Skip to main content

Epilepsy and Sleep, Common Bedfellows

  • Chapter
  • First Online:
Pediatric Sleep Medicine

Abstract

Epilepsy and sleep are common bedfellows. The development of electroencephalography allowed for the study of both epilepsy and sleep. There is a distinct circadian pattern to interictal epileptiform activity and seizures. Interictal epileptiform activity and seizures are more likely during NREM sleep and rare during REM sleep. Epilepsy-associated alterations in critical circadian clock genes result in neuronal hyperexcitability and account for the circadian pattern of seizures. Epilepsy syndromes have a distinct sleep-wake signature. The marked activation of epileptiform activity during sleep in conditions such as electrical status epilepticus in slow wave sleep (ESES) result in cognitive impairment due to disruption of sleep-related synaptic reorganization. Epilepsy treatments including antiseizure medications, neurostimulation, and ketogenic diet all may have effects on sleep. SUDEP (sudden death in epilepsy patients) is sleep-related phenomenon which is the leading cause of mortality in epilepsy patients. Understanding of the risk factors and pathophysiological mechanisms of SUDEP is allowing development of mitigation strategies. Sleep disorders are often comorbid with epilepsy but are treatable resulting in improved seizure control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADNFLE:

Autosomal dominant frontal lobe epilepsy

BECTS:

Benign focal epilepsy of childhood with centrotemporal spikes

BMAL1:

Brain and muscle Arnt-like protein-1

CAP:

Cyclic alternating pattern

CHRNA2:

Neuronal acetylcholine receptor subunit alpha-2

CHRNA4:

Neuronal acetylcholine receptor subunit alpha-4

CHRNB2:

Neuronal acetylcholine receptor subunit beta-2

CLK5:

Cyclin-dependent kinase 5

CLOCK:

Circadian locomotor output cycle kaput

CPAP:

Continuous positive airway pressure

DEPDC5:

DEP (Dishevelled, Egl-10 and Pleckstrin) domain-containing 5

DLMO:

Dim light melatonin onset

EEG:

Electroencephalogram

EFHC1:

EF-hand domain-containing protein 1

ESES:

Electrical status epilepticus in slow wave sleep

GATOR1:

GAP (GTPase-activating protein) towards Rags

GTCS:

Generalized tonic-clonic seizure

ICK:

Intestinal cell kinase

IED:

Interictal epileptiform discharge

ILAE:

International League Against Epilepsy

JME:

Juvenile myoclonic epilepsy

KCNT1:

Potassium channel subfamily T, member 1

MME:

Minor motor events

MRF:

Medial reticular formation

mTOR:

Mammalian target of rapamycin

nAChR:

Neuronal nicotinic acetylcholine receptor

NPRL:

Nitrogen permease regulator-like

NREM:

Non-rapid eye movement

OSA:

Obstructive sleep apnea

PA:

Paroxysmal arousals

PNES:

Psychogenic nonepileptic seizures

PCCA:

Post-convulsive central apnea

PCDH 19:

Potential calcium-dependent cell-adhesion protein 19

PGES:

Postictal generalized EEG suppression

PLMDS:

Periodic limb movement disorder of sleep

PS:

Panayiotopoulos syndrome

PSG:

Polysomnography

REM:

Rapid eye movement

RLS:

Restless leg syndrome

RNS:

Responsive neurostimulation system

SEEG:

Stereoelectroencephalography

SHE:

Sleep-related hypermotor epilepsy

SUDEP:

Sudden unexplained death in epilepsy patients

TMS:

Transcranial magnetic stimulation

VNS:

Vagal nerve stimulation

References

  1. Aristotle. On sleep and sleeplessness.

    Google Scholar 

  2. Gowers WR. Epilepsy and other chronic convulsive diseases: their causes, symptoms, and treatment (classic ... reprint). Place of publication not identified: FORGOTTEN Books; 2016.

    Google Scholar 

  3. La Vaque TJ. The history of EEG Hans Berger: psychophysiologist. A historical vignette. J Neurother. 1999;3(2):1–9.

    Article  Google Scholar 

  4. Kroker K. Sleep of others and the transformation of sleep research. Place of publication not identified: University of Toronto Press; 2015.

    Google Scholar 

  5. Díaz-Negrillo A. Influence of sleep and sleep deprivation on ictal and interictal epileptiform activity. Epilepsy Res Treat. 2013;2013:1–7.

    Article  Google Scholar 

  6. Halasz P, Szűcs A. Sleep, epilepsies, and cognitive impairment. London/San Diego: Academic Press/Elsevier; 2018. p. 155.

    Google Scholar 

  7. Halász P, Terzano M, Parrino L. Spike-wave discharge and the microstructure of sleep-wake continuum in idiopathic generalised epilepsy. Neurophysiol Clin Neurophysiol. 2002;32(1):38–53.

    Article  Google Scholar 

  8. Boison D. Adenosine dysfunction in epilepsy. Glia. 2012;60(8):1234–43.

    Article  PubMed  Google Scholar 

  9. Masino SA, Kawamura M, Ruskin DN. Adenosine receptors and epilepsy. In: International review of neurobiology [Internet]. Elsevier; 2014 [cited 2019 Mar 14]. p. 233–55. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128010228000118.

  10. Weltha L, Reemmer J, Boison D. The role of adenosine in epilepsy. Brain Res Bull [Internet]. 2018 [cited 2019 Mar 14]. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0361923018306336.

  11. Siegel J. A brief history of hypocretin/orexin and narcolepsy. Neuropsychopharmacology. 2001;25(5):S14–20.

    Article  CAS  PubMed  Google Scholar 

  12. Ng MC. Orexin and epilepsy: potential role of REM sleep. Sleep [Internet]. 2017 [cited 2019 Mar 23];40(3). Available from: https://academic.oup.com/sleep/article/2666713/Orexin.

  13. Frauscher B, von Ellenrieder N, Dubeau F, Gotman J. EEG desynchronization during phasic REM sleep suppresses interictal epileptic activity in humans. Epilepsia. 2016;57(6):879–88.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ng M, Pavlova M. Why are seizures rare in rapid eye movement sleep? review of the frequency of seizures in different sleep stages. Epilepsy Res Treat. 2013;2013:1–10.

    Article  Google Scholar 

  15. Hofstra WA, Spetgens WPJ, Leijten FSS, van Rijen PC, Gosselaar P, van der Palen J, et al. Diurnal rhythms in seizures detected by intracranial electrocorticographic monitoring: an observational study. Epilepsy Behav. 2009;14(4):617–21.

    Article  PubMed  Google Scholar 

  16. Herman ST, Walczak TS, Bazil CW. Distribution of partial seizures during the sleep-wake cycle: differences by seizure onset site. Neurology. 2001;56(11):1453–9.

    Article  CAS  PubMed  Google Scholar 

  17. Bazil CW, Walczak TS. Effects of sleep and sleep stage on epileptic and nonepileptic seizures. Epilepsia. 1997;38(1):56–62.

    Article  CAS  PubMed  Google Scholar 

  18. Lancman E, King LM, Swanson SJ. A new finding in psychogenic seizures. 6.

    Google Scholar 

  19. Albrecht U. Timing to perfection: the biology of central and peripheral circadian clocks. Neuron. 2012;74(2):246–60.

    Article  CAS  PubMed  Google Scholar 

  20. Khan S, Nobili L, Khatami R, Loddenkemper T, Cajochen C, Dijk D-J, et al. Circadian rhythm and epilepsy. Front Neurol. 2018;17:11.

    Google Scholar 

  21. Spencer DC, Sun FT, Brown SN, Jobst BC, Fountain NB, Wong VSS, et al. Circadian and ultradian patterns of epileptiform discharges differ by seizure-onset location during long-term ambulatory intracranial monitoring. Epilepsia. 2016 Sep;57(9):1495–502.

    Article  CAS  PubMed  Google Scholar 

  22. Gurkas E, Serdaroglu A, Hirfanoglu T, Kartal A, Yılmaz U, Bilir E. Sleep-wake distribution and circadian patterns of epileptic seizures in children. Eur J Paediatr Neurol. 2016 Jul;20(4):549–54.

    Article  PubMed  Google Scholar 

  23. Loddenkemper T, Vendrame M, Zarowski M, Gregas M, Alexopoulos AV, Wyllie E, et al. Circadian patterns of pediatric seizures. Neurology. 2011;76(2):145–53.

    Article  CAS  PubMed  Google Scholar 

  24. Tinuper P, Bisulli F. Definition and diagnostic criteria of sleep-related hypermotor epilepsy. Neurology. 2016;86(19):1834–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pavlova MK, Lee JW, Yilmaz F, Dworetzky BA. Diurnal pattern of seizures outside the hospital: is there a time of circadian vulnerability? Neurology. 2012;78(19):1488–92.

    Article  PubMed  Google Scholar 

  26. Hofstra WA, Gordijn MCM, van der Palen J, van Regteren R, Grootemarsink BE, de Weerd AW. Timing of temporal and frontal seizures in relation to the circadian phase: a prospective pilot study. Epilepsy Res. 2011;94(3):158–62.

    Article  PubMed  Google Scholar 

  27. Ramgopal S, Vendrame M, Shah A, Gregas M, Zarowski M, Rotenberg A, et al. Circadian patterns of generalized tonic–clonic evolutions in pediatric epilepsy patients. Seizure. 2012;21(7):535–9.

    Article  PubMed  Google Scholar 

  28. Zarowski M, Loddenkemper T, Vendrame M, Alexopoulos AV, Wyllie E, Kothare SV. Circadian distribution and sleep/wake patterns of generalized seizures in children: chronobiology of generalized seizures. Epilepsia. 2011;52(6):1076–83.

    Article  PubMed  Google Scholar 

  29. Baud MO, Kleen JK, Mirro EA, Andrechak JC, King-Stephens D, Chang EF, et al. Multi-day rhythms modulate seizure risk in epilepsy. Nat Commun [Internet]. 2018 [cited 2019 Mar 16];9(1). Available from: http://www.nature.com/articles/s41467-017-02577-y.

  30. Li P, Fu X, Smith NA, Ziobro J, Curiel J, Tenga MJ, et al. Loss of CLOCK results in dysfunction of brain circuits underlying focal epilepsy. Neuron. 2017;96(2):387–401.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gerstner JR, Smith GG, Lenz O, Perron IJ, Buono RJ, Ferraro TN. BMAL1 controls the diurnal rhythm and set point for electrical seizure threshold in mice. Front Syst Neurosci [Internet]. 2014 [cited 2019 Mar 16];8. Available from: http://journal.frontiersin.org/article/10.3389/fnsys.2014.00121/abstract.

  32. Russo E, Citraro R, Constanti A, De Sarro G. The mTOR signaling pathway in the brain: focus on epilepsy and Epileptogenesis. Mol Neurobiol. 2012;46(3):662–81.

    Article  CAS  PubMed  Google Scholar 

  33. Ramanathan C, Kathale ND, Liu D, Lee C, Freeman DA, Hogenesch JB, et al. mTOR signaling regulates central and peripheral circadian clock function. PLOS Genet. 2018;14(5):e1007369.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Vaurio L, Karantzoulis S, Barr WB. The impact of epilepsy on quality of life. In: Chiaravalloti ND, Goverover Y, editors. Changes in the brain [Internet]. New York: Springer New York; 2017. [cited 2019 Mar 16]. 167–87. Available from: http://link.springer.com/10.1007/978-0-387-98188-8_8.

    Google Scholar 

  35. Guilhoto LMFF, Loddenkemper T, Vendrame M, Bergin A, Bourgeois BF, Kothare SV. Higher evening antiepileptic drug dose for nocturnal and early-morning seizures. Epilepsy Behav. 2011;20(2):334–7.

    Article  CAS  PubMed  Google Scholar 

  36. Wheless JW, Gienapp AJ, Ryvlin P. Vagus nerve stimulation (VNS) therapy update. Epilepsy Behav. 2018;88:2–10.

    Article  Google Scholar 

  37. Mertens A, Raedt R, Gadeyne S, Carrette E, Boon P, Vonck K. Recent advances in devices for vagus nerve stimulation. Expert Rev Med Devices. 2018;15(8):527–39.

    Article  CAS  PubMed  Google Scholar 

  38. Fisher RS, Acevedo C, Arzimanoglou A, Bogacz A, Cross JH, Elger CE, et al. ILAE official report: a practical clinical definition of epilepsy. Epilepsia. 2014;55(4):475–82.

    Article  PubMed  Google Scholar 

  39. Scheffer IE, Berkovic S, Capovilla G, Connolly MB, French J, Guilhoto L, et al. ILAE classification of the epilepsies: position paper of the ILAE commission for classification and terminology. Epilepsia. 2017;58(4):512–21.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Schmitt B. Sleep and epilepsy syndromes. Neuropediatrics. 2015;46(03):171–80.

    Article  PubMed  Google Scholar 

  41. Panayiotopoulos CP. A clinical guide to epileptic syndromes and their treatment [internet]. London: Springer London; 2010. [cited 2019 Mar 14]. Available from: http://link.springer.com/10.1007/978-1-84628-644-5.

    Book  Google Scholar 

  42. Tovia E, Goldberg-Stern H, Ben Zeev B, Heyman E, Watemberg N, Fattal-Valevski A, et al. The prevalence of atypical presentations and comorbidities of benign childhood epilepsy with centrotemporal spikes: atypical presentations of BCECTS. Epilepsia. 2011;52(8):1483–8.

    Article  PubMed  Google Scholar 

  43. Kramer U. Atypical presentations of benign childhood epilepsy with centrotemporal spikes: a review. J Child Neurol. 2008;23(7):785–90.

    Article  PubMed  Google Scholar 

  44. Doumlele K, Friedman D, Buchhalter J, Donner EJ, Louik J, Devinsky O. Sudden unexpected death in epilepsy among patients with benign childhood epilepsy with centrotemporal spikes. JAMA Neurol. 2017;74(6):645.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Yoshinaga H, Kobayashi K, Ohtsuka Y. Characteristics of the synchronous occipital and frontopolar spike phenomenon in panayiotopoulos syndrome. Brain and Development. 2010;32(8):603–8.

    Article  PubMed  Google Scholar 

  46. Yoshinaga H, Koutroumanidis M, Kobayashi K, Shirasawa A, Kikumoto K, Inoue T, et al. EEG dipole characteristics in panayiotopoulos syndrome. Epilepsia. 2006;47(4):781–7.

    Article  PubMed  Google Scholar 

  47. Wyllie E, Moosa ANV. Occipito-frontal sharp waves—an under-recognized electroencephalogram pattern in self-limited idiopathic childhood focal epilepsy. J Clin Neurophysiol. 2017;34(3):e9–14.

    Article  PubMed  Google Scholar 

  48. Tinuper P, Bisulli F. From nocturnal frontal lobe epilepsy to sleep-related hypermotor epilepsy: a 35-year diagnostic challenge. Seizure. 2017;44:87–92.

    Article  PubMed  Google Scholar 

  49. Menghi V, Bisulli F, Tinuper P, Nobili L. Sleep-related hypermotor epilepsy: prevalence, impact and management strategies. Nat Sci Sleep. 2018;10:317–26.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lim CX, Ricos MG, Dibbens LM, Heron SE. KCNT1 mutations in seizure disorders: the phenotypic spectrum and functional effects. J Med Genet. 2016;53(4):217–25.

    Article  CAS  PubMed  Google Scholar 

  51. Combi R, Dalprà L, Ferini-Strambi L, Tenchini ML. Frontal lobe epilepsy and mutations of the corticotropin-releasing hormone gene. Ann Neurol. 2005;58(6):899–904.

    Article  CAS  PubMed  Google Scholar 

  52. Gibbs SA, Proserpio P, Terzaghi M, Pigorini A, Sarasso S, Lo Russo G, et al. Sleep-related epileptic behaviors and non-REM-related parasomnias: insights from stereo-EEG. Sleep Med Rev. 2016;25:4–20.

    Article  PubMed  Google Scholar 

  53. Provini F, Tinuper P, Bisulli F, Lugaresi E. Arousal disorders. Sleep Med. 2011;12:S22–6.

    Article  PubMed  Google Scholar 

  54. Derry C. Nocturnal frontal lobe epilepsy vs parasomnias. Curr Treat Options Neurol. 2012;14(5):451–63.

    Article  PubMed  Google Scholar 

  55. Bisulli F, Vignatelli L, Provini F, Leta C, Lugaresi E, Tinuper P. Parasomnias and nocturnal frontal lobe epilepsy (NFLE): lights and shadows – controversial points in the differential diagnosis. Sleep Med. 2011;12:S27–32.

    Article  PubMed  Google Scholar 

  56. Bisulli F, Vignatelli L, Naldi I, Pittau F, Provini F, Plazzi G, et al. Diagnostic accuracy of a structured interview for nocturnal frontal lobe epilepsy (SINFLE): a proposal for developing diagnostic criteria. Sleep Med. 2012;13(1):81–7.

    Article  PubMed  Google Scholar 

  57. Manni R, Terzaghi M, Repetto A. The FLEP scale in diagnosing nocturnal frontal lobe epilepsy, NREM and REM parasomnias: data from a tertiary sleep and epilepsy unit. Epilepsia. 2008;49(9):1581–5.

    Article  PubMed  Google Scholar 

  58. Itier V, Bertrand D. Mutations of the neuronal nicotinic acetylcholine receptors and their association with ADNFLE. Neurophysiol Clin Neurophysiol. 2002;32(2):99–107.

    Article  Google Scholar 

  59. Sánchez Fernández I, Loddenkemper T, Peters JM, Kothare SV. Electrical status epilepticus in sleep: clinical presentation and pathophysiology. Pediatr Neurol. 2012;47(6):390–410.

    Article  PubMed  Google Scholar 

  60. Fernández IS, Chapman KE, Peters JM, Kothare SV, Nordli DR, Jensen FE, et al. The tower of babel: survey on concepts and terminology in electrical status epilepticus in sleep and continuous spikes and waves during sleep in North America: terminology and concepts in ESES and CSWS. Epilepsia. 2013;54(4):741–50.

    Article  PubMed  Google Scholar 

  61. Tassinari CA, Cantalupo G, Rios-Pohl L, Giustina ED, Rubboli G. Encephalopathy with status epilepticus during slow sleep: “The Penelope syndrome”. Epilepsia. 2009;50:4–8.

    Article  PubMed  Google Scholar 

  62. Homer, Wilson ER. The Odyssey. 2018.

    Google Scholar 

  63. Halász P, Kelemen A, Rosdy B, Rásonyi G, Clemens B, Szűcs A. Perisylvian epileptic network revisited. Seizure. 2019;65:31–41.

    Article  PubMed  Google Scholar 

  64. Halász P, Ujma PP, Fabó D, Bódizs R, Szűcs A. Epilepsy as a derailment of sleep plastic functions may cause chronic cognitive impairment – a theoretical review. Sleep Med Rev. 2019;45:31–41.

    Article  PubMed  Google Scholar 

  65. Halász P, Bódizs R, Ujma PP, Fabó D, Szűcs A. Strong relationship between NREM sleep, epilepsy and plastic functions — a conceptual review on the neurophysiology background. Epilepsy Res. 2019;150:95–105.

    Article  PubMed  Google Scholar 

  66. Niethard N, Born J. Back to baseline: sleep recalibrates synapses. Nat Neurosci. 2019;22(2):149–51.

    Article  CAS  PubMed  Google Scholar 

  67. Uliel-Sibony S, Kramer U. Benign childhood epilepsy with centro-temporal spikes (BCECTSs), electrical status epilepticus in sleep (ESES), and academic decline — how aggressive should we be? Epilepsy Behav. 2015;44:117–20.

    Article  PubMed  Google Scholar 

  68. Wickens S, Bowden SC, D’Souza W. Cognitive functioning in children with self-limited epilepsy with centrotemporal spikes: a systematic review and meta-analysis. Epilepsia. 2017;58(10):1673–85.

    Article  PubMed  Google Scholar 

  69. Scheltens-de BM. Guidelines for EEG in encephalopathy related to ESES/CSWS in children. Epilepsia. 2009;50:13–7.

    Article  Google Scholar 

  70. van den Munckhof B, van Dee V, Sagi L, Caraballo RH, Veggiotti P, Liukkonen E, et al. Treatment of electrical status epilepticus in sleep: a pooled analysis of 575 cases. Epilepsia. 2015;56(11):1738–46.

    Article  PubMed  CAS  Google Scholar 

  71. van den Munckhof B, Alderweireld C, Davelaar S, van Teeseling HC, Nikolakopoulos S, Braun KPJ, et al. Treatment of electrical status epilepticus in sleep: clinical and EEG characteristics and response to 147 treatments in 47 patients. Eur J Paediatr Neurol. 2018;22(1):64–71.

    Article  PubMed  Google Scholar 

  72. Bölsterli BK, Gardella E, Pavlidis E, Wehrle FM, Tassinari CA, Huber R, et al. Remission of encephalopathy with status epilepticus (ESES) during sleep renormalizes regulation of slow wave sleep. Epilepsia. 2017;58(11):1892–901.

    Article  PubMed  Google Scholar 

  73. Maltoni L, Posar A, Parmeggiani A. Long-term follow-up of cognitive functions in patients with continuous spike–waves during sleep (CSWS). Epilepsy Behav. 2016;60:211–7.

    Article  PubMed  Google Scholar 

  74. Ramgopal S, Shah A, Zarowski M, Vendrame M, Gregas M, Alexopoulos AV, et al. Diurnal and sleep/wake patterns of epileptic spasms in different age groups: diurnal patterns of epileptic spasms. Epilepsia. 2012;53(7):1170–7.

    Article  PubMed  Google Scholar 

  75. Riedner BA, Vyazovskiy VV, Huber R, Massimini M, Esser S, Murphy M, et al. Sleep homeostasis and cortical synchronization: III. A high-density EEG study of sleep slow waves in humans. Sleep. 2007;30(12):1643–57.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Fattinger S, Schmitt B, Bölsterli Heinzle BK, Critelli H, Jenni OG, Huber R. Impaired slow wave sleep downscaling in patients with infantile spasms. Eur J Paediatr Neurol. 2015;19(2):134–42.

    Article  PubMed  Google Scholar 

  77. Bailey JN, de Nijs L, Bai D, Suzuki T, Miyamoto H, Tanaka M, et al. Variant intestinal-cell kinase in juvenile myoclonic epilepsy. N Engl J Med. 2018;378(11):1018–28.

    Article  CAS  PubMed  Google Scholar 

  78. Bailey JN, Patterson C, de Nijs L, Durón RM, Nguyen V-H, Tanaka M, et al. EFHC1 variants in juvenile myoclonic epilepsy: reanalysis according to NHGRI and ACMG guidelines for assigning disease causality. Genet Med. 2017;19(2):144–56.

    Article  CAS  PubMed  Google Scholar 

  79. Badawy RAB, Macdonell RAL, Jackson GD, Berkovic SF. Why do seizures in generalized epilepsy often occur in the morning? Neurology. 2009;73(3):218–22.

    Article  CAS  PubMed  Google Scholar 

  80. Manganotti P. Effects of sleep deprivation on cortical excitability in patients affected by juvenile myoclonic epilepsy: a combined transcranial magnetic stimulation and EEG study. J Neurol Neurosurg Psychiatry. 2006;77(1):56–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Xu L, Guo D, Liu Y, Qiao D, Ye J, Xue R. Juvenile myoclonic epilepsy and sleep. Epilepsy Behav. 2018;80:326–30.

    Article  PubMed  Google Scholar 

  82. Krishnan P, Sinha S, Taly AB, Ramachandraiah CT, Rao S, Satishchandra P. Sleep disturbances in juvenile myoclonic epilepsy: a sleep questionnaire-based study. Epilepsy Behav. 2012;23(3):305–9.

    Article  PubMed  Google Scholar 

  83. Capdevila OS, Dayyat E, Kheirandish-Gozal L, Gozal D. Prevalence of epileptiform activity in healthy children during sleep. Sleep Med. 2008;9(3):303–9.

    Article  PubMed  Google Scholar 

  84. Miano S, Bruni O, Aricò D, Elia M, Ferri R. Polysomnographic assessment of sleep disturbances in children with developmental disabilities and seizures. Neurol Sci. 2010;31(5):575–83.

    Article  PubMed  Google Scholar 

  85. Jain SV, Glauser TA. Effects of epilepsy treatments on sleep architecture and daytime sleepiness: an evidence-based review of objective sleep metrics. Epilepsia. 2014;55(1):26–37.

    Article  CAS  PubMed  Google Scholar 

  86. Shvarts V, Chung S. Epilepsy, antiseizure therapy, and sleep cycle parameters. Epilepsy Res Treat. 2013;2013:1–8.

    Article  Google Scholar 

  87. Elliott J, DeJean D, Clifford T, Coyle D, Potter BK, Skidmore B, et al. Cannabis-based products for pediatric epilepsy: a systematic review. Epilepsia. 2019;60(1):6–19.

    Article  PubMed  Google Scholar 

  88. Hallböök T, Lundgren J, Rosén I. Ketogenic diet improves sleep quality in children with therapy-resistant epilepsy. Epilepsia [Internet]. 2007 [cited 2019 Mar 16];48(1). Available from: http://doi.wiley.com/10.1111/j.1528-1167.2006.00834.x.

  89. Racaru VM, Cheliout-Heraut F, Azabou E, Essid N, Brami M, Benga I, et al. Sleep architecture impairment in epileptic children and putative role of anti epileptic drugs. Neurol Sci. 2013;34(1):57–62.

    Article  PubMed  Google Scholar 

  90. Parhizgar F, Nugent K, Raj R. Obstructive sleep apnea and respiratory complications associated with vagus nerve stimulators. J Clin Sleep Med [Internet]. 2011 [cited 2019 Mar 18]. Available from: http://jcsm.aasm.org/ViewAbstract.aspx?pid=28231.

  91. Marzec M, Edwards J, Sagher O, Fromes G, Malow BA. Effects of vagus nerve stimulation on sleep-related breathing in epilepsy patients: vagus nerve stimulation on sleep-related breathing. Epilepsia. 2003;44(7):930–5.

    Article  PubMed  Google Scholar 

  92. Salvadé A, Ryvlin P, Rossetti AO. Impact of vagus nerve stimulation on sleep-related breathing disorders in adults with epilepsy. Epilepsy Behav. 2018;79:126–9.

    Article  PubMed  Google Scholar 

  93. Upadhyay H, Bhat S, Gupta D, Mulvey M, Ming S. The therapeutic dilemma of vagus nerve stimulator-induced sleep disordered breathing. 6.

    Google Scholar 

  94. Bhat S, Lysenko L, Neiman ES, Rao GK, Chokroverty S. Increasing off-time improves sleep-disordered breathing induced by vagal nerve stimulation. Epileptic Disord. 2012;4:432–7.

    Google Scholar 

  95. Ebben MR. Vagus nerve stimulation, sleep Apnea, and CPAP titration. J Clin Sleep Med. 2008;4(5):3.

    Article  Google Scholar 

  96. Nashef L, So EL, Ryvlin P, Tomson T. Unifying the definitions of sudden unexpected death in epilepsy: unifying the definitions of SUDEP. Epilepsia. 2012;53(2):227–33.

    Article  PubMed  Google Scholar 

  97. Nobili L, Proserpio P, Rubboli G, Montano N, Didato G, Tassinari CA. Sudden unexpected death in epilepsy (SUDEP) and sleep. Sleep Med Rev. 2011;15(4):237–46.

    Article  PubMed  Google Scholar 

  98. Keller AE, Whitney R, Li S-A, Pollanen MS, Donner EJ. Incidence of sudden unexpected death in epilepsy in children is similar to adults. Neurology. 2018;91(2):e107–11.

    Article  PubMed  Google Scholar 

  99. Kothare SV, Trevathan E. Sudden death risk among children with epilepsy. Neurology. 2018;91(2):57–8.

    Article  PubMed  Google Scholar 

  100. Harden C, Tomson T, Gloss D, Buchhalter J, Cross JH, Donner E, et al. Practice guideline summary: sudden unexpected death in epilepsy incidence rates and risk factors: report of the guideline development, dissemination, and implementation Subcommittee of the American Academy of neurology and the American Epilepsy Society. Epilepsy Curr. 2017;17(3):180–7.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Abdel-Mannan O, Taylor H, Donner EJ, Sutcliffe AG. A systematic review of sudden unexpected death in epilepsy (SUDEP) in childhood. Epilepsy Behav. 2019;90:99–106.

    Article  PubMed  Google Scholar 

  102. Morse AM, Kothare SV. Pediatric sudden unexpected death in epilepsy. Pediatr Neurol. 2016;57:7–16.

    Article  PubMed  Google Scholar 

  103. Ruthirago D, Julayanont P, Karukote A, Shehabeldin M, Nugent K. Sudden unexpected death in epilepsy: ongoing challenges in finding mechanisms and prevention. Int J Neurosci. 2018;128(11):1052–60.

    Article  PubMed  Google Scholar 

  104. Vilella L, Lacuey N, Hampson JP, Rani MRS, Sainju RK, Friedman D, et al. Postconvulsive central apnea as a biomarker for sudden unexpected death in epilepsy (SUDEP). Neurology. 2019;92(3):e171–82.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Rajakulendran S, Nashef L. Postictal generalized EEG suppression and SUDEP: a review. J Clin Neurophysiol. 2015;32(1):7.

    Article  Google Scholar 

  106. Kang JY, Rabiei AH, Myint L, Nei M. Equivocal significance of post-ictal generalized EEG suppression as a marker of SUDEP risk. Seizure. 2017;48:28–32.

    Article  PubMed  Google Scholar 

  107. Marchi A, Giusiano B, King M, Lagarde S, Trébuchon-Dafonseca A, Bernard C, et al. Postictal electroencephalographic (EEG) suppression: a stereo-EEG study of 100 focal to bilateral tonic-clonic seizures. Epilepsia. 2019;60(1):63–73.

    Article  PubMed  Google Scholar 

  108. Whitney R, Donner EJ. Risk factors for sudden unexpected death in epilepsy (SUDEP) and their mitigation. Curr Treat Options Neurol [Internet]. 2019 [cited 2019 Mar 19];21(2). Available from: http://link.springer.com/10.1007/s11940-019-0547-4.

  109. Granbichler CA, Nashef L, Selway R, Polkey CE. Mortality and SUDEP in epilepsy patients treated with vagus nerve stimulation. Epilepsia. 2015;56(2):291–6.

    Article  PubMed  Google Scholar 

  110. Devinsky O, Friedman D, Duckrow RB, Fountain NB, Gwinn RP, Leiphart JW, et al. Sudden unexpected death in epilepsy in patients treated with brain-responsive neurostimulation. Epilepsia. 2018;59(3):555–61.

    Article  PubMed  Google Scholar 

  111. Zhao X, Lhatoo SD. Seizure detection: do current devices work? And when can they be useful? Curr Neurol Neurosci Rep [Internet]. 2018; [cited 2019 Mar 16];18(7). Available from: http://link.springer.com/10.1007/s11910-018-0849-z.

  112. Ulate-Campos A, Coughlin F, Gaínza-Lein M, Fernández IS, Pearl PL, Loddenkemper T. Automated seizure detection systems and their effectiveness for each type of seizure. Seizure. 2016;40:88–101.

    Article  CAS  PubMed  Google Scholar 

  113. Onorati F, Regalia G, Caborni C, Migliorini M, Bender D, Poh M-Z, et al. Multicenter clinical assessment of improved wearable multimodal convulsive seizure detectors. Epilepsia. 2017;58(11):1870–9.

    Article  PubMed  Google Scholar 

  114. Poh M-Z, Loddenkemper T, Reinsberger C, Swenson NC, Goyal S, Sabtala MC, et al. Convulsive seizure detection using a wrist-worn electrodermal activity and accelerometry biosensor: wrist-worn convulsive seizure detection. Epilepsia. 2012;53(5):e93–7.

    Article  PubMed  Google Scholar 

  115. Liebenthal JA, Wu S, Rose S, Ebersole JS, Tao JX. Association of prone position with sudden unexpected death in epilepsy. Neurology. 2015;84(7):703–9.

    Article  PubMed  Google Scholar 

  116. Tao JX, Sandra R, Wu S, Ebersole JS. Should the “Back to Sleep” campaign be advocated for SUDEP prevention? Epilepsy Behav. 2015;45:79–80.

    Article  PubMed  Google Scholar 

  117. Kinney HC. The sudden infant death syndrome. N Engl J Med 2009;11.

    Google Scholar 

  118. Catcheside PG, Mohtar AA, Reynolds KJ. Airflow resistance and CO2 rebreathing properties of anti-asphyxia pillows designed for epilepsy. Seizure. 2014;23(6):462–7.

    Article  PubMed  Google Scholar 

  119. Vendrame M, Yang B, Jackson S, Auerbach SH. Insomnia and epilepsy: a questionnaire-based study. J Clin Sleep Med [Internet]. 2013 [cited 2019 Mar 16]. Available from: http://jcsm.aasm.org/ViewAbstract.aspx?pid=28820.

  120. Latreille V, St. Louis EK, Pavlova M. Co-morbid sleep disorders and epilepsy: a narrative review and case examples. Epilepsy Res. 2018;145:185–97.

    Article  PubMed  Google Scholar 

  121. Jain SV, Horn PS, Simakajornboon N, Beebe DW, Holland K, Byars AW, et al. Melatonin improves sleep in children with epilepsy: a randomized, double-blind, crossover study. Sleep Med. 2015;16(5):637–44.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Lin Z, Si Q, Xiaoyi Z. Obstructive sleep apnoea in patients with epilepsy: a meta-analysis. Sleep Breath. 2017;21(2):263–70.

    Article  PubMed  Google Scholar 

  123. Becker DA, Fennell EB, Carney PR. Daytime behavior and sleep disturbance in childhood epilepsy. Epilepsy Behav. 2004;5(5):708–15.

    Article  PubMed  Google Scholar 

  124. Höllinger P, Khatami R, Gugger M, Hess CW, Bassetti CL. Epilepsy and obstructive sleep apnea. Eur Neurol. 2006;55(2):74–9.

    Article  PubMed  Google Scholar 

  125. Pornsriniyom D, Shinlapawittayatorn K, Fong J, Andrews ND, Foldvary-Schaefer N. Continuous positive airway pressure therapy for obstructive sleep apnea reduces interictal epileptiform discharges in adults with epilepsy. Epilepsy Behav. 2014;37:171–4.

    Article  PubMed  Google Scholar 

  126. Pornsriniyom D, Won KH, Bena J, Andrews ND, Moul D, Foldvary-Schaefer N. Effect of positive airway pressure therapy on seizure control in patients with epilepsy and obstructive sleep apnea. Epilepsy Behav. 2014;37:270–5.

    Article  PubMed  Google Scholar 

  127. Malow BA, Foldvary-Schaefer N, Vaughn BV, Selwa LM, Chervin RD, Weatherwax KJ, et al. Treating obstructive sleep apnea in adults with epilepsy: a randomized pilot trial. Neurology. 2008;71(8):572–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Vendrame M, Auerbach S, Loddenkemper T, Kothare S, Montouris G. Effect of continuous positive airway pressure treatment on seizure control in patients with obstructive sleep apnea and epilepsy: CPAP in epilepsy patients with OSA. Epilepsia. 2011;52(11):e168–71.

    Article  PubMed  Google Scholar 

  129. Segal E, Vendrame M, Gregas M, Loddenkemper T, Kothare SV. Effect of treatment of obstructive sleep apnea on seizure outcomes in children with epilepsy. Pediatr Neurol. 2012;46(6):359–62.

    Article  PubMed  Google Scholar 

  130. Malow BA, Bowes RJ, Lin X. Predictors of sleepiness in epilepsy patients. Sleep. 1997;20(12):1105–10.

    Article  CAS  PubMed  Google Scholar 

  131. Maganti R, Hausman N, Koehn M, Sandok E, Glurich I, Mukesh BN. Excessive daytime sleepiness and sleep complaints among children with epilepsy. Epilepsy Behav. 2006;8(1):272–7.

    Article  PubMed  Google Scholar 

  132. Kaleyias J, Cruz M, Goraya JS, Valencia I, Khurana DS, Legido A, et al. Spectrum of polysomnographic abnormalities in children with epilepsy. Pediatr Neurol. 2008;39(3):170–6.

    Article  PubMed  Google Scholar 

  133. Piperidou C, Karlovasitou A, Triantafyllou N, Terzoudi A, Constantinidis T, Vadikolias K, et al. Influence of sleep disturbance on quality of life of patients with epilepsy. Seizure. 2008;17(7):588–94.

    Article  PubMed  Google Scholar 

  134. de Weerd A, de Haas S, Otte A, Trenite DK-N, van Erp G, Cohen A, et al. Subjective sleep disturbance in patients with partial epilepsy: a questionnaire-based study on prevalence and impact on quality of life. Epilepsia. 2004;45(11):1397–404.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan M. Pavkovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pavkovic, I.M., Kothare, S.V. (2021). Epilepsy and Sleep, Common Bedfellows. In: Gozal, D., Kheirandish-Gozal, L. (eds) Pediatric Sleep Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-65574-7_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65574-7_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65573-0

  • Online ISBN: 978-3-030-65574-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics