Skip to main content

Hydrogeochemical Characterization of Groundwater and Its Interaction with Other Components of the Environment in Mexico

  • Chapter
  • First Online:
Intensified Land and Water Use

Part of the book series: Springer Earth System Sciences ((SPRINGEREARTH))

  • 229 Accesses

Abstract

Personal health and that of animals are often associated with the chemical composition of the groundwater they ingest. This primary source of water supply may affect the health status when significant changes in the concentration of some trace elements dissolved in drinking water are present. Indeed, adverse health effects occur due to chronic exposure to a high level of trace elements in drinking water. For example, groundwater consumption rich in arsenic or fluoride is causing severe and harmful health effects in broad sectors of the population in several countries. In Mexico, the quality of the drinking water supply is at risk due to water of an undesirable composition that rises to the extraction level of wells. This water inflow is with natural mineralization rich in certain trace elements that have been increasing with extraction time as well as with the obtained quantity; in other cases, there is a pollution effect by local inhabitants. The interest of this chapter is twofold: firstly, is to present different regions of Mexico with environmental and health responses related to groundwater consumption. The second is to emphasize the need to study the chemical evolution of groundwater based on the dynamic concept of the Tóthian groundwater flow systems.

Rafael Huizar-Álvarez—deceased.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alarcón-Herrera MT, Llorens E, Poch M (2012) Remoción de Arsénico del Agua para Consumo Humano en Latinoamérica. López Carrasco (ed). Centro de Investigación en Materiales Avanzados, Chih, México

    Google Scholar 

  • Apambire WB, Boyle DR, Michel FA (1997) Geochemistry, genesis and health implications of fluoriferous groundwater in the upper regions of Ghana. Environ Geol 33(1):13–24

    Article  Google Scholar 

  • Armienta MA, Rodriguez R, Aguayo A, Ceniceros N, Villaseñor G, Cruz O (1997) Arsenic contamination of groundwater at Zimapán, México. Hydrogeol J 5:39–46

    Article  Google Scholar 

  • Armienta MA, Segovia N (2008) Arsenic and Fluoride in the groundwater of Mexico. Environ Geochem Health 30:345–353

    Article  Google Scholar 

  • Arreguín Cortés F, Chávez GR, Soto NP (2000) Una revisión de la presencia de arsénico en el agua subterránea en México. Comisión Nacional del Agua (CONAGUA), México

    Google Scholar 

  • Bailey JC (1977) Fluorine in granitic rocks and melts: a review. Chem Geol 19:1–42

    Article  Google Scholar 

  • Bansiwal A, Thakre D, Labhshetwar N, Meshram S, Rayalu S (2009) Fluoride removal using lanthanum incorporated chitosan beads. Colloids Surf, B 74:216–224

    Article  Google Scholar 

  • Bardsen A, Bjorvatn K, Selving A (1996) Variability in fluoride content of subsurface water reservoir. Acta Odontologica Scandinamica 54(6):343–347

    Article  Google Scholar 

  • Betancourt-Lineares A, Irigoyen-Camacho ME, Mejía-González A, Zepeda-Zepeda M, Sánchez-Pérez L (2013) Prevalencia de fluorosis dental en localidades mexicanas ubicadas en 27 estados y el D.F. A seis años de la publicación de la Norma Oficial Mexicana para la fluoruración de la sal. Rev Investigación Clínica l 65:237–247

    Google Scholar 

  • Bhattacharya P, Chatterjee D, Jacks G (1997) Occurrence of arsenic-contaminated groundwater in alluvial aquifers from the Delta Plain, Eastern India: options for a safe drinking water supply. Water Res Dev 13:79–92

    Article  Google Scholar 

  • Birkle P, Merkel B (2000) Environmental impact by spill of geothermal fluids at the geothermal field Los Azufres, Michoacán, Mexico. Water Air Soil Pollut 124:371–410

    Article  Google Scholar 

  • Bonilla A, Trejo-Vazquéz R, Márquez-Algara C (2002) Analysis of published health risks caused by exposure to fluorides in Aguascalientes, Mexico. Rev Internacional de Contaminación Ambiental 18(4):171–177

    Google Scholar 

  • Buol SW, Hole FD, McCracken RJ (1981) Génesis y clasificación de suelos, Trillas (ed). México

    Google Scholar 

  • BGS–DPHE (2001) Arsenic contamination of groundwater in Bangladesh. In: Kinniburgh DG, Smedley PL (eds) Vol 1: Summary. BGS Technical Report WC/00/19, British Geological Survey

    Google Scholar 

  • Cardona A, Hernández N (1995) Modelo geoquímico conceptual de la evolución del agua subterránea en el valle de México. Ing Hidráulica en México X 3:71–90

    Google Scholar 

  • Cardona A, Carrillo-Rivera JJ (2006) Hidrogeoquímica de sistemas de flujo intermedio que circulan por sedimentos continentales derivados de rocas riolíticas. Ing. Hidráulica en México XXI 3:69–86

    Google Scholar 

  • Cardona A, Carrillo-Rivera JJ, Huizar-Alvarez R, Graniel-Castro E (2004) Salinization in coastal aquifers of arid zones: an example from Santo Domingo, Baja California Sur, Mexico. Environ Geol 45:350–366

    Article  Google Scholar 

  • Cardona A, Banning A, Carrillo–Rivera JJ, Aguillón–Robles A, Rüde T, Aceves de Alba1 J (2018) Natural controls validation for handling elevated fluoride concentrations in extraction activated Tóthian groundwater flow systems: San Luis Potosí, Mexico. Environ Earth Sci 77:121

    Google Scholar 

  • Carpintero JM (2017). La eficiencia del fertilizante: corrección de carencias de hierro, zinc y manganeso. Grupo Fertiberia, www.fertiberia.com ›blog›

  • Carrillo-Chaves Drever JI (1998) Environmental assessment of the potential for arsenic leaching into groundwater from mine wastes in Baja California Sur, Mexico. Geofísica Intern 37:35–39

    Article  Google Scholar 

  • Carrillo-Rivera JJ, Cardona A, Moss D (1996) The importance of the vertical component of groundwater flow: a hydrogeochemical approach in the valley of San Luis Potosı, Mexico. J Hydrol 85:23–44

    Article  Google Scholar 

  • Carrillo-Rivera JJ, Cardona A, Edmunds WE (2002) Use of extraction regime and knowledge of hydrogeological conditions to control high-fluoride concentration in abstracted groundwater: San Luis Potosí basin. Mex J Hydrol 261:24–47

    Article  Google Scholar 

  • Carrillo-Rivera JJ, Varsanyi I, Kovács LO, Cardona A (2007) Tracing groundwater flow systems with hydrogeochemistry in contrasting geological environments. Water Air Soil Pollut 184:77–103

    Article  Google Scholar 

  • Carrillo-Rivera JJ, Cardona A, Huizar-Alvarez A, Graniel E (2008) Response of the interaction between groundwater and other components of the environment in Mexico. Environ Geol 55:303–319

    Article  Google Scholar 

  • Chae GT, Yun ST, Mayer B, Kim K, Kim SY, Kwon JS, Koh YK (2007) Fluorine geochemistry in bedrock groundwater of South Korea. Science Total Environ 385(1–3):272–283

    Article  Google Scholar 

  • Chebotarev II (1955) Metamorphism of natural water in the crust of weathering. Geochim Cosmochim Acta 8:22–48, 137–170, 198–212

    Google Scholar 

  • Comisión Nacional del Agua (Conagua) (2000) Hydrogeological and hydrogeochemical exploration at the Mesilla Bolson, Conejos-Médanos Zone). Junta Municipal de Agua y Saneamiento de Ciudad Juárez

    Google Scholar 

  • Comisión Nacional del Agua (2006) Estadística del agua en México. México

    Google Scholar 

  • Comisión Nacional del Agua (2017) Estadística del agua en México. México

    Google Scholar 

  • Dana Edward, Ford S, William E (1986) Tratado de mineralogía. CECSA (ed). México, XIII Printing

    Google Scholar 

  • Davies BE, Bowman Ch, Davies TC, Selinus O (2005) Medical Geology: Perspectives and Prospects. In: Selinus O (ed in chief) Essential of medical geology impacts the natural environment on public health. Chapter 1. Elsevier Academic Press, Burlington MA 01803

    Google Scholar 

  • De Alba A (2004) Suicidio o Renacimiento, (Metrópoli y Naturaleza). Ed. Indesol- Grupades, AC, Plaza y Valdés. México pp 342

    Google Scholar 

  • De Valk B, Marx JJ (1999) Iron, Atherosclerosis, and ischemic heart disease. Arch Intern Med 159:1542–1548

    Article  Google Scholar 

  • Del Razo LM, Arellano MA, Cebrián ME (1990) The oxidation states of arsenic in well water from a chronic arsenicism area of northern Mexico. Environ Pollut 64:143–153

    Article  Google Scholar 

  • Del Razo LM, Corona JC, García-Vargas G, Albores A, Cebrián ME (1993) Fluoride levels in well water from a chronic arsenicism area of northern Mexico. Environ Pollut 80:91–94

    Article  Google Scholar 

  • Del Río Herrera S (2001) Prevalencia y grados de fluorosis en una muestra de población escolar de educación primaria de Ciudad de Tampico Tamaulipas, México. prodigy.com/dientitos/fluorosis.hml

  • Dhiman SD, Keshari AK (2006) Hydrogeochemical evaluation of high-fluoride groundwaters: a case study from Mehsana district, Gujarat, India. Hydrol Sci J 51(6):1149–1162

    Article  Google Scholar 

  • Díaz-Barriga F, Leyva R, Quistian J, Loyola-Rodríguez JP, Pozos A, Grimaldo M (1997) Endemic fluorosis in San Luis Potosi, Mexico. Sources of fluoride exposure. Fluoride 30:219–222

    Google Scholar 

  • Díaz-Rodríguez A, Lozano Santacruz R, Dávila Alcocer V, Vallejo E, Girón P (1998) Physical, chemical, and mineralogical properties of Mexico City sediments: a geotechnical perspective. Can Geotech J 35:600–610

    Article  Google Scholar 

  • Dissanayake CB, Chandrajith R (2009) Introduction to medical geology: focus on tropical environments. Ed. André Freiwald. Springer—Verlag Berlin Heidelberg ISBN 978-3-642-00484-1

    Google Scholar 

  • Edmunds WM, Carrillo-Rivera JJ, Cardona BA (2002) Geochemical evolution of groundwater beneath Mexico City. J Hydrol 258:1–24

    Article  Google Scholar 

  • Edmunds WM, Smedley PL (2005) Fluoride in natural waters. In Selinus O. (ed in chief), Essentials of medical geology impacts the natural environment on public health. Chapter 12. Elsevier Academic Press, Burlington, MA 01803

    Google Scholar 

  • Esteller MV, Rodríguez R, Cardona A, Padilla-Sánchez L (2012) Evaluation of hydrochemical changes due to intensive aquifer exploitation: case studies from Mexico. Enviro Monit Assess 184:5725–5741

    Article  Google Scholar 

  • Fawell J, Bailey K, Chilton J, Dahi E, Fewtrell L, Magara Y (2005) Fluoride in drinking water. World Health Organization IWA Publishing, London

    Google Scholar 

  • Fergusson JE (1990) The heavy elements: chemistry environmental impact and health effects. Pergamon Press, NY

    Google Scholar 

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall Ed. Inc. Englewood Cliffs NJ 07632

    Google Scholar 

  • Galicia Chacón LF, Juárez López ML, Molina Frechero N (2009) Prevalencia de fluorosis dental y consumo de fluoruros ocultos en escolares del municipio de Nezahualcóyotl. Gaceta Médica Mexicana 145(4):263–267

    Google Scholar 

  • García-Pérez A, Irigoyen-Camacho ME, Borges-Yáñez A (2013) Fluorosis and dental caries in Mexican schoolchildren residing in areas with different water fluoride concentrations and receiving fluoridated salt. Caries Res 47:299–308

    Article  Google Scholar 

  • Gaus I, Shand IN, Gale A, Williams T, Eastwood C (2002) Geochemical modeling of fluoride concentration changes during aquifer storage and recovery (ASR) in the chalk aquifer in Wessex England. England Geol Hydrogeol 35(2):203–208

    Article  Google Scholar 

  • Gunnar Jacks A, Prosun A, Bhattacharya K, Vikas P, Singh Chaudhary (2005) Controls on the genesis of some high-fluoride groundwater. India Applied Geochem 20:221–228

    Article  Google Scholar 

  • Gupta UC, Gupta SC (2005) Future trends and requirements in micronutrient research. Commun Soil Sci Plant Anal 36:33–45

    Article  Google Scholar 

  • Handa BK (1975) Geochemistry and genesis of fluoride containing groundwater in India. Groundwater 13:275–281

    Article  Google Scholar 

  • Harvey D (1994) La construcción social del espacio y del tiempo. Una teoría relacional. (Trad. Perla Zusman) Conf. Simposio de Geografía Socioeconómica. Geographical Review of Japan. Universidad de Nagoya 67 (Ser. B) (2):126–135

    Google Scholar 

  • Hem JD (1985) The study and interpretation of the chemical characteristics of natural water. 3rd ed. U. S. Geological Survey Water-Supply Paper 2254

    Google Scholar 

  • Hollabaungh, CL (2007) Modification of Goldschmidt’s geochemical classification of the elements to include arsenic, mercury, and lead as biophile elements. In: Sarkar, Datta and Hannigan (eds) Concepts and applications in environmental geochemistry. Chapter 1. Elsevier Ltd. ISSN 147-8177/https://doi.org/10.1016/s1474 (07) 05004-8

  • Hong S, Candelone JO, Patterson CC, Boutron CF (1994) Greenland ice evidence of hemisphere lead pollution two millennia ago by Grek and Roman civilizations. Science 265:1841–1843

    Article  Google Scholar 

  • Huizar-Alvarez R, Carrillo-Rivera JJ, Cardona BA, Hergt T, Juárez Sánchez F (1998) Definición del control de la calidad del agua subterránea extraída de la subcuenca de México, Delegación Ixtapalapa. Concejo de Estudios Restauración y Valoración Ambiental. Gob. Cd, México. Aire-Agua 1:409–550

    Google Scholar 

  • Huizar-Alvarez R, Carrillo-Rivera JJ, Angeles-Serrano G, Hergt T, Cardona BA (2004) Chemical response to groundwater extraction southeast of Mexico City. Hydrogeol J 12:436–450

    Article  Google Scholar 

  • Huízar-Álvarez R, Varela-González GG, Espinoza Jaramillo MM (2014) Sistemas de flujo subterráneo y contenido de fluoruro en el agua de Tenextepango, Morelos, México. Revista Mexicana de Ciencias Geológicas 3(2):238–247

    Google Scholar 

  • Huízar-Álvarez R, Carrillo-Rivera JJ, Juárez Sánchez F (2016a) Fluoruro en el agua subterránea: niveles, origen y control natural en la región de Tenextepango, Morelos, México, UNAM. Inv. Geogr. Instituto de Geografía 90:40–58

    Google Scholar 

  • Huizar-Alvarez R, Samira Ouysse, Espinoza-Jaramillo MA, Carrillo-Rivera JJ, Mendoza-Archundia E (2016b) The effects of water use on Tothian flow systems in the Mexico City conurbation determined from the geochemical and isotopic characteristics of groundwater. Environ Earth Sci 75:1060

    Article  Google Scholar 

  • Hurtado R, Gardea-Torresdey J (2004) Environmental evaluation of fluoride in drinking water at “Los Altos de Jalisco”, in the central Mexico Region. J Toxicol Environ Health—Part A–current issues 67(20–22):1741–1753

    Google Scholar 

  • Irigoyen-Camacho ME, Mejía-González A, Zepeda-Zepeda M, Sánchez-Pérez L (2013) Dental fluorosis prevalence in Mexican localities of 27 states and the D.F: six years after the publication of the salt fluoridation Mexican official regulation. Rev Invest Clin 65:237–247

    Google Scholar 

  • Irigoyen-Camacho ME, García Pérez A, Mejía-González A, Huizar-Alvarez R (2016) Nutritional status and dental fluorosis among schoolchildren in communities with different drinking water fluoride concentrations in a central region in Mexico. Sci Total Environment 541:512–519

    Article  Google Scholar 

  • Jefferson F, Weinstein P, Chin-Hsiao T (2005) Environmental Medicine. In: Selinus O. (ed in Chief) Essential of medical geology impacts of the natural environmental on public healt. Chapter 22. Elsevier Acedmic Press. Burlintong, MA 01803

    Google Scholar 

  • Jiménez-Cisneros BE (2007) Información y calidad del agua en México. Universidad Autónoma de Nuevo León Monterrey, Nuevo León, México. Trayectorias IX(24):45–56

    Google Scholar 

  • Lesser Illades JM, Sánchez Díaz LF (1986) Hidrogeoquímica del acuífero de la Ciudad de México. Ingeniería Hidráulica en México 3:64–77

    Google Scholar 

  • Liy H (2000) A Compendium of Geochemistry: from solar Nebula to the human brain, Princeton University Press, Princeton

    Google Scholar 

  • Lindh U (2005) Biological functions of the elements. In: Selinus O (ed in chief), Essentials of medical geology impacts the natural environment on public health. Chapter 6. Elsevier Academic Press, Burlington, MA 01803

    Google Scholar 

  • López Paraguay MZ (2013) Adsorción de arsénico y fluoruros en nanopartículas y su posterior separación del agua tratada. Unpublished PhD Dissertation. CIMAV. S.C. Chihuahua, México

    Google Scholar 

  • Loyola-Rodríguez JP, Pozos-Guillén AJ, Hernández-Guerrero JC (1998) Bebidas embotelladas como fuentes adicionales de exposición a flúor. Salud Pública Mex 40:438–441

    Article  Google Scholar 

  • Martini M (1984) On the behaviour of fluorine in volcanic processes. Bull Volcanol 47(3):483–489

    Article  Google Scholar 

  • Mazari M, Mackay DM (1993) Potential for groundwater contamination in Mexico City. Environ Sci Technol 27(5):794–802

    Article  Google Scholar 

  • Macías-García C, Mazari-Hiriart M (2018) Estudio sobre el estado actual de mantos acuíferos, la Explotación de pozos, el abasto real y la demanda actual y Potencial del líquido en la ciudad de México. Consejo Económico Social de Ciudad de México (pp 356)

    Google Scholar 

  • Mejía-González MA, González-Hita L, Briones-Gallardo R, Cardona BA, Soto-Navarro P (2014) Mecanismos que liberan arsénico al agua subterránea de la Comarca Lagunera, estados de Coahuila y Durango, México. Tecnología y Ciencias del Agua 5(1):71–82

    Google Scholar 

  • Metz W (1998) Review of the scientific basis for establishing the essentiality of trace elements. Biol Trace Element Res 66:185–191

    Article  Google Scholar 

  • Michibata H, Uyama T, Ueki T, Kanamore K (2002) Vanadicytes cells hold the key to resolving the highly selective accumulation and reduction of vanadium in ascidian. Microsc Res Tech 56:421–434

    Article  Google Scholar 

  • Minning BA, Goldberg (1997) Arsenic (III) and arsenic (V) adsorption on three California Soils. Soil Sci 162:886–985

    Google Scholar 

  • Navarro O, González J, Júnez-Ferreira H, Bautista CF, Cardona BA (2017) Correlation of arsenic and fluoride in the groundwater for human consumption in a semiarid region of Mexico. Procedia Eng 186:333–340

    Article  Google Scholar 

  • Nickson RT, McArthur JM, Ravenscroft P, Burgess WG, Ahmed KM (2000) Mechanism of arsenic poisoning of groundwater in Bangladesh and West Bengal. Appl Geochem 15:403–413

    Article  Google Scholar 

  • Niparajá AC (2005) Estudio del arsénico en Baja California Sur, México. https://issuu.com/niparajaac/docs/estudio_arsenico_niparaja

  • Nordberg M, Cherian G (2005) Biological Responses to Elements. In: Selinus O (ed in chief), Essentials of medical geology impacts the natural environment on public health. Chapter 8. Elsevier Academic Press, Burlington, MA 01803

    Google Scholar 

  • Nordstrom DK, Jenne EA (1977) Fluoride solubility in selected geothermal waters. Geochemistry et Cosmochimistry Acta 41:175–188

    Article  Google Scholar 

  • Nriagu JO (1983) Lead exposure and lead poisoning. Lead and lead poisoning in antiquity. Wiley, N York, pp 309–424

    Google Scholar 

  • Nriagu JO (1998) Tales told in lead. Sci 281:1622–1623

    Article  Google Scholar 

  • Ortega-Guerrero MA (2009) Presencia, distribución, hidrogeoquímica y origen de arsénico, fluoruro y otros elementos traza disueltos en agua subterránea, a escala de cuenca hidrológica tributaria de Lerma-Chapala, México: Revista Mexicana de Ciencias Geológicas 26(1):143–161

    Google Scholar 

  • Ortega-Guerrero MA (2017) Evaporative concentration of arsenic in groundwater: health and environmental implications, La Laguna Region, Mexico. Environ Geochem Health 39:987–1003

    Article  Google Scholar 

  • Ozsvath DL (2009) Fluoride and environmental health: a review. Review Environ Science, Biotechnol 8:59–79

    Article  Google Scholar 

  • Pitre V (1994) Analysis of induced recharge from a waste water canal through fractured clays in Mexico City. M.Sc dissertation. Universidad of Waterloo, Canadá

    Google Scholar 

  • Planer-Friederich B, Armienta MA, Merkel BJ (2001) Origin of arsenic in the groundwater of the Rio Verde Basin, Mexico. Environ Geol 40:1290–1298

    Article  Google Scholar 

  • Prashanth L, Kattapagari KK, Chitturi RT, Baddam VR, Prasad LK (2015) A review on role of essential trace elements in health and disease. JNTR Univ Health Sci 4:75–85

    Article  Google Scholar 

  • Ramírez-Ayala R, Azcona-Cruz I (2017) Efectos tóxicos del manganeso. Rev Especial Médica Quirúrgica 22:71–75

    Google Scholar 

  • Rao NS (2003) High-fluoride groundwater. Environ Monit Assess 176:637–645

    Google Scholar 

  • Ravenscroft P, McArthur JM, Hoque BA (2001) Geochemical and Palaeohydrological Controls on Pollution of Groundwater by Arsenic. In: Chappell CO, Abernathy, Calderon (eds), Arsenic Exposure and Health Effects, Chapter IV: 53–78 Elsevier Science Ltd. Oxford

    Google Scholar 

  • Roberts C, Manchester K (1995) Metabolic and endocrine disease. In: The Archeology of Disease, London, Alan Sutton Publishing, pp 163–185

    Google Scholar 

  • Schumann K (2001) Safety aspects of iron in food. Ann Nutr Metab 45:91–101

    Article  Google Scholar 

  • Salonen JT, Nyyssonen K, Korpela H, Tuomilehto J, Seppanen R, Salonen R (1992) High stored iron levels are associated with excess risk of myocardial infarction in Eastern Finnish Men. Circulation 86:803–811

    Article  Google Scholar 

  • Sánchez-Díaz LF (2007) Origen, transporte, distribución y concentraciones de los fluoruros en el sistema hidrogeológico volcánico Atemajac-Toluquilla, Jalisco, México. Unpublished PhD Dissertation, Universidad Nacional Autónoma de México

    Google Scholar 

  • Saxena VK, Ahmed S (2001) Dissolution of fluoride in groundwater: a water—rock interaction study. Environ Geol 40:1084–1087

    Article  Google Scholar 

  • SEDESOL-INE (1994) Informe de la situación general en materia de equilibrio ecológico y protección del ambiente. Secretaría de Desarrollo Social, Instituto Nacional de Ecología, México

    Google Scholar 

  • Selinus O, Alloway B, Centeno JA, Fonkelma RB, Fuge R, Lindh U, Smedley PL (2005) Preface. In: Selinus O (ed. in Chief) Essentials of medical geology impacts the natural environment on public health. Elsevier Academic Press, Burlington, MA 01803. USA

    Google Scholar 

  • SEMARNAT (2002) Informe de la ecretaria del Medio Ambiente en México. Compendio de estadísticas ambientales, México: Secretaria del Medio Ambiente y Recursos Naturales

    Google Scholar 

  • Silver CS, Rothman DS (1995) Toxic and health: the potential long-term effects of industrial activity. World Resources Institute, Washington

    Google Scholar 

  • Smedley PL, Kinninburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    Article  Google Scholar 

  • Smedley PL, Kinninburgh DG (2005) Arsenic in groundwater and the environment. In: Selinus O (ed. in chief), Essentials of medical geology impacts the natural environment on public health. Chapter 11. Elsevier Academic Press. Burlington, MA 01803

    Google Scholar 

  • Smith N (1990) The Production of Nature and The Production of Space In: Claudia Villegas Delgado (Transator), Uneven Development. Nature, Capital and the Production of Space. Basil Blackwell. Biblioteca básica de Geografía. Serie Trad- 2. SUA. Fac. Filos y Letras UNAM. México, 2006

    Google Scholar 

  • Smyth TG (1992) El flúor en la prevención de la caries dental. Ediciones Díaz de Santos. SA

    Google Scholar 

  • SSA (Secretaría de Salud) (1996) Norma Oficial Mexicana NOM-127-SSA1-1996. Salud ambiental. Agua para uso y consumo humano. Límites permisibles de calidad y tratamientos a que debe someterse el agua para su potabilización, México: Secretaria del Medio Ambiente y Recursos Naturales

    Google Scholar 

  • SSA (Secretaría de Salud) (2004) Presencia de flúor en México. Centro Nacional de vigilancia y control de enfermedades epidemiológicas, estudio nacional, México

    Google Scholar 

  • Stumm W, Morgan JJ (1981) Aquatic Chemistry. 2nd edn, John Wiley Sons, NY

    Google Scholar 

  • Tóth J (1963) Theoretical analysis of groundwater flow in a small drainage basin. J Geophys Res 68:4795–4812

    Article  Google Scholar 

  • Tóth J (1978) Gravity-induced cross-formational flow of formation fluids, Red Earth Region, Alberta, Canada: analysis, patterns and evolution. Water Resources Res 14(5):805–843

    Article  Google Scholar 

  • Tóth J (1988) Groundwater and hydrocarbon mitigation. In: Back W, Rosensheim JS, Seaber PR (eds), Hydrogeology, Geology of North America, Vol. O-2:485–502

    Google Scholar 

  • Tóth J, Corbet T (1986) Post-Paleocene evolution of regional groundwater flow-systems and their relation to petroleum accumulations, Taber area, southern Alberta. Canada. Canadian Petroleum Geology Bulletin 34(3):339–363

    Google Scholar 

  • Tóth J (1999) Groundwater as a geologic agent: an overview of the causes, processes, and manifestations. Hydrogeol J 7:1–14

    Article  Google Scholar 

  • USEPA (2011) US environmental protection agency and the US department of Health And Human Services (HHS) http://water.epa.gov/action/advisories/drinking/fluoride_index.cfm

  • Varela-González GG, García-Pérez A, Huizar-Alvarez R, Irigoyen-Camacho ME, Espinoza-Jaramillo MM (2013) Fluorosis and dental caries in the hydrogeological environments of Southeastern communities in the State of Morelos, Mexico. J Environ Protection 4:994–1001

    Article  Google Scholar 

  • Varsányi I, Kovács OL (1997) Chemical evolution of groundwater in the River Danube deposits in the southern part of the Pannonian Basin (Hungary). Appl Geochem 12:625–637

    Article  Google Scholar 

  • Valenzuela-Vásquez L, Ramírez-Hernández J, Reyes-López J, Uribe A, Lázaro-Mancilla O (2006) The origin of fluoride in groundwater supply to Hermosillo City, Sonora, México. Environ Geol 51:17–27

    Article  Google Scholar 

  • Venegas SS, Ramírez S G, Romero GC, Reyes VP, Razo M, Gutiérrez NL, Arellano GF (1991) La Primavera geothermal field, Jalisco. The Geology of North America, Vol. P-3, Economic Geology, Mexico, The Geological Society of America

    Google Scholar 

  • Wenzel WW, Blum WE (1992) Fluorine speciation and mobility in F-contaminated soils. Soil Sci 153(5):357–364

    Article  Google Scholar 

  • World Health Organization (2001) Arsenic and arsenic compounds, environmental health criteria. vol. 224, 2nd edn, World Health Organization, International Programme on Chemical Safety, Geneva

    Google Scholar 

  • World Health Organization (2010) The WHO recommended classification of pesticides by hazard and guidelines to classification 2009. World Health Organization, Ginebra, Suiza

    Google Scholar 

  • World Health Organization (2015) Water Sanitation and Health (WSH). Naturally occurring hazards: Fluoride. http://www.who.int/water_sanitation_health/naturalhazards/en/index2.html (Read 10/8/15)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Huizar-Álvarez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huizar-Álvarez, R., Carrillo-Rivera, J.J. (2021). Hydrogeochemical Characterization of Groundwater and Its Interaction with Other Components of the Environment in Mexico. In: Alconada-Magliano, M.M. (eds) Intensified Land and Water Use. Springer Earth System Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-65443-6_6

Download citation

Publish with us

Policies and ethics