Skip to main content

Sex Differences in Strength of Fear Response

  • Chapter
  • First Online:
Sex Differences in Fear Response

Abstract

While the strength of the fear system can be inferred in part from the conscious experience of fear, it is also instructive to measure the activity of the relevant brain areas directly. Enhanced excitatory activation of some or all of these areas might be expected to increase the intensity of fear. The strength of the fear system has been assessed chiefly via neuroimaging studies in which images of faces showing different emotions (including fear and anger) are presented and regional activation in the viewer’s brain is recorded. Most studies identify a priori regions of interest, but increasingly sophisticated statistical programs and imaging techniques allow researchers to investigate structural, functional and temporal connectivity within and between brain circuits. The interpretation of findings is complicated by the difficulty (some would say impossibility) of mapping the correspondence between structure and function. For example, signals reflecting changes in blood-oxygen levels (so called BOLD signals) indicate regions that are active in response to threat, but these regions could be registering threat, augmenting the fear response, suppressing the fear response, supporting decision-making processes, or a number of other concurrent functions. Nonetheless, some key circuits associated with fear have consistently been identified. These include sub-cortical structures such as the amygdala (located within the medial temporal lobe and associated with fear registration) and the hypothalamus (located at the base of the brain, guiding our autonomic responses). Areas of the mid-brain such as the periaqueductal grey have a role in the expression of behavioural fear while broader regions such as the ventromedial and orbitofrontal cortices show heightened activity in relation to fear regulation, task monitoring, future simulation and action decisions. Appendix B provides more specific details regarding the various neural structures covered within the chapters of this text and their associations with the components of the fear system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andreano, J. M., & Cahill, L. (2009). Sex influences on the neurobiology of learning and memory. Learning and Memory, 16(4), 248–266.

    Article  Google Scholar 

  • Andreano, J. M., Dickerson, B. C., & Barrett, L. F. (2014). Sex differences in the persistence of the amygdala response to negative material. Social Cognitive and Affective Neuroscience, 9, 1388–1394.

    Article  Google Scholar 

  • Blanchard, D. C., Hynd, A. L., Minke, K. A., Minemoto, T., & Blanchard, R. J. (2001). Human defensive behaviors to threat scenarios show parallels to fear and anxiety-related defense patterns of non-human mammals. Neuroscience and Biobehavioral Reviews, 25, 761–770.

    Article  Google Scholar 

  • Bos, P. A., Panksepp, J., Blithe, R.-M., & van Honk, J. (2012). Acute effects of steroid hormones and neuropeptides on human social–emotional behavior: A review of single administration studies. Frontiers in Neuroendocrinology, 33, 17–35.

    Article  Google Scholar 

  • Bos, P. A., van Honk, J., Ramsey, N. F., Stein, D. J., & Hermans, E. J. (2013). Testosterone administration in women increases amygdala responses to fearful and happy faces. Psychoneuroendocrinology, 38, 808–817.

    Article  Google Scholar 

  • Craig, A. D. (2009). How do you feel–now? The anterior insula and human awareness. Nature Reviews Neuroscience, 10, 59–70.

    Article  Google Scholar 

  • Critchley, H. D., Wiens, S., Rotshtein, P., Ohman, A., & Dolan, R. J. (2004). Neural systems supporting interoceptive awareness. Nature Neuroscience, 7(2), 189–195.

    Article  Google Scholar 

  • Davis, F. C., Somerville, L. H., Ruberry, E. J., Berry, A. B. L., Shin, L. M., & Whalen, P. J. (2011). A tale of two negatives: Differential memory modulation by threat-related facial expressions. Emotion, 11(3), 647–655.

    Article  Google Scholar 

  • Derntl, B., Windischberger, C., Robinson, S., Kryspin-Exner, I., Gur, R. C., Moser, E., & Habel, U. (2009). Amygdala activity to fear and anger in healthy young males is associated with testosterone. Psychoneuroendocrinology, 34, 687–693.

    Article  Google Scholar 

  • Engman, J., Linnman, C., Van Dijk, K. R. A., & Milad, M. R. (2016). Amygdala subnuclei resting-state functional connectivity sex and estrogen differences. Psychoneuroendocrinology, 63, 34–42.

    Article  Google Scholar 

  • Etkin, A., Egner, T., & Kalisch, R. (2011). Emotional processing in anterior cingulate and medial prefrontal cortex. Trends in Cognitive Sciences, 15, 85–93.

    Article  Google Scholar 

  • Gasquoine, P. G. (2013). Localization of function in anterior cingulate cortex: From psychosurgery to functional neuroimaging. Neuroscience and Biobehavioral Reviews, 37, 340–348.

    Article  Google Scholar 

  • Goetz, S. M. M., Tang, L., Thomason, M. E., Diamond, M. P., Hariri, A. R., & Carré, J. M. (2014). Testosterone rapidly increases neural reactivity to threat in healthy men: A novel two-step pharmacological challenge paradigm. Biological Psychiatry, 76, 324–331.

    Article  Google Scholar 

  • Hammer, J. L., & Marsh, A. A. (2015). Why do fearful facial expressions elicit behavioral approach? Evidence from a combined approach-avoidance implicit association test. Emotion, 15(2), 223–231.

    Article  Google Scholar 

  • Hermans, E. J., Ramsey, N. F., & van Honk, J. (2008). Exogenous testosterone enhances responsiveness to social threat in the neural circuitry of social aggression in humans. Biological Psychiatry, 63, 263–270.

    Article  Google Scholar 

  • Kogler, L., Mueller, V. I., Seidel, E. M., Boubela, R., Kalcher, K., Moser, E., … Derntl, B. (2016). Sex differences in the functional connectivity of the amygdalae in association with cortisol. NeuroImage, 134, 410–423.

    Google Scholar 

  • Lungu, O., Potvin, S., Tikasz, A., & Mendrek, A. (2015). Sex differences in effective fronto-limbic connectivity during negative emotion processing. Psychoneuroendocrinology, 62, 180–188.

    Article  Google Scholar 

  • Marsh, A. A., & Ambady, N. (2007). The influence of the fear facial expression on prosocial responding. Cognition and Emotion, 21(2), 225–247.

    Article  Google Scholar 

  • Marsh, A. A., Ambady, N., & Kleck, R. E. (2005). The effects of fear and anger facial expressions on approach- and avoidance-related behaviors. Emotion, 5, 119–124.

    Article  Google Scholar 

  • Marsh, A. A., Finger, E. C., Fowler, K. A., Jurkowitza, I. T. N., Schechter, J. C., Yua, H. H., … Blair, R. J. R. (2011). Reduced amygdala-orbitofrontal connectivity during moral judgments in youths with disruptive behavior disorders and psychopathic traits. Psychiatry Research, 194(3), 279–286.

    Google Scholar 

  • McClure, E. B., Monk, C. S., Nelson, E. E., Zarahn, E., Leibenluft, E., Bilder, R. M., … Pine, D. S. (2004). A developmental examination of gender differences in brain engagement during evaluation of threat. Biological Psychiatry, 55, 1047–1055.

    Google Scholar 

  • McGaugh, J. L. (2004). The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annual Review of Neuroscience, 27, 1–28.

    Article  Google Scholar 

  • Montoya, E. R., Terburg, D., Bos, P. A., & van Honk, J. (2012). Testosterone, cortisol, and serotonin as key regulators of social aggression: A review and theoretical perspective. Motivation and Emotion, 36(1), 65–73.

    Article  Google Scholar 

  • Moriguchi, Y., Touroutoglou, A., Dickerson, B. C., & Barrett, L. F. (2014). Sex differences in the neural correlates of affective experience. Social Cognitive and Affective Neuroscience, 9, 591–600.

    Article  Google Scholar 

  • Perkins, A. M., & Corr, P. J. (2006). Reactions to threat and personality: Psychometric differentiation of intensity and direction dimensions of human defensive behavior. Behavioural Brain Research, 169, 21–28.

    Article  Google Scholar 

  • Peters, S., Jolles, D. J., van Duijvenvoorde, A. C. K., Crone, E. A., & Peper, J. S. (2015). The link between testosterone and amygdala-orbitofrontal cortex connectivity in adolescent alcohol use. Psychonueroendocrinology, 53, 117–126.

    Article  Google Scholar 

  • Schuck, N. W., Ming, B. C., Wilson, R. C., & Niv, Y. (2016). Human orbitofrontal cortex represents a cognitive map of state space. Neuron, 91, 1402–1412.

    Article  Google Scholar 

  • Sergerie, K., Chochol, C., & Armony, J. L. (2008). The role of the amygdala in emotional processing: A quantitative meta-analysis of functional neuroimaging studies. Neuroscience and Biobehavioral Reviews, 32, 811–830.

    Article  Google Scholar 

  • Spielberg, J. M., Forbes, E. E., Ladouceur, C. D., Worthman, C. M., Olino, T. M., Ryan, N. D., & Dahl, R. E. (2015). Pubertal testosterone influences threat-related amygdala–orbitofrontal cortex coupling. Social Cognitive and Affective Neuroscience, 10, 408–410.

    Article  Google Scholar 

  • Stalnaker, T. A., Cooch, N. K., & Schoenbaum, G. (2015). What the orbitofrontal cortex does not do. Nature Neuroscience, 18(5), 620–627.

    Article  Google Scholar 

  • Stevens, J. S., & Hamann, S. (2012). Sex differences in brain activation to emotional stimuli: A meta-analysis of neuroimaging studies. Neuropsychologia, 50, 1578–1593.

    Article  Google Scholar 

  • Taylor, S. E., Klein, L. C., Lewis, B. P., Gruenewald, T. L., Gurung, R. A. R., & Updegraff, J. A. (2000). Biobehavioral responses to stress in females: Tend-and-befriend, not fight-or-flight. Psychological Review, 107(3), 411–429.

    Article  Google Scholar 

  • Thomas, K. M., Drevets, W. C., Whalen, P. J., Eccard, C. H., Dahl, R. E., Ryan, N. D., & Casey, B. J. (2001). Amygdala response to facial expressions in children and adults. Biological Psychiatry, 49, 309–316.

    Article  Google Scholar 

  • Thompson, R., Gupta, S., Miller, K., Mills, S., & Orr, S. (2004). The effects of vasopressin on human facial responses related to social communication. Psychoneuroendocrinology, 29, 35–48.

    Article  Google Scholar 

  • Tunc, B., Solmaz, B., Parker, D., Satterthwaite, T. D., Elliott, M. A., Calkins, M. E., … Verma, R. (2016). Establishing a link between sex-related differences in the structural connectome and behaviour. Philosophical Transactions of the Royal Society B, 371, 20150111.

    Google Scholar 

  • van Honk, J., Peper, J. S., & Schutter, D. J. (2005). Testosterone reduces unconscious fear but not consciously experienced anxiety: Implications for the disorders of fear and anxiety. Biological Psychiatry, 58, 218–225.

    Article  Google Scholar 

  • van Wingen, G., Mattern, C., Verkes, R. J., Buitelaar, J., & Fernandez, G. (2010). Testosterone reduces amygdala–orbitofrontal cortex coupling. Psychoneuroendocrinology, 35, 105–113.

    Article  Google Scholar 

  • van Wingen, G. A., Zylicz, S. A., Pieters, S., Mattern, C., Verkes, R. J., Buitelaar, J. K., & Fernandez, G. (2009). Testosterone increases amygdala reactivity in middle-aged women to a young adulthood level. Neuropsychopharmacology, 34, 539–547.

    Article  Google Scholar 

  • Wager, T. D., Phan, K. L., Liberzon, I., & Taylor, S. F. (2003). Valence, gender, and lateralization of functional brain anatomy in emotion: A meta-analysis of findings from neuroimaging. NeuroImage, 19, 513–531.

    Article  Google Scholar 

  • Whittle, S., Yucel, M., Yap, M. B. H., & Allen, N. B. (2011). Sex differences in the neural correlates of emotion: Evidence from neuroimaging. Biological Psychology, 87, 319–333.

    Article  Google Scholar 

  • Williams, L. M., Barton, M. J., Kemp, A. H., Liddell, B. J., Peduto, A., Gordon, E., & Bryant, R. A. (2005). Distinct amygdala-autonomic arousal profiles in response to fear signals in healthy males and females. NeuroImage, 28(3), 618–625.

    Article  Google Scholar 

  • Wilson, R. C., Takahashi, Y. K., Schoenbaum, G., & Niv, Y. (2014). Orbitofrontal cortex as a cognitive map of task space. Neuron, 81, 267–279.

    Article  Google Scholar 

  • Wood, A., Rychlowska, M., Korb, S., & Niedenthal, P. (2016). Fashioning the face: Sensorimotor simulation contributes to facial expression recognition. Trends in Cognitive Sciences, 20, 227–240.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Campbell, A., Copping, L.T., Cross, C.P. (2021). Sex Differences in Strength of Fear Response. In: Sex Differences in Fear Response. SpringerBriefs in Anthropology(). Springer, Cham. https://doi.org/10.1007/978-3-030-65280-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65280-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65279-1

  • Online ISBN: 978-3-030-65280-7

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics