
of science.

The operative mathematics of Paul Lorenzen is an attempt to understand
and “rescue” the results of classical mathematics by using a predicative
approach.1 Thanks to the distinction between “definite” and “indefinite”
concept formation, the classical results – except those requiring large car-
dinals – can be conserved without substantial modification (see Lorenzen
1965, 4).

Shortly before his death, Hermann Weyl praised Lorenzen’s famous
Einführung in die operative Logik und Mathematik (“Introduction to operative
logic and mathematics”; 1955a), and in turn Lorenzen dedicated to Weyl
his work Differential und Integral (Lorenzen 1965). Weyl (1985, 38) not only
affirmed that his “heart draws onto the side of constructivism”, but he also
noted that Lorenzen’s book 1955a is a big step forward and the best way to
understand mathematics:

Today it seems to me that Paul Lorenzen’s operative approach opens the most
viable way out of the difficulties. . . . The operations of the formal calculus
are here intertwined in a fruitful and unconstrained way with substantive
considerations about their products; Gödel’s discovery loses everything that
disturbs us. (Weyl 1968, 180)

Lorenzen was one of the first to explicitly develop predicative analysis as
an extension of Weyl’s 1918 approach. In fact, Weyl introduced a narrower
iteration method (Weyl 1918, 21, 23), according to which he refrained from
quantifying over set variables in the definition of sets of natural numbers,
limiting the range of variability to natural numbers, and only accepted
“objects” introduced by definition, so that he obtained as results predicative
sets modulo natural numbers. From this it follows that the definition of a
supremum (or “least upper bound”, l.u.b.) in the real numbers R is circular
(not predicative) and the completeness assertion for R, that every non-empty
but bounded set of real numbers has an l.u.b., is not valid, and therefore
the theory revisionist.2 To get the completeness of R in Weyl’s approach,
one must define the bounds not in terms of sets but in terms of sequences
of real numbers.3

The idea of the general approach of Lorenzen’s operative mathematics is
far less known than the dialogical logic developed by Lorenzen and Kuno

1 A definition is called “predicative” if, in the definiens, the definiendum does not occur
and no reference is made to it; otherwise it is impredicative.
2 In other words, it deviates from a majority practice.
3 “We say that a sequence Sn of real numbers is given if we have a set T such that
for each n, x∈ Sn ↔ 〈x, n〉 ∈ T. Then the l.u.b. of the Sn, which we identified earlier
with

⋃
Sn[n ∈ ω], is defined arithmetically in terms of T by ∀y

(〈x, y〉 ∈ T
)
” (Feferman

1964, 7).
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Lorenz.4 Not only influenced by Weyl, but also by Hugo Dingler (1913;
1931)5 and Haskell B. Curry (1951),6 Lorenzen devoted himself primarily to
the reconstruction of analysis, while the application to geometry found a
much lesser impact.7

2 The main philosophical considerations

The starting point of Lorenzen’s philosophical idea can be found in his
introduction to Differential und Integral: The axiomatized systems of analysis
formulated in set theory, according to which “every assertion of classical
analysis . . . can be transformed into the assertion of the derivability of a
certain formula in a certain calculus, has the . . . disadvantage that the choice
of the calculus can only be pragmatically justified”. That this pragmatic
justification is “the only possibility of justification”, if considered at all, is “an
unfounded assertion”. On the other hand, according to Lorenzen, “neither
the metaphysics of pragmatism” nor Platonist speculations on mathematical
objects are necessary for the foundation of classical analysis (Lorenzen 1965,
1–2).

As a positive solution, Lorenzen proposes an operative-constructive ap-
proach to mathematics that includes the entire justified heritage of mathemat-
ics. In a substantial deviation from Hilbert’s contentual (finitary) standpoint,
justification is intended to fulfill two very large criteria:

1. Constructive Mathematics has to be shown as a possible human activity.
2. Constructive Mathematics has to be shown as a good possibility, at least as a better

possibility than its rivals, i.e. set-theoretical mathematics in naive or axiomatic forms.
(Lorenzen 1968, 133)

According to Lorenzen, the first perspective of justification concerns an
epistemological problem, the second a moral problem in the sense of an
evaluation.

The starting point of the epistemological justification is a consensus on the
functioning of ordinary (and therefore imprecise) language on a practical
level. The “practical” turn here refers to a spontaneous understanding
(Vorverständnis) of science based on a technical and political practice.8

On this common practical basis, Lorenzen proposes gradually to de-
velop rules that lead first to “concrete mathematics” and finally to “ab-

4 Cf. Lorenzen and Lorenz 1978; Keiff 2011; Fontaine and Redmond 2008; Rahman,
McConaughey, Klev, and Clerbout 2018.
5 Cf. Schlaudt 2014 for the reception of Hugo Dingler by the Erlangen School.
6 Cf. Lorenzen 1955a, 3–4, 6; 1968, 136.
7 Note, however, Lorenzen (1961; 1987, 191–203), Janich (1989) and Inhetveen (1983), who,
following ideas by Hugo Dingler, try to define the notions of plane, orthogonality and
parallelism with the help of the concept of homogeneity.
8 Cf. Lorenzen 1994, which is the publication of a lecture held in 1989 in Göttingen under
the title “Die praktizistische Wende der Wissenschaftstheorie”.
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stract mathematics”. “Abstract mathematics” differs from “concrete” or
operative mathematics in that the former additionally introduces the ax-
iomatic method – of course without a justification (Lorenzen 1955a, 8).
Lorenzen has in mind a process of abstraction which avoids the lim-
itations of nominalists (such as Goodman), who reject “abstract” ob-
jects and instead confine themselves to “concrete” individuals, as well
as the limitations of skeptical finitists, who only allow restricted sets
as abstract objects, but without going as far as the Cantorians, who al-
low indefinitely many infinities of different cardinality. In short, he de-
fends the middle position of the golden mean (cf. Lorenzen 1968, 136,
140).

In the “non-axiomatic”, that is to say, concrete, operative mathematics (Lo-
renzen 1955a, 195), any statement, for example, of “theoretical” arithmetic,
can be interpreted as a statement about the methods or rules of “practical”
arithmetic. This latter is a syntactic calculus for constructing, according to
certain rules or schemes, symbols called “figures”, for example, the number
signs “|”, “||”, “|||”, . . . , where “. . . ” means that an indefinite, but finite,
number of number signs follows. Theoretical statements are not axiomatic
formalizations but rather “specifications” of the practical calculation (Loren-
zen 1955a, 196).

An evaluation becomes necessary in relation to axiomatic theories for
which we have neither a constructive model nor a constructive proof of
consistency. Examples are ZF or Peano arithmetic, supplemented by

axioms for the real numbers, x, y, . . . , especially the classical completeness axiom
. . . In this completeness axiom we could use sentence-forms A(x) of the theory
instead of sets. The point is that the sentence-form A(x) with one free variable x
for reals may contain bound real variables too. If we use a restricted completeness
axiom, the restriction being that A(x) may contain no bound real variables, we
get a theory R0 for which a constructive model easily may be found. (Lorenzen
1968, 138)

If we denote the theory of real numbers with the unrestricted axiom of
completeness by R, the question arises: Which of the theories, R or the
revisionist theory R0, is better justified? As long as there is no physical
result on the basis of R that is inaccessible on the basis of R0, Lorenzen
argues for R0; for the hierarchy of transfinite cardinals does not seem to
him to be more important to mathematics than the hierarchy of medieval
angels for modern theology (cf. ibid.).

Generally speaking, Lorenzen’s “philosophical conditioning of mathe-
matics” consists of four points, which are controversially discussed in the
philosophy of mathematics, namely,

1. the rejection of the actual infinite,
2. the avoidance of the general concept of power set,
3. the rejection of impredicative concept formation,
4. the restriction to an operational-constructive method.
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Let us now turn to the more specific form of this constructive “mild” revi-
sionism.9 First of all, by using the example of practical arithmetic, we should
take into account that the term “operative” does not mean a methodical
requirement but rather refers to the object of theoretical arithmetic: the op-
erations as actions and rules of practical arithmetic. Lorenzen (1955a, 3–5)
generally considers the objects of operative mathematics to consist in the
calculations in this sense.

3 The construction of the natural and the real numbers

Of course, Lorenzen does not begin his reconstruction of mathematics with
an axiom system for real numbers or sets, but with the construction of natural
numbers – by Weyl, they were presupposed – and then moves on to the
real numbers and the formation of sets of them. This way of thinking is
obviously compatible with the axiomatic approach in its non-fundamentalist
interpretation:10

After the objects of analysis are constructed, the interrelations between the proofs
of the propositions about them can best be clarified by considering the objects
with some relationships defined between them as models of suitable structures
(field, lattice, topological space, etc.). (Lorenzen 1965, 2)

In his Differential und Integral, Lorenzen gives an operational version not
only of natural and real numbers, but also of functions and differential
geometry. Here, we limit ourselves to a sketch of the construction up to the
real numbers.

The beginning of elementary arithmetic is given by a calculus for the
creation of figures, here: number signs |, ||, |||, . . . Starting with

→ |
and the rule

m → m|, (potential infinite)

one adds rules for identity, addition and multiplication etc.:

→ |= |,
m= n → m|= n|,

9 I call a position “mildly” revisionist if it does not accept the majority practice but
nevertheless seeks to understand and justify the theorems and concepts of mathematics
accepted by the majority, by taking into account philosophical criteria considered as in a
logical sense prior to science.
10 In this context, Lorenzen rightly refers to the non-Hilbertian use of axiomatic by
Bourbaki (cf. Heinzmann and Petitot 2020).
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→ m⊕| = m|,
→ m⊕ n| = (m⊕n)|,
→ |⊗n = n,
→ m|⊗ n = (m⊗n)⊕ n.

Here, m and n are variables, more precisely “Eigenvariablen”, i.e., variables
for substitution instances that are exclusively number signs already gener-
ated by the calculus. The symbols “⊕” and “⊗” are signs for addition and
multiplication, respectively, and “→” serves as a “message sign” (Mitteilungs-
zeichen) for operations, for example, It is allowed to set “|”; or, If one has “n”,
one can go to “n|”. While rules are not statements, the statements about the
rules are statements of finite theoretical arithmetic; such a statement says, for
example, that if the rules lead to k⊗m = n, then they always produce m⊗k = n.
The calculus of practical arithmetic, on the other hand, teaches us that

k⊗m = n → m⊗k = n|
is wrong. In this way, Lorenzen comes to a result which is reminiscent of
Poincaré in the sense that, in contrast to non-Euclidean geometry, one cannot
introduce a non-Peano arithmetic:

In theoretical arithmetic, there is a method of refuting arbitrary “axioms” on the
basis of practical arithmetic; just this is the difference from geometry. (Lorenzen
1958, 242–243; cf. Lorenzen 1955b, 129)

The requirement to accept only “definite” statements is a methodological
boundary for that part of mathematics which can be regarded as “stable”
or “safe”. For example, the statement “x is derivable in calculus K” (1)
is definite, since it is decidable on the basis of a “schematic execution of
operations with figures” whether (1) is deducible or not. The negation of this
statement, “x is not derivable in K” (2), is also definite, because a concept of
refutation is fixed: the refutation of (2) is given by a proof of (1) (Lorenzen
1955a, 5). Since definite statements can again occur in concepts of proof
or refutation, Lorenzen formulates the inductive definition of “definite” as
follows:

(1) Any proposition decidable by schematic operations is called “definite”.
(2) If a definite proof or refutation concept is defined for a proposition, then the proposi-

tion itself is also definite, more precisely proof-definite or refutation-definite. (Loren-
zen 1955a, 5–6)

While impredicative concept formation is indefinite and therefore excluded
from operative mathematics (Lorenzen 1955a, 6), quantifiers are permissible,
provided that the formulas in the quantification domain are definite. If
A(x) is definite, then in order to refute ∀x A(x) it is sufficient to refute some
formula A(x0); and in order to prove ∃x A(x) it is sufficient to prove A(x0).

Lorenzen shows that the five well-known Peano axioms, together with the
definitions of addition, multiplication, and exponentiation, can be construed
as definite with the help of the construction rules for numerical signs and
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statements about them obtained by means of elementary logical reasoning
without the tertium non datur (Lorenzen 1955a, Part 1; cf. Schroeder-Heister
2008).

It should be emphasized that the induction principle is a meta-rule of the
form

A(|); (A(m)→A(m|)) → ∀n A(n)

that constitutes an operative interpretation of the classical induction princi-
ple. In fact, the variability range of the universal quantifier in the conclusion
is definite: it consists exclusively of numerical signs constructed according
to the rules, and all numerical signs are the results of such constructions
(Lorenzen 1950, 163; 1965, 7–9; 1955a, 28, 134 sq.). One can see that the
revisionism of operative mathematics first becomes apparent in abstract
mathematics: the operative system of numerical signs indeed defines a
monomorphic structure, i.e., all of its models are isomorphic (cf. Lorenzen
1955a, 136).

For natural and rational numbers the difference between a constructive
and an axiomatic approach is only a difference “in the way of talking about
arithmetic, not within arithmetic itself” (Lorenzen 1965, 3). The “problematic”
step of the operative construction of concrete mathematics is the domain of
real numbers, since those are introduced into modern mathematics through
a “combination of arithmetic with set theory”, which obviously is not
definite. Now Lorenzen defines an operative theory of sets, according to
which every infinite set is countable. It is foreseeable that this difference
has a consequence for the construction of real numbers (cf. Lorenzen 1965,
194–195).

In 1955, Lorenzen constructed real numbers by introducing language
levels (Sprachschichten) that are reminiscent of Weyl and Otto Hölder:11 The
construction of language levels starts with calculus figures, called “objects”.
By forming definition schemes for these, one obtains functions (addition,
multiplication, subtraction, division) and relations between them (identity,
less-than). The resulting propositions constitute the objects of the next level,
composable by means of logical particles. In 1965, by contrast, Lorenzen
uses as his starting point the operative calculus, enriched with logical
particles, and his distinction between definite and indefinite formations, and
obtains the rational and the real numbers through a process of predicative
abstraction. The difficulty that arises in both cases, with or without language
levels, is to define the new class of objects that should be the real numbers.
In fact, the set of all definite sets of natural numbers, i.e., the power set of N,
is not itself definite. There are, however, sets of sets that are definite, such
as, for example, the infinite set which has as its elements

the set of all natural numbers [Grundzahlen],

11 Lorenzen (1955a, 165) himself refers to the “mathematical process” which Weyl de-
scribes in 1918, and Oskar Becker (1956/57, 452, note 4), in his discussion of Lorenzen
1955a, calls attention to the fact that related thoughts exist in Hölder 1924.
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the set of all squares of natural numbers,
the set of all cubes of natural numbers,

...
(Lorenzen 1965, 39 sq.; 1955a, 165 sq.)

How, under these conditions, should one define a real number? Lorenzen
goes the classical way and expands the rational numbers such that “all”
Cauchy sequences converge. Of course, the Cauchy sequences of rational
numbers are not definite sets. Lorenzen must therefore limit himself to the
introduction of an indefinite extension procedure, which leads to their limits
only for certain definite sequences, but which can always be extended to
other definite sequences. The limits are obtained with respect to an equiv-
alence relation between Cauchy sequences: let r∼ s iff the sequence “r−s”
with the elements r1−s1, r2−s2, . . . is a null sequence. One then shows that
r ∼ s is an equivalence relation and confines oneself in one’s statements
about Cauchy sequences to those which are invariant modulo “∼”. Loren-
zen calls the abstract objects defined by such invariants “real numbers” (cf.
Lorenzen 1965, 54 sq.).

Under the classical approach, the field of real numbers is complete, i.e.,
every Cauchy sequence of reals which is monotone and bounded converges
to a real number. What on the standard approach is called the set of all real
numbers is not definite, i.e., it is a “class”. It is therefore not surprising that
it is provable that every definite set of real numbers is incomplete, i.e., that
in every definite set of real numbers there are Cauchy sequences which have
no limit in that set.

In fact, the operative construction of the real numbers implies that, for
every definite set of real numbers, one can find a bijection into the natural
numbers, i.e., each definite set is countable and therefore representable as
the elements of a sequence ζ1, ζ2, ζ3, . . . Lorenzen then shows that a series
of real numbers containing all rational numbers in an interval is dense, and
that density implies incompleteness.

Therefore, in contrast to classical axiomatics, the operative real numbers
do not constitute an ordered and complete Archimedean field (cf. Lorenzen
1965, 61 sqq.). However, the indefinite field of real numbers contains (up
to isomorphism) all ordered Archimedean fields and is in this sense the
largest ordered Archimedean field. In other words, we now understand the
completeness of the indefinite real numbers (ibid., p. 65).

4 A short outlook on predicative mathematics

The idea of predicative mathematics as a justified part of mathematics was
further developed, with explicit reference to Lorenzen, by Hao Wang:

The Poincaré–Russell notion of predicativity seems to deserve renewed study in
view of recent works by Lorenzen and others which appear to give hope of a
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predicative basis for ordinary mathematics. (Wang 1959, 216)

Wang’s idea was to start from a multi-leveled constructive set theory and
to ask whether one can then give a more accurate characterization of pred-
icativity, “as sharp and acceptable an explication for predicativeness as
recursiveness is for the intuitive concept of effective computability” (Wang
1964, 578).

In his introduction to the paper “Realism and the Debate on Impredicativ-
ity, 1917–1944” (2002), Charles Parsons echoes Wang’s remarks with respect
to further developments in a “classical” view of predicativity by Solomon
Feferman and Kurt Schütte:

Although in the 1950’s Paul Lorenzen and Hao Wang had undertaken to re-
construct mathematics in such a way that impredicativity would be avoided,
insistence on this (to which even Wang did not subscribe) was very much a
minority view, and Feferman in particular sought principally to analyze what
predicativity is, with the understanding that some aspects of this enterprise
would require impredicative methods. (Parsons 2002, 372)

An interesting criticism of the predicative conception of the real numbers
comes from Paul Bernays. He finds it unconvincing that Lorenzen confines
himself to operative intuition and neglects the geometrical aspects of intu-
itive representation, such as the intuition of the continuum, of curves and
planes, projections, and so on. Lorenzen’s refusal to accept the classical,
general concept of a real number means that complete arithmetization of
real numbers is impossible. Indeed, such an arithmetization would require
that the definition of each Dedekind cut be possible without referring to
the quantity denoted by the cut. Of course, such an independent arithmetic
definition of cuts is often possible: the length of the diagonal of the unit
square, for example, is defined by the set of fractions whose squares are less
than 2. However, we have no general proof that each cut is independently
arithmetically definable (Bernays 1979, 6 ff). According to Bernays, such a
strict arithmetization is by no means necessary, provided we introduce a set
theory motivated by geometric intuition:

When the method of conventional analysis is accused of impredicativity,
this is because, in the theory of the real numbers, one does not want to get
involved with the kind of idealization which lies in envisaging the continuum as
the “number line”. . . . Yet, if one conceives the real numbers as represented by
definitory formulae for sets or for sequences of fractions (or of rational numbers),
. . . , then these – in this respect one must certainly agree with Lorenzen – form
only an indefinite totality. But this is not suitable for representing the continuum.

The critics of classical analysis call for a more pronounced arithmetization
of analysis. But it is possible to conceive of classical analysis in the sense of a
closer fusion of geometry and arithmetic, which gives as good a unity of theory
as a full arithmetization. (Bernays 1979, 14)

The question to be answered by Lorenzen is thus: “Can we conceive that the
postulate of the power set of rational numbers is motivated by our geometric
representation of the continuum?” (Lorenzen 1978, 222). This question seems
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insoluble as long as one maintains the classical understanding of geometry
as a science of space (ibid., p. 224).
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