Skip to main content

CRISPR-Cas12a (Cpf1) and Its Role in Plant Genome Editing

  • Chapter
  • First Online:
RNA-Based Technologies for Functional Genomics in Plants

Abstract

Since the discovery of DNA, a large number of advancements were made in the field of molecular biology, which has improved our ability to decipher the Pandora’s box of decoded plant and animal genomes. This knowledge can be used to benefit humanity by making precise genetic alterations in plant and animal genomes. One such technology is CRISPR (Clustered Regularly Interspaced Short Palindromic Repeat), which is increasingly being used for genome editing in plants and animals. The CRISPR technology is being used not only in elucidating the gene function but also to precisely alter gene function in humans and agricultural plants. CRISPR systems evolved naturally in bacteria to defend against viruses. CRISPR-associated protein (Cas) 9, Cas12 (including Cpf1), Cas13, and Cas14 are variants of this novel bacterial immune system, which were repurposed for genome or RNA editing. The purpose of this chapter is to provide a brief introduction to CRISPR technology, precisely CRISPR-Cas12a, and its implications in plant genome editing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Cas:

CRISPR-associated protein

Cpf1:

CRISPR from Prevotella and Francisella 1

CRISPR:

Clustered regularly interspaced short palindromic repeats

crRNA:

CRISPR RNA

DSBs:

Double-strand breaks

gRNA:

Guide RNA

HDR:

Homology-directed repair

INTEGRATE:

Insert transposable elements by guide RNA-assisted targeting

NHEJ:

Non-homologous end joining

PAM:

Protospacer adjacent motif

TALEN:

Transcription activator-like effector nuclease

tracrRNA:

Trans-activating crRNA

ZFN:

Zinc-finger nuclease

References

  • Bailey-Serres J, Parker JE, Ainsworth EA, Oldroyd GED, Schroeder JI (2019) Genetic strategies for improving crop yields. Nature 575:109–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banakar R, Schubert M, Collingwood M, Vakulskas C, Eggenberger AL, Wang K (2020) Comparison of CRISPR-Cas9/Cas12a ribonucleoprotein complexes for genome editing efficiency in the rice Phytoene Desaturase (OsPDS) gene. Rice 13:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712

    Article  CAS  PubMed  Google Scholar 

  • Begemann MB, Gray BN, January E, Gordon GC, He Y, Liu H, Wu X, Brutnell TP, Mockler TC, Oufattole M (2017) Precise insertion and guided editing of higher plant genomes using Cpf1 CRISPR nucleases. Sci Rep 7:11606

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bernabé-Orts JM, Casas-Rodrigo I, Minguet EG, Landolfi V, Garcia-Carpintero V, Gianoglio S, Vázquez-Vilar M, Granell A, Orzaez D (2019) Assessment of Cas12a-mediated gene editing efficiency in plants. Plant Biotechnol J 17:1971–1984

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brokowski C, Adli M (2019) CRISPR ethics: moral considerations for applications of a powerful tool. J Mol Biol 431:88–101

    Article  CAS  PubMed  Google Scholar 

  • Campa CC, Weisbach NR, Santinha AJ, Incarnato D, Platt RJ (2019) Multiplexed genome engineering by Cas12a and CRISPR arrays encoded on single transcripts. Nat Methods 16:887–893

    Article  CAS  PubMed  Google Scholar 

  • Chandrasegaran S, Carroll D (2016) Origins of programmable nucleases for genome engineering. Mol Biol 428:963–989

    Article  CAS  Google Scholar 

  • Char SN, Yang B (2019) Gene editing in grass plants. aBIOTECH:1–17

    Google Scholar 

  • Chen J, Doudna J (2017) The chemistry of Cas9 and its CRISPR colleagues. Nat Rev Chem 1:0078

    Article  CAS  Google Scholar 

  • Chen K, Wang Y, Zhang R, Zhang H, Gao C (2019) CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu Rev Plant Biol 70:667–697

    Article  CAS  PubMed  Google Scholar 

  • Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai Y, Somoza RA, Wang L, Welter JF, Li Y, Caplan AI, Liu CC (2019) Exploring the trans-cleavage activity of CRISPR-Cas12a (cpf1) for the development of a universal electrochemical biosensor. Angew Chem Int Ed Engl 58:17399–17405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding D, Chen K, Chen Y, Li H, Xie K (2018) Engineering introns to express RNA guides for Cas9- and Cpf1-mediated multiplex genome editing. Mol Plant 11:542–552

    Article  CAS  PubMed  Google Scholar 

  • Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096

    Google Scholar 

  • Endo A, Masafumi M, Kaya H, Toki S (2016) Efficient targeted mutagenesis of rice and tobacco genomes using Cpf1 from Francisellanovicida. Sci Rep 6:38169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eshed Y, Lippman ZB (2019) Revolutions in agriculture chart a course for targeted breeding of old and new crops. Science 366:eaax0025

    Google Scholar 

  • Ferenczi A, Pyott DE, Xipnitou A, Molnar A (2017) Efficient targeted DNA editing and replacement in Chlamydomonas reinhardtii using Cpf1 ribonucleoproteins and single-stranded DNA. Proc Natl Acad Sci USA 114:13567–13572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haigler CH, Betancur L, Stiff MR, Tuttle JR (2012) Cotton fiber: A powerful single-cell model for cell wall and cellulose research. Front Plant Sci 3:1–7

    Article  CAS  Google Scholar 

  • Hickey LT, Hafeez AN, Robinson H, Jackson SA, Leal-Bertioli SCM, Tester M, Gao C, Godwin ID, Hayes BJ, Wulff BBH (2019) Breeding crops to feed 10 billion. Nat Biotechnol 37:744–754

    Article  CAS  PubMed  Google Scholar 

  • Hirochika H, Guiderdoni E, An G, Hsing Y-I, Eun MY, Han C-D, Upadhyaya N, Ramachandran S, Zhang Q, Pereira A, Sundaresan V, Leung H (2004) Rice mutant resources for gene discovery. Plant Mol Biol 54:325–334

    Article  CAS  PubMed  Google Scholar 

  • Hsu CT, Cheng YJ, Yuan YH, Hung W-F, Cheng Q-W, Wu F-H, Lee L-Y, Gelvin SB, Lin C-S (2019) Application of Cas12a and nCas9-activation-induced cytidine deaminase for genome editing and as a non-sexual strategy to generate homozygous/multiplex edited plants in the allotetraploid genome of tobacco. Plant Mol Biol 101:355–371

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Wang C, Liu Q, Fu Y, Wang K (2017) Targeted mutagenesis in rice using CRISPR- Cpf1 system. J Genet Genomics 44:71–73

    Article  PubMed  Google Scholar 

  • Jackson SA (2016) Rice: the first crop genome. Rice 9:14

    Article  PubMed  PubMed Central  Google Scholar 

  • Jia H, Orbović V, Wang N (2019) CRISPR-LbCas12a-mediated modification of citrus. Plant Biotechnol J 17:1928–1937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joung J, Konermann S, Gootenberg JS, Abudayyeh OO, Platt RJ, Brigham MD, SANJana NE, Zhang F (2017) Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening. Nat Protoc 12:828–863

    Google Scholar 

  • Kabadi AM, Ousterout DG, Hilton IB, Gersbach A (2014) Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector. Nucl Acids Res 42:e147

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kashyap S, Yang M, Rustgi S (2019) Novel reduced-immunogenicity wheat for celiac patients. Paper presented at the 1st International Wheat Congress, Saskatoon, Canada, 21–26 July 2019

    Google Scholar 

  • Kim H, Kim S-T, Ryu J, Kang B-C, Kim J-S, Kim S-G (2017) CRISPR/Cpf1-mediated DNA-free plant genome editing. Nat Commun 8:14406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klompe SE, Vo PLH, Halpin-Healy TS, Sternberg SH (2019) Transposon-encoded CRISPR–Cas systems direct RNA-guided DNA integration. Nature 571:219–225

    Article  CAS  PubMed  Google Scholar 

  • Koonin EV, Makarova KS, Zhang F (2017) Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol 37:67–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kyozuka J, Shimamoto K (1991) Transformation and regeneration of rice protoplasts. In: Lindsey K (ed) Plant Tissue Culture Manual. Springer, Dordrecht, pp 243–259

    Chapter  Google Scholar 

  • Lacape JM, Nguyen TB, Courtois B, Belot JL, Giband M, Gourlot JP, Gawryziak G, Roques S, Hau B (2005) QTL analysis of cotton fiber quality using multiple Gossypium hirsutum x Gossypium barbadense backcross generations. Crop Sci 45:123–140

    Article  CAS  Google Scholar 

  • Langner T, Kamoun S, Belhaj K (2018) CRISPR crops: plant genome editing toward disease resistance. Annu Rev Phytopathol 56:479–512

    Article  CAS  PubMed  Google Scholar 

  • Lee K, Zhang Y, Kleinstiver BP, Guo JA, Aryee MJ, Miller J, Malzahn A, Zarecor S, Lawrence-Dill CJ, Joung JK, Qi Y, Wang K (2019) Activities and specificities of CRISPR/Cas9 and Cas12a nucleases for targeted mutagenesis in maize. Plant Biotechnol J 17:362–372

    Article  CAS  PubMed  Google Scholar 

  • Lemmon ZH, Reem NT, Dalrymple J, Soyk S, Swartwood KE, Rodriguez-Leal D, Van Eck J, Lippman JB (2018) Rapid improvement of domestication traits in an orphan crop by genome editing. Nat Plants 4:766–770

    Article  CAS  PubMed  Google Scholar 

  • Li B, Rui H, Li Y, Wang Q, Alariqi M, Qin L, Sun L, Ding X, Wang F, Zou J, Wang Y, Yuan D, Zhang X, Jin S (2019) Robust CRISPR/Cpf1 (Cas12a)-mediated genome editing in allotetraploid cotton (Gossypium hirsutum). Plant Biotechnol J 17:1862–1864

    Google Scholar 

  • Li B, Zeng C, Dong Y (2018) Design and assessment of engineered CRISPR-Cpf1 and its use for genome editing. Nat Protoc13:899–914

    Google Scholar 

  • Li J-F, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31:688–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Li J, Zhang J, Du W, Fu J, Sutar S, Zhao Y, Xia L (2018) Synthesis-dependent repair of Cpf1-induced double strand DNA breaks enables targeted gene replacement in rice. J Exp Bot 69:4715–4721

    Google Scholar 

  • Li S, Zhang Y, Xia L, Qi Y (2020) CRISPR-Cas12a enables efficient biallelic gene targeting in rice. Plant Biotechnol J 18:1351–1353

    Article  PubMed  Google Scholar 

  • Li Y, Li S, Wang J, Liu G (2019) CRISPR/Cas systems towards next-generation biosensing. Trends Biotechnol 37:730–743

    Google Scholar 

  • Liang M, Li Z, Wang W, Liu J, Liu L, Zhu G, Karthik L, Wang M, Wang K-F, Wang Z, Yu J, Shuai Y, Yu J, Zhang L, Yang Z, Li C, Zhang Q, Shi T, Zhou L, Xie F, Dai H, Liu X, Zhang J, Liu G, Zhuo Y, Zhang B, Liu C, Li S, Xia X, Tong Y, Liu Y, Alterovitz G, Tan G-Y, Zhang L-X (2019) A CRISPR-Cas12a-derived biosensing platform for the highly sensitive detection of diverse small molecules. Nat Commun 10:3672

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malzahn AA, Tang X, Lee K, Ren Q, Sretenovic S, Zhang Y, Chen H, Kang M, Bao Y, Zheng X, Deng K, Zhang T, Salcedo V, Wang K, Zhang Y, Qi Y (2019) Application of CRISPR-Cas12a temperature sensitivity for improved genome editing in rice, maize, and Arabidopsis. BMC Biol 17:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Manghwar H, Lindsey K, Zhang X, Jin S (2019) CRISPR/Cas system: recent advances and future prospects for genome editing. Trends Plant Sci 24:1102–1125

    Article  CAS  PubMed  Google Scholar 

  • Ming M, Ren Q, Pan C, He Y, Zhang Y, Liu S, Zhong Z, Wang J, Malzahn AA, Wu J, Zheng X, Zhang Y, Qi Y (2020) CRISPR–Cas12b enables efficient plant genome engineering. Nat Plant 6:202–208

    Article  CAS  Google Scholar 

  • Minkenberg B, Wheatley M, Yang Y (2017) CRISPR/Cas9-enabled multiplex genome editing and its application. Prog Mol Biol Transl 149:111–132

    Article  CAS  Google Scholar 

  • Mojica FJM, Díez-Villaseñor C, García-Martínez J, Soria E (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60:174–182

    Article  CAS  PubMed  Google Scholar 

  • Murugan K, Babu K, Sundaresan R, Rajan R, Sashital D (2017) The revolution continues: newly discovered systems expand the CRISPR-Cas toolkit. Mol Cell 68:15–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Najera VA, Twyman RM, Christou P, Zhu C (2019) Applications of multiplex genome editing in higher plants. Curr Opin Biotechnol 59:93–102

    Article  CAS  Google Scholar 

  • Nekrasov V, Staskawicz B, Weigel D, Jones JDG, Kamoun S (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31:691–693

    Article  CAS  PubMed  Google Scholar 

  • Nissim L, Perli SD, Fridkin A, Perez-Pinera P, Lu TK (2014) Multiplexed and programmable regulation of gene networks with an integrated RNA and CRISPR/Cas toolkit in human cells. Mol Cell 54:698–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nuss ET, Tanumihardjo SA (2010) Maize: A paramount staple crop in the context of global nutrition. Comp Rev Food Sci Food Saf 9:417–436

    Article  CAS  Google Scholar 

  • Pickar-Oliver A, Gersbach CA (2019) The next generation of CRISPR–Cas technologies and applications. Nat Rev Mol Cell Biol 20:490–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pu X, Liu L, Li P, Huo H, Dong X, Xie K, Yang H, Liu L (2019) A CRISPR/LbCas12a-based method for highly efficient multiplex gene editing in Physcomitrella patens. Plant J 100:863–872

    Article  CAS  PubMed  Google Scholar 

  • Ranum P, Peña-Rosas JP, Garcia-Casal MN (2014) Global maize production, utilization, and consumption. Ann NY Acad Sci 1312:105–112

    Article  PubMed  Google Scholar 

  • Rodríguez-Leal D, Lemmon ZH, Man J, Bartlett ME, Lippman ZB (2017) Engineering quantitative trait variation for crop improvement by genome editing. Cell 171:470–480

    Article  PubMed  CAS  Google Scholar 

  • Rozov SM, Permyakova NV, Deineko EV (2019) The problem of the low rates of CRISPR/Cas9-mediated knock-ins in plants: approaches and solutions. Int J Mol Sci 20:3371

    Article  CAS  PubMed Central  Google Scholar 

  • Rustgi S, Kashyap S, Gandhi N, Naveed S, Windham J, Yang M, Gemini R, Reisenauer P (2019) A creative solution to gluten-induced disorders using a unique combination of multigene editing and nanoparticle-based gene-delivery. Ann Wheat Newslet 65:79–84

    Google Scholar 

  • Sakuma T, Nishikawa A, Kume S, Chayama K, Yamamoto T (2014) Multiplex genome engineering in human cells using all-in-one CRISPR/Cas9 vector system. Sci Rep 4:5400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki T, Matsumoto T, Yamamoto K, Sakata K, Baba T, Katayose Y, Wu J, Niimura Y, Cheng Z, Nagamura Y, Antonio BA, Kanamori H, Hosokawa S, Masukawa M, Arikawa K, Chiden Y, Hayashi M, Okamoto M, Ando T, Aoki H, Arita K, Hamada M, Harada C, Hijishita S, Honda M, Ichikawa Y, Idonuma A, Iijima M, Ikeda M, Ikeno M, Ito S, Ito T, Yuichi Ito, Yukiyo Ito, Iwabuchi A, Kamiya K, Karasawa W, Katagiri S, Kikuta A, Kobayashi N, Kono I, Machita K, Maehara T, Mizuno H, Mizubayashi T, Mukai Y, Nagasaki H, Nakashima M, Nakama Y, Nakamichi Y, Nakamura M, Namiki N, Negishi M, Ohta I, Ono N, Saji S, Sakai K, Shibata M, Shimokawa T, Shomura A, Song J, Takazaki Y, Terasawa K, Tsuji K, Waki K, Yamagata H, Yamane H, Yoshiki S, Yoshihara R, Yukawa K, Zhong H, Iwama H, Endo T, Ito H, Hahn JH, Kim H-I, Eun M-Y, Yano M, Jiang J, Gojobori T (2002) The genome sequence and structure of rice chromosome 1. Nature 420:312–316

    Article  CAS  PubMed  Google Scholar 

  • Schindele P, Puchta H (2020) Engineering CRISPR/LbCas12a for highly efficient, temperature-tolerant plant gene editing. Plant Biotechnol J 18:1118–1120

    Article  PubMed  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du F, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, Chen W, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He R, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H, Lee S, Lin J, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan C, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren L, Wei S, Kumari S, Faga B, Levy MJ, McMahan L, Van Buren P, Vaughn MW, Ying K, Yeh C-T, Emrich SJ, Jia Y, Kalyanaraman A, Hsia A-P, Barbazuk WB, Baucom RS, Brutnell TP, Carpita NC, Chaparro C, Chia J-M, Deragon J-M, Estill JC, Fu Y, Jeddeloh JA, Han Y, Lee H, Li P, Lisch DR, Liu S, Liu Z, Nagel DH, McCann MC, SanMiguel P, Myers AM, Nettleton D, Nguyen J, Penning BW, Ponnala L, Schneider KL, Schwartz DC, Sharma A, Soderlund C, Springer NM, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber TK, Yang L, Yu Y, Zhang L, Zhou S, Zhu Q, Bennetzen JL, Dawe RK, Jiang J, Jiang N, Presting GG, Wessler SR, Aluru S, Martienssen RA, Clifton SW, McCombie WR, Wing RA, Wilson RK (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  CAS  PubMed  Google Scholar 

  • Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu J-L, Gao C (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:686–688

    Article  CAS  PubMed  Google Scholar 

  • Shipman SL, Nivala J, Macklis JD, Church GM (2017) CRISPR-Cas encoding of a digital movie into the genomes of a population of living bacteria. Nature 547:345–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shmakov S, Smargon A, Scott D, Cox D, Pyzocha N, Yan W, Abudayyeh OO, Gootenberg JS, Makarova KS, Wolf YI, Severinov K, Zhang F, Koonin EV (2017) Diversity and evolution of class 2 CRISPR-Cas systems. Nat Rev Microbiol 15:169–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swarts DC, Jinek M (2018) Cas9 versus Cas12a/Cpf1: Structure–function comparisons and implications for genome editing. WIREs RNA 9:e1481

    Article  CAS  PubMed  Google Scholar 

  • Tang X, Lowder LG, Zhang T, Malzahn AA, Zheng X, Voytas DF, Zhong Z, Chen Y, Ren Q, Li Q, Kirkland ER, Zhang Y, Qi Y (2017) A CRISPR–Cpf1 system for efficient genome editing and transcriptional repression in plants. Nat Plants 3:17018

    Article  CAS  PubMed  Google Scholar 

  • Tsai S, Wyvekens N, Khayter C, Foden JA, Thapar V, Reyon D, Goodwin MJ, Aryee MJ, Joung JK (2014) Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol 32:569–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • United States Department of Agriculture (2018) Secretary Perdue issues USDA statement on plant breeding innovation [Press Release]. 28 March. Available at: https://www.usda.gov/media/press-releases/2018/03/28/secretary-perdue-issues-usda-statement-plant-breeding-innovation. Accessed 30 Nov 2019

  • Vanegas KG, Jarczynska ZD, Strucko T, Mortensen UH (2020) Cpf1 enables fast and efficient genome editing in Aspergilli. Fungal Biol Biotechnol 6:6

    Article  Google Scholar 

  • Vaughan DA, Morishima H, Kadowaki K (2003) Diversity in the Oryza genus. Curr Opin Plant Biol 6:139–146

    Article  CAS  PubMed  Google Scholar 

  • Waltz E (2016) CRISPR-edited crops free to enter market, skip regulation. Nat Biotechnol 34:582

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Wang R, Wang D, Wu J, Li J, Wang J, Liu H, Wang Y (2019) Cas12aVDet: A CRISPR/Cas12a-based platform for rapid and visual nucleic acid detection. Anal Chem 91:12156–12161

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Mao Y, Lu Y, Tao X, Zhu JK (2017) Multiplex gene editing in rice using the CRISPR-Cpf1 system. Mol Plant 10:1011–1013

    Article  CAS  PubMed  Google Scholar 

  • Wolter F, Puchta H (2019) In planta gene targeting can be enhanced by the use of CRISPR/Cas12a. Plant J 100:1083–1094

    Article  CAS  PubMed  Google Scholar 

  • Xie K, Minkenberg B, Yang Y (2015) Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci USA 112:3570–3575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu R, Qin R, Li H, Li D, Li L, Wei P, Yang J (2017) Generation of targeted mutant rice using a CRISPR-Cpf1 system. Plant Biotechnol J 15:713–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadava P, Abhishek A, Singh R, Singh I, Kaul T, Pattanayak A, Agrawal PK (2017) Advances in maize transformation technologies and development of transgenic maize. Front Plant Sci 7:1949

    Article  PubMed  PubMed Central  Google Scholar 

  • Yin X, Biswal AK, Dionora J, Perdigon KM, Balahadia CP, Mazumdar S, Chater C, Lin H-C, Coe RA, Kretzschmar T, Gray JE, Quick PW, Bandyopadhyay A (2017) CRISPR-Cas9 and CRISPR-Cpf1 mediated targeting of a stomatal developmental gene EPFL9 in rice. Plant Cell Rep 36:745–757

    Article  CAS  PubMed  Google Scholar 

  • Zaidi SS, Mahfouz MM, Mansoor S (2017) CRISPR-Cpf1: a new tool for plant genome editing. Trends Plant Sci 22:550–553

    Article  CAS  PubMed  Google Scholar 

  • Zaidi SS, Vanderschuren H, Qaim M, Mahfouz MM, Kohli A, Mansoor S, Tester M (2019) New plant breeding technologies for food security. Science 363:1390–1391

    Article  CAS  PubMed  Google Scholar 

  • Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, Van Der Oost J, Regev A, Koonin EV, Zhang F (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zetsche B, Heidenreich M, Mohanraju P, Fedorova I, Kneppers J, DeGennaro EM, Winblad N, Choudhury SR, Abudayyeh OO, Gootenberg JS, Wu WY, Scott DA, Severinov K, van der Oost J, Zhang F (2017) Multiplex gene editing by CRISPR–Cpf1 using a single crRNA array. Nat Biotechnol 35:31–34

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Hu Y, Jiang W, Fang L, Guan X, Chen J, Zhang J, Saski CA, Scheffler BE, Stelly DM, Hulse-Kemp AM, Wan Q, Liu B, Liu C, Wang S, Pan M, Wang Y, Wang D, Ye W, Chang L, Zhang W, Song Q, Kirkbride RC, Chen X, Dennis E, Llewellyn DJ, Peterson DG, Thaxton P, Jones DC, Wang Q, Xu X, Zhang H, Wu H, Zhou L, Mei G, Chen S, Tian Y, Xiang D, Li X, Ding J, Zuo Q, Tao L, Liu Y, Li J, Lin Y, Hui Y, Cao Z, Cai C, Zhu X, Jiang Z, Zhou B, Guo W, Li R, Chen ZJ (2015) Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol 33:531–537

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Malzahn AA, Sretenovic S, Qi Y (2019) The emerging and uncultivated potential of CRISPR technology in plant science. Nat Plant 5:778–794

    Article  Google Scholar 

  • Zhang ZS, Hu MC, Zhang J, Liu D-J, Zheng J, Zhang K, Wang W (2009) Construction of a comprehensive PCR-based marker linkage map and QTL mapping for fiber quality traits in upland cotton (Gossypium hirsutum L.). Mol Breed 24:49–61

    Google Scholar 

  • Zhong Z, Zhang Y, You Q, Le Y, Zhang Y, Qi Y (2018) Plant genome editing using FnCpf1 and LbCpf1 nucleases at redefined and altered PAM sites. Mol Plant 11:999–1002

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the SC Peach Council, National Peanut Board, and NIFA Hatch/Multi-state grant (S009). JW and SR would like to thank the Chair of the Department of Plant and Environmental Sciences and the Director of the Pee Dee Research and Education Center, Clemson University, for providing facilities. MKK would like to thank the management of the Amity University Haryana, India for providing resources and facilities, and the Teachers Association for Research Excellence (TARE) fellowship from the Science and Engineering Board (SERB), Government of India, New Delhi. Thanks are also due to the Department of Biotechnology (DBT), Govt of India, for providing funds in the form of research projects to SS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manoj Kumar Kashyap or Sachin Rustgi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Windham, J., Sharma, S., Kashyap, M.K., Rustgi, S. (2021). CRISPR-Cas12a (Cpf1) and Its Role in Plant Genome Editing. In: Tang, G., Teotia, S., Tang, X., Singh, D. (eds) RNA-Based Technologies for Functional Genomics in Plants. Concepts and Strategies in Plant Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-64994-4_13

Download citation

Publish with us

Policies and ethics