Skip to main content

Non-invasive Respiratory Support in Children with Sleep Disordered Breathing

  • Chapter
  • First Online:
Pediatric Sleep Medicine
  • 1117 Accesses

Abstract

The number of children on respiratory support for sleep disordered breathing has increased exponentially over the past few decades. The indications have evolved and the evidence base, though still patchy, has expanded. This chapter discusses the mainstays of non-invasive respiratory support: continuous positive airway pressure and bilevel positive pressure ventilation, with particular reference to their roles in the treatment of obstructive sleep apnea and the nocturnal hypoventilation seen in patients with neuromuscular disease respectively. It also introduces the newer hybrid volume-assured pressure support modes of ventilation and comments on high-flow nasal cannula therapy and the role of supplementary oxygen in the treatment of central sleep apnea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amin R, Sayal P, Syed F, Chaves A, Moraes TJ, MacLusky I. Pediatric long-term home mechanical ventilation: twenty years of follow-up from one Canadian center. Pediatr Pulmonol. 2014;49(8):816–24.

    Article  PubMed  Google Scholar 

  2. McDougall CM, Adderley RJ, Wensley DF, Seear MD. Long-term ventilation in children: longitudinal trends and outcomes. Arch Dis Child. 2013;98(9):660–5.

    Article  PubMed  Google Scholar 

  3. Marcus CL, Brooks LJ, Draper KA, Gozal D, Halbower AC, Jones J, et al. Diagnosis and management of childhood obstructive sleep apnea syndrome. Pediatrics. 2012;130(3):576–84.

    Article  PubMed  Google Scholar 

  4. Kushida CA, Chediak A, Berry RB, Brown LK, Gozal D, Iber C, et al. Clinical guidelines for the manual titration of positive airway pressure in patients with obstructive sleep apnea. J Clin Sleep Med. 2008;4(2):157–71.

    Article  PubMed  Google Scholar 

  5. Marcus CL, Rosen G, Ward SL, Halbower AC, Sterni L, Lutz J, et al. Adherence to and effectiveness of positive airway pressure therapy in children with obstructive sleep apnea. Pediatrics. 2006;117(3):e442–51.

    Article  PubMed  Google Scholar 

  6. Marcus CL, Radcliffe J, Konstantinopoulou S, Beck SE, Cornaglia MA, Traylor J, et al. Effects of positive airway pressure therapy on neurobehavioral outcomes in children with obstructive sleep apnea. Am J Respir Crit Care Med. 2012;185(9):998–1003.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Beebe DW, Byars KC. Adolescents with obstructive sleep apnea adhere poorly to positive airway pressure (PAP), but PAP users show improved attention and school performance. PLoS One. 2011;6(3):e16924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ramirez A, Khirani S, Aloui S, Delord V, Borel JC, Pepin JL, et al. Continuous positive airway pressure and noninvasive ventilation adherence in children. Sleep Med. 2013;14(12):1290–4.

    Article  PubMed  Google Scholar 

  9. Riley EB, Fieldston ES, Xanthopoulos MS, Beck SE, Menello MK, Matthews E, et al. Financial analysis of an intensive pediatric continuous positive airway pressure program. Sleep. 2017;40(2)

    Google Scholar 

  10. Prashad PS, Marcus CL, Maggs J, Stettler N, Cornaglia MA, Costa P, et al. Investigating reasons for CPAP adherence in adolescents: a qualitative approach. J Clin Sleep Med. 2013;9(12):1303–13.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Xanthopoulos MS, Kim JY, Blechner M, Chang MY, Menello MK, Brown C, et al. Self-efficacy and short-term adherence to continuous positive airway pressure treatment in children. Sleep. 2017;40(7)

    Google Scholar 

  12. Ryan S, Garvey JF, Swan V, Behan R, McNicholas WT. Nasal pillows as an alternative interface in patients with obstructive sleep apnoea syndrome initiating continuous positive airway pressure therapy. J Sleep Res. 2011;20(2):367–73.

    Article  PubMed  Google Scholar 

  13. Overbergh C, Installe S, Boudewyns A, Van Hoorenbeeck K, Verhulst SL. The Optiflow interface for chronic CPAP use in children. Sleep Med. 2018;44:1–3.

    Article  CAS  PubMed  Google Scholar 

  14. Hwang D, Chang JW, Benjafield AV, Crocker ME, Kelly C, Becker KA, et al. Effect of telemedicine education and telemonitoring on continuous positive airway pressure adherence. The Tele-OSA Randomized Trial. Am J Respir Crit Care Med. 2018;197(1):117–26.

    Article  PubMed  Google Scholar 

  15. Ward S, Chatwin M, Heather S, Simonds AK. Randomised controlled trial of non-invasive ventilation (NIV) for nocturnal hypoventilation in neuromuscular and chest wall disease patients with daytime normocapnia. Thorax. 2005;60(12):1019–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Amaddeo A, Frapin A, Fauroux B. Long-term non-invasive ventilation in children. Lancet Respir Med. 2016;4(12):999–1008.

    Article  PubMed  Google Scholar 

  17. Khirani S, Bersanini C, Aubertin G, Bachy M, Vialle R, Fauroux B. Non-invasive positive pressure ventilation to facilitate the post-operative respiratory outcome of spine surgery in neuromuscular children. Eur Spine J. 2014;23(Suppl 4):S406–11.

    Article  PubMed  Google Scholar 

  18. Hull J, Aniapravan R, Chan E, Chatwin M, Forton J, Gallagher J, et al. British Thoracic Society guideline for respiratory management of children with neuromuscular weakness. Thorax. 2012;67(Suppl 1):i1–40.

    Article  PubMed  Google Scholar 

  19. Robb SA, Muntoni F, Simonds AK. Respiratory management of congenital myasthenic syndromes in childhood: workshop 8th December 2009, UCL Institute of Neurology, London, UK. Neuromuscul Disord. 2010;20(12):833–8.

    Article  PubMed  Google Scholar 

  20. Finkel RS, Mercuri E, Meyer OH, Simonds AK, Schroth MK, Graham RJ, et al. Diagnosis and management of spinal muscular atrophy: part 2: pulmonary and acute care; medications, supplements and immunizations; other organ systems; and ethics. Neuromuscul Disord. 2018;28(3):197–207.

    Article  PubMed  Google Scholar 

  21. Simonds AK, Muntoni F, Heather S, Fielding S. Impact of nasal ventilation on survival in hypercapnic Duchenne muscular dystrophy. Thorax. 1998;53(11):949–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chatwin M, Tan HL, Bush A, Rosenthal M, Simonds AK. Long term non-invasive ventilation in children: impact on survival and transition to adult care. PLoS One. 2015;10(5):e0125839.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Bedi PK, Castro-Codesal ML, Featherstone R, AlBalawi MM, Alkhaledi B, Kozyrskyj AL, et al. Long-term non-invasive ventilation in infants: a systematic review and meta-analysis. Front Pediatr. 2018;6:13.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Weese-Mayer DE, Berry-Kravis EM, Ceccherini I, Keens TG, Loghmanee DA, Trang H, et al. An official ATS clinical policy statement: congenital central hypoventilation syndrome: genetic basis, diagnosis, and management. Am J Respir Crit Care Med. 2010;181(6):626–44.

    Article  CAS  PubMed  Google Scholar 

  25. Ramesh P, Boit P, Samuels M. Mask ventilation in the early management of congenital central hypoventilation syndrome. Arch Dis Child Fetal Neonatal Ed. 2008;93(6):F400–3.

    Article  PubMed  Google Scholar 

  26. Selim BJ, Wolfe L, Coleman JM 3rd, Dewan NA. Initiation of noninvasive ventilation for sleep related hypoventilation disorders: advanced modes and devices. Chest. 2018;153(1):251–65.

    Article  PubMed  Google Scholar 

  27. Gentin N, Williamson B, Thambipillay G, Teng A. Nocturnal respiratory failure in a child with congenital myopathy – management using average volume-assured pressure support (AVAPS). Respirol Case Rep. 2015;3(3):115–7.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kelly JL, Jaye J, Pickersgill RE, Chatwin M, Morrell MJ, Simonds AK. Randomized trial of 'intelligent' autotitrating ventilation versus standard pressure support non-invasive ventilation: impact on adherence and physiological outcomes. Respirology. 2014;19(4):596–603.

    Article  PubMed  Google Scholar 

  29. Storre JH, Seuthe B, Fiechter R, Milioglou S, Dreher M, Sorichter S, et al. Average volume-assured pressure support in obesity hypoventilation: a randomized crossover trial. Chest. 2006;130(3):815–21.

    Article  PubMed  Google Scholar 

  30. Janssens JP, Metzger M, Sforza E. Impact of volume targeting on efficacy of bi-level non-invasive ventilation and sleep in obesity-hypoventilation. Respir Med. 2009;103(2):165–72.

    Article  PubMed  Google Scholar 

  31. Murphy PB, Davidson C, Hind MD, Simonds A, Williams AJ, Hopkinson NS, et al. Volume targeted versus pressure support non-invasive ventilation in patients with super obesity and chronic respiratory failure: a randomised controlled trial. Thorax. 2012;67(8):727–34.

    Article  PubMed  Google Scholar 

  32. Masa JF, Corral J, Alonso ML, Ordax E, Troncoso MF, Gonzalez M, et al. Efficacy of different treatment alternatives for obesity hypoventilation syndrome. Pickwick study. Am J Respir Crit Care Med. 2015;192(1):86–95.

    Article  PubMed  Google Scholar 

  33. Diaz-Abad M, Isaiah A, Rogers VE, Pereira KD, Lasso-Pirot A. Use of noninvasive ventilation with volume-assured pressure support to avoid tracheostomy in severe obstructive sleep apnea. Case Rep Pediatr. 2018;2018:4701736.

    PubMed  PubMed Central  Google Scholar 

  34. Vagiakis E, Koutsourelakis I, Perraki E, Roussos C, Mastora Z, Zakynthinos S, et al. Average volume-assured pressure support in a 16-year-old girl with congenital central hypoventilation syndrome. J Clin Sleep Med. 2010;6(6):609–12.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Khayat A, Medin D, Syed F, Moraes TJ, Bin-Hasan S, Narang I, et al. Intelligent volume-assured pressured support (iVAPS) for the treatment of congenital central hypoventilation syndrome. Sleep Breath. 2017;21(2):513–9.

    Article  PubMed  Google Scholar 

  36. Hawkins S, Huston S, Campbell K, Halbower A. High-flow, heated, humidified air via nasal cannula treats CPAP-intolerant children with obstructive sleep apnea. J Clin Sleep Med. 2017;13(8):981–9.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Liew Z, Fenton AC, Harigopal S, Gopalakaje S, Brodlie M, O’Brien CJ. Physiological effects of high-flow nasal cannula therapy in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2019;105:87.

    Article  PubMed  Google Scholar 

  38. Lee M Jr, Nagler J. High-flow nasal cannula therapy beyond the perinatal period. Curr Opin Pediatr. 2017;29(3):291–6.

    Article  PubMed  Google Scholar 

  39. Shetty S, Hickey A, Rafferty GF, Peacock JL, Greenough A. Work of breathing during CPAP and heated humidified high-flow nasal cannula. Arch Dis Child Fetal Neonatal Ed. 2016;101(5):F404–7.

    Article  PubMed  Google Scholar 

  40. Wilkinson D, Andersen C, O'Donnell CP, De Paoli AG, Manley BJ. High flow nasal cannula for respiratory support in preterm infants. Cochrane Database Syst Rev. 2016;2:CD006405.

    PubMed  Google Scholar 

  41. Kotecha SJ, Adappa R, Gupta N, Watkins WJ, Kotecha S, Chakraborty M. Safety and efficacy of high-flow nasal cannula therapy in preterm infants: a meta-analysis. Pediatrics. 2015;136(3):542–53.

    Article  PubMed  Google Scholar 

  42. Roberts CT, Owen LS, Manley BJ, Froisland DH, Donath SM, Dalziel KM, et al. Nasal high-flow therapy for primary respiratory support in preterm infants. N Engl J Med. 2016;375(12):1142–51.

    Article  PubMed  Google Scholar 

  43. Murki S, Singh J, Khant C, Kumar Dash S, Oleti TP, Joy P, et al. High-flow nasal cannula versus nasal continuous positive airway pressure for primary respiratory support in preterm infants with respiratory distress: a randomized controlled trial. Neonatology. 2018;113(3):235–41.

    Article  PubMed  Google Scholar 

  44. McGinley B, Halbower A, Schwartz AR, Smith PL, Patil SP, Schneider H. Effect of a high-flow open nasal cannula system on obstructive sleep apnea in children. Pediatrics. 2009;124(1):179–88.

    Article  PubMed  Google Scholar 

  45. Joseph L, Goldberg S, Shitrit M, Picard E. High-flow nasal cannula therapy for obstructive sleep apnea in children. J Clin Sleep Med. 2015;11(9):1007–10.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Roberts SD, Kapadia H, Greenlee G, Chen ML. Midfacial and dental changes associated with nasal positive airway pressure in children with obstructive sleep apnea and craniofacial conditions. J Clin Sleep Med. 2016;12(4):469–75.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Imbulana DI, Manley BJ, Dawson JA, Davis PG, Owen LS. Nasal injury in preterm infants receiving non-invasive respiratory support: a systematic review. Arch Dis Child Fetal Neonatal Ed. 2018;103(1):F29–35.

    Article  PubMed  Google Scholar 

  48. Hegde S, Prodhan P. Serious air leak syndrome complicating high-flow nasal cannula therapy: a report of 3 cases. Pediatrics. 2013;131(3):e939–44.

    Article  PubMed  Google Scholar 

  49. Harman K, Weichard AJ, Davey MJ, Horne RSC, Nixon GM, Edwards BA. Assessing ventilatory control stability in children with and without an elevated central apnoea index. Respirology. 2019;25:214.

    Article  PubMed  Google Scholar 

  50. Orr JE, Malhotra A, Sands SA. Pathogenesis of central and complex sleep apnoea. Respirology. 2017;22(1):43–52.

    Article  PubMed  Google Scholar 

  51. Fleming PJ, Goncalves AL, Levine MR, Woollard S. The development of stability of respiration in human infants: changes in ventilatory responses to spontaneous sighs. J Physiol. 1984;347:1–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rigatto H, Brady JP. Periodic breathing and apnea in preterm infants. II. Hypoxia as a primary event. Pediatrics. 1972;50(2):219–28.

    Article  CAS  PubMed  Google Scholar 

  53. Urquhart DS, Tan HL. Sleep disordered breathing at the extremes of age: infancy. Breathe (Sheff). 2016;12(1):e1–e11.

    Article  Google Scholar 

  54. Weintraub Z, Alvaro R, Kwiatkowski K, Cates D, Rigatto H. Effects of inhaled oxygen (up to 40%) on periodic breathing and apnea in preterm infants. J Appl Physiol (1985). 1992;72(1):116–20.

    Article  CAS  Google Scholar 

  55. Simakajornboon N, Beckerman RC, Mack C, Sharon D, Gozal D. Effect of supplemental oxygen on sleep architecture and cardiorespiratory events in preterm infants. Pediatrics. 2002;110(5):884–8.

    Article  PubMed  Google Scholar 

  56. Gozal D, Arens R, Omlin KJ, Ward SL, Keens TG. Absent peripheral chemosensitivity in Prader-Willi syndrome. J Appl Physiol (1985). 1994;77(5):2231–6.

    Article  CAS  Google Scholar 

  57. Arens R, Gozal D, Burrell BC, Bailey SL, Bautista DB, Keens TG, et al. Arousal and cardiorespiratory responses to hypoxia in Prader-Willi syndrome. Am J Respir Crit Care Med. 1996;153(1):283–7.

    Article  CAS  PubMed  Google Scholar 

  58. Schluter B, Buschatz D, Trowitzsch E, Aksu F, Andler W. Respiratory control in children with Prader-Willi syndrome. Eur J Pediatr. 1997;156(1):65–8.

    Article  CAS  PubMed  Google Scholar 

  59. Dempsey JA. Crossing the apnoeic threshold: causes and consequences. Exp Physiol. 2005;90(1):13–24.

    Article  PubMed  Google Scholar 

  60. Urquhart DS, Gulliver T, Williams G, Harris MA, Nyunt O, Suresh S. Central sleep-disordered breathing and the effects of oxygen therapy in infants with Prader-Willi syndrome. Arch Dis Child. 2013;98(8):592–5.

    Article  CAS  PubMed  Google Scholar 

  61. Cohen M, Hamilton J, Narang I. Clinically important age-related differences in sleep related disordered breathing in infants and children with Prader-Willi syndrome. PLoS One. 2014;9(6):e101012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Campbell J, FitzPatrick DR, Azam T, Gibson NA, Somerville L, Joss SK, et al. NALCN dysfunction as a cause of disordered respiratory rhythm with central Apnea. Pediatrics. 2018;141(Suppl 5):S485–S90.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-leng Tan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tan, Hl. (2021). Non-invasive Respiratory Support in Children with Sleep Disordered Breathing. In: Gozal, D., Kheirandish-Gozal, L. (eds) Pediatric Sleep Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-65574-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65574-7_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65573-0

  • Online ISBN: 978-3-030-65574-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics